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Abstract 
 

Since distributions of qualitative variables can be represented by multinomial distributions, the role of 
multinomial distribution in entropy considerations is essential in statistics. Moreover for larger sample sizes 
multinomial distributions can be approximated well by multivariate normal distributions.  The measures of 
qualitative variations depend on either class frequencies or some functional forms of class frequencies. Therefore 
the connection between qualitative variation statistics and normality seems straightforward for larger sample 
sizes. Asymptotic distributions of Shannon, Rényi and Tsallis entropies make some hypothesis testing and 
inferential techniques applicable to qualitative variations because some entropy measures are also frequently used 
in qualitative variation calculations. In this study, first we will give few examples of such applications by three 
entropy measures.  Then we make a comparison between the performances of these three entropy measures. 
Finally, the degree of uncertainty, which is a significant factor that affects the speed of convergence to normality, 
is emphasized. 
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Introduction 
 

For Boltzmann, the entropy of a physical system is the measure of disorder.  The entropy of statistical mechanics 
is Boltzmann’s constant times the natural logarithm of the number of possible states.  The entropy of a statistical 
experiment, on the other hand, can be evaluated as a measure of uncertainty before a statistical experiment takes 
place.  So in a statistical sense, entropy and the amount of information are two closely related concepts. Since, 
uncertainty is not present after experimentation; entropy can be viewed as the amount of information that can be 
gathered through sampling. 
 

For some introductory concepts and applications of statistical entropy, one can refer to Renyi (2007-a, 2007b), 
Pierce (1980), Khinchin (1957), Ash (1990), Cover and Thomas (2006) and Reza (1994). For more advanced 
topics in entropy (and especially for statistical applications of entropy concepts) Pardo (2006), and Esteban & 
Morales(1995) should be highlighted. Finally as a comprehensive study on different entropy measures, Ullah A. 
(1996) should be emphasized. 
 

Some of the frequently used entropy measures are Shannon, Rényi and Tsallis entropies. Among them maybe the 
most popular one is Shannon entropy. Rényi entropy has gained popularity, recently, especially for the purposes 
of information sciences. The role that Rényi entropy played in machine learning is crucial (Principe, 2010). 
Another popular entropy measure, which is based on a different parameterization technique, is Tsallis entropy.  
Gini Concentration Index is a special case of Tsallis entropy as well as Shannon entropy is the limit of Rényi 
entropy as α approaches to unity. Therefore Rényi and Tsallis entropies serve as envelopes to bring researchers 
more flexibility for further analysis.  
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Qualitative Variation, Entropy and Multinomial Distributions 
 

Especially, when the random variable is qualitative, it is impossible to calculate the mean, variance and standard 
deviation. In such cases, measures based on frequencies of each category are to be used to measure qualitative 
variation.   Among several qualitative variation measures, entropy measures have gained familiarity, recently. 
Finally, it should be noted that a suitable form of multinomial distribution could model a qualitative distribution.   
 

The Relation between Entropy Measures and Multivariate Normality 
 

Increasing the sample size of the binomial distribution with parameter ߠ tends to a normal distribution with mean 
1)	ߠand variance݊   ߠ݊ −  A similar result holds for the multinomial distribution. If the probability that a  .(ߠ
random observation comes from the ith class is ߨ  (i=1, 2, k), then the observed frequencies ݂  will tend to a 
multivariate normal distribution with means ݊ߨ  and the as sample size n increases indefinitely (Agresti, 2002). 
The variance-covariance matrix V will be given as below; 
 

			ܸ = ݊

⎣
⎢
⎢
⎡
−ଵ(1ߨ (ଵߨ ଶߨଵߨ−				 									… ߨଵߨ−									

ଶߨଵߨ− −ଶ(1ߨ (ଶߨ … ߨଶߨ−							
		…			 																					… 								… 													…
ߨଵߨ−							 																		… … −(1ߨ (ߨ ⎦

⎥
⎥
⎤
														(1) 

 

Delta Method for Function of Random Variable and Asymptotic Normality 
 

Let ܶ denote a statistic based on a sample size n.  For large sample sizes, suppose that ܶ is approximately 
normally distributed about ߠ with approximate standard error ߪ

√݊ൗ   . More precisely, as ݊ → ∞, the cdf of 

√݊( ܶ −   cdf. Then (ଶߪ,0)ܰ converges to a (ߠ
 

√݊( ܶ − (ߠ
ௗ
(ଶߪ,0)ܰ→ (2) 

 

For a function g which is at least twice differentiable, the limiting distribution of g ( ܶ) can be derived as  
 

√݊(݃( ܶ) − ((ߠ)݃
ௗ
൧(ߠ)′ଶൣ݃ߪ,0)ܰ→

ଶ
)         (3) 

 

This, which is called as “delta method”, forms the necessary link between entropy estimators and asymptotic 
normality.  
 

Shannon Entropy 
 

Let the discrete random variable X takes on the valueݔଵ, ,ଶݔ … , ,ଶ,ଵwith respective probabilitiesݔ …  .,
Shannon entropy is defined as  
 

௦ܪ = −∑ ݈݃
ୀଵ             (4) 

 

The unit of entropy is bit if the base of the logarithm is taken to be 2 and nat if the base is Nauperian (Garcia, 
1994).  In case of maximum heterogeneity (i.e., the each probability is equal to each other)ܪ௦ =  The upper.ܭ݈݃
limit of Shannon entropy depends on the number of categories; K. Let ܪ  is the estimator of Shannon entropy. It is 
calculated as  
 

ܪ = −∑ ݈̂݃̂
ୀଵ   (5) 

 

Here ̂ probabilities are estimated by maximum likelihood method. Although this estimator is biased, increasing 
the sample size can reduce the amount of bias. The variance of Shannon entropy is found as (Zhang Xing, 2013).  
 

൯ܪ൫ݎܸܽ = ଵ


(∑ ݈݊ଶ (ଶܪ− + ିଵ
ଶమ

+ ܱ(݊ିଷ)
ୀଵ ) (6) 

 

Note that H can be normalized dividing it by “log K”. In this case the variance of this normalized version can also 
be obtained easily because of the linear relationship between Shannon entropy and its normalized version. Since 
log K is greater than one, one can use standardized versions to decrease variability.  
 

Rényi Entropy  
 

Rényi entropy is defined as 
 

ோܪ =  ∑ 
ഀ಼

సభ
ଵିఈ

ߙ			ݎ݂				 > ߙ		݀݊ܽ		0 ≠ 1			   (7) 
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Rényi entropy is also called as ߙ type of entropy (Ullah, A., 1996).  As the parameter ߙapproaches unity, Rényi 
entropy approaches to Shannon entropy. Thus Shannon entropy is a special case of Rényi entropy. Pielou suggests 
using Rényi entropy with ߙ = 2 as a diversity index (Fattorini, 2003). The variance of Rényi entropy is given as 
follows (Pardo, 2006); 
 

ோ൯ܪ൫ݎܸܽ = ଵ

ቀ ఈ
ఈିଵ

ቁ
ଶ
൫∑ ఈ

ୀଵ ൯ିଶ ቀ∑ ଶఈିଵ
ୀଵ − ൫∑ ఈ

ୀଵ ൯ଶቁ൨      (8) 
+ 

Note that normalized versions of Rényi entropies can be formulated directly as discussed in (1.3). Like Shannon 
entropy, the value of Rényi entropy is log K in case of maximum entropy. 
 

Tsallis Entropy  
 

Tsallis (or Havrda-Charvat) entropy is known as  
 

்ܪ = ଵି∑ 
ഀ಼

సభ
ఈିଵ

, ߙ			ݎ݂ > ߙ		݀݊ܽ		0 ≠ 1	                            (9) 
 

For ߙ = 2 Tsallis entropy is identical to Gini Concentration Index. The variance of this entropy estimator is  
(Pardo, 2006); 
 

்൯ܪ൫ݎܸܽ = ଵ

ቀ ఈ
ఈିଵ

ቁ
ଶ
ቀ∑ ଶఈିଵ

ୀଵ − ൫∑ ఈ
ୀଵ ൯ଶቁ൨       (10) 

 

The maximum value of Tsallis entropy can be calculated as ଵି
భషഀ

ఈିଵ
  by setting  = ଵ


   in equation (9).  It should 

also be noted that parameterization (i.e., choosing alpha value arbitrarily) does have an effect on maximum 
entropy as well as the number of categories. Unlike Shannon and Rényi entropies this quantity may be greater 
than or less than unity. So when one considers Tsallis entropy, using normalized version to decrease variability 
may not work all the time.   
 

Asymptotic Sampling Distributions of Entropy Measures  
 

In literature there are other entropy measures than Shannon, Rényi and Tsallis entropies. For asymptotic 
properties of entropy estimators one can refer to Pardo (2006) and Esteban & Morales (1995). To summarize let 
ࡴ  be any  entropy estimator whose expected value is ܪ =  If the number of categories K is finite, and the  .(ܪ)ܧ
sample size is sufficiently large, the statistic ுିு

ඥ	(ு)
 fits standard normal distribution. It should be noted that 

entropy estimators are biased but the amount of bias is low especially when sample sizes are large enough.  
Therefore an approximate 100(1 −   confidence interval for any entropy measure can be obtained as %(ߙ
 

ܪ ± ܼఈ
ଶൗ
ඥܸܽݎ(ܪ)(11) 

 

Here	ܼఈ
ଶൗ
 value is the abscissa of standard normal variable corresponding to a right-tail probability of ߙ 2ൗ . For 

some hypothesis testing examples on some entropy measures, one might refer to Magurran (1988) and Agresti 
(1978). For testing the equality of entropies of two populations by all three measures (Shannon, Rényi and Tsallis 
entropies), we consider two hypothetical frequency distributions on marital status of some people as shown in 
Table I. The summarizing statistics on three entropy measures; Shannon entropy; Rényi entropy (α=2), Tsallis 
entropy (α=2) are given in Table II. Since all three measures distribute normally asymptotically, and the 
probability distributions of each community on marital status are assumed to be independent, the following 
hypothesis testing procedure will be repeated for three entropy measures: 
 

 :  Entropies are equalܪ
 : Entropies are not equalܪ
Test statistic T is calculated as 

ܶ = ா௦௧௧ௗ	௧௬		ିா௦௧௧ௗ	௧௬		
ඥ		௧௬		ା		௧௬		

    (12) 

Assume α=0.05 
Decision rule: 
Accept ܪ    if −1.96 ≤ ܶ ≤ 1.96 
Reject ܪ    otherwise. 
 

By any of these three measures, we can conclude that entropies are not equal as shown in Table III. 
 



ISSN 2221-0997 (Print), 2221-1004 (Online)             © Center for Promoting Ideas, USA            www.ijastnet.com 
 

34 

Simulation Study 
 

52 different simulations on 6 different categorical distributions are run to analyze asymptotic behavior of 9 
different entropy measures. Simulations are realized by macros on Microsoft Excel. Entropy measures that are 
under consideration are Shannon, Rényi for ߙ = 0.5, 0.99, 1.5, 2 and Tsallis for	ߙ = 0.5, 0.99, 1.5, 2. The six 
probability distributions used in simulations are given in Table IV, Table V and Table VI.  
 

Results 
 

Simulation results on normality of entropy estimators for 52 trials are given in Table VII. 
 

1. All entropy measures underestimate population entropies. Yet the bias is small. 
2. All entropy measures are very highly correlated to each other. To give a better impression on this, the 
correlation matrix of entropy estimators for 34th model is given in Table VIII, since all models have this property 
more or less.  
3. The coefficients of variation for different (normalized) entropy measures vary between 0.01% and 14.7%. Yet, 
it is generally the case that coefficients of variation scores are frequently very low. The minimum, average and 
maximum values for coefficients of variation (for normalized versions) are given in Table IX. It can also be 
verified that minimum range scores are generally obtained for Shannon and Ré(0.5) entropies. This situation is 
summarized by Figure I.   
4. As a general tendency, distributions of entropy estimators tend to normality, as sample sizes and number of 
runs increase indefinitely. One exception is the case of maximum entropy (i.e., uniform distributions) where the 
rate of convergence to normality is low. This phenomenon should be underlined.  For other instances, normality 
can be reached even for smaller sample sizes (250 or higher). As an example, the frequency distributions of all 
entropy measures for 34th model are given in Table X. 
 

The non-normality of Ré(0.99)  and  Tsa(0.99) entropies are probably due to the fact that these two entropies are 
undefined at  ߙ = 1.  Other entropy measures seem fit well some forms of normal distribution. Note that 
normality tests of various entropy measures are realized by NCSS (2004). For illustrative purposes, the tendency 
of entropy measures to normality for 34th model can be checked by Figure II. Although it is impossible to 
summarize all entropy statistics, it can still be said that all entropy measures studied by 34th simulation have the 
normality property.  
 

Conclusion 
 

Asymptotic normality of nine entropy measures for some hypothetical multinomial populations is studied. 
Normalized versions of various entropy measures are considered to be able to make sound comparisons since 
different alpha values correspond to totally different transformations on probabilities.   
 

The first result is that all entropy measures whether they are normalized or not, are highly and positively 
correlated to each other.  This is important because one can arbitrarily select any of these entropy measures for 
further analysis. Yet we recommend considering normalized versions. Because in such cases, all normalized 
entropy scores fall between zero and one, a property which facilitates statistical tests on equality of means. 
Besides when considering Shannon and Rényi entropies, using normalized versions is beneficial because of lower 
variances. Secondly, the normality of all nine entropy measures seems apparent as sample sizes and number of 
runs increase indefinitely.  
 

The third result is that in case of maximum entropy, the rate of convergence to normality is low. This is a factor 
that affects the validity of interval estimates and hypothesis-tests based on asymptotic normality. In such cases 
some probability inequalities like Chebyshev’s inequality may be useful due to the fact that the asymptotic 
variances of these entropy measures are relatively low.    
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Tables 

 

Table I: Two hypothetical distributions on marital status of some people 
 

Group Single Married Separated Divorced Widowed Total 
A 340 232 201 105 122 1000 

P(A) 0.34 0.232 0.201 0.105 0.122 1 
B 320 196 188 144 152 1000 

P(B) 0.32 0.196 0.188 0.144 0.152 1 
 

Table II:  Summarizing statistics of three entropy measures on two frequency distributions 
 

Summarizing Statistics Group A Group B 
Shannon's Entropy 2.195133 2.255867 

Rényi'sEntropy(α=2) 2.084768 2.184425 
Tsallis' Entropy(α=2) 0.764266 0.78 

Estimated Variance of Shannon's  Entropy 0.000347 0.000201 
Estimated Std. Deviation  of Shannon's Entropy 0.018617 0.014163 

Estimated Variance of Rényi's Entropy 0.000527 0.000417 
Estimated Std. Deviation  ofRényi's Entropy 0.022946 0.020409 

Estimated Variance of Tsallis' Entropy 2.93E-05 2.02E-05 
Estimated Std. Deviation  of Tsallis' Entropy 0.005409 0.00449 

 

Table III: Test Statistics for three entropy measures 
 

Entropy Measure Test statistics (T) 
Shannon entropy -2.596 

Rényi entropy -3.245 
Tsallis entropy -2.238 

Table IV: First and second probability distributions used for random number generation 
 

Category Probability Category Probability 
1 0.25 1 0.125 
2 0.25 2 0.125 
3 0.25 3 0.25 
4 0.25 4 0.5 



ISSN 2221-0997 (Print), 2221-1004 (Online)             © Center for Promoting Ideas, USA            www.ijastnet.com 
 

36 

Distribution no. 1 Distribution no. 2 
Table V: Third and fourth probability distributions used for random number generation 

 

Category Probability Category Probability 
1 0.167 1 0.05 
2 0.167 2 0.05 
3 0.167 3 0.1 
4 0.167 4 0.1 
5 0.167 5 0.2 
6 0.167 6 0.5 

Distribution no. 3 Distribution no. 4 
 

Table VI: Fifth and sixth probability distributions used for random number generation 
 

Category Probability Category Probability 
1 0.1 1 0.05 
2 0.1 2 0.05 
3 0.1 3 0.05 
4 0.1 4 0.05 
5 0.1 5 0.05 
6 0.1 6 0.05 
7 0.1 7 0.1 
8 0.1 8 0.1 
9 0.1 9 0.1 
10 0.1 10 0.4 

Distribution no. 5 Distribution no. 6 
 

 

Table VII: Simulation results on normality of entropy estimators for 52 trials. 
 

Simulation Distribution No Explanation Sample Size Number of runs Normality ? 
1 1 Max. Ent.Dist. 50 250 No. 
2 1 Max. Ent.Dist. 50 500 No. 
3 1 Max. Ent.Dist. 500 250 No. 
4 1 Max. Ent.Dist. 500 505 No. 
5 1 Max. Ent.Dist. 1000 502 No 
6 1 Max. Ent.Dist. 1000 1000 No. 
7 1 Max. Ent.Dist. 2000 500 No 
8 1 Max. Ent.Dist. 2000 1000 No. 
9 1 Max. Ent.Dist. 4000 500 No. 
10 1 Max. Ent.Dist. 4000 1000 No. 
11 2  50 250 No 
12 2  50 500 No. 
13 2  500 250 Mostly yes. 
14 2  500 505 Mostly yes 
15 2  1000 502 Mostly yes. 
16 2  1000 1000 Mostly yes. 
17 2  1000 2000 Mostly yes. 
18 2  2000 1000 Mostly yes. 
19 2  2000 2000 Mostly yes. 
20 2  2500 351 Yes. 
21 2  2500 553 Yes. 
22 3 Max. Ent.Dist. 50 618 No. 
23 3 Max. Ent.Dist. 250 290 No. 
24 3 Max. Ent.Dist. 500 501 No. 
25 3 Max. Ent.Dist. 2500 250 No. 
26 3 Max. Ent.Dist. 2500 500 No. 
27 3 Max. Ent.Dist. 1000 1000 No. 
28 4  50 273 Partly no. 
29 4  50 618 Partly no. 
30 4  50 1155 No,. 
31 4  250 290 No 
32 4  500 250 No. 
33 4  500 500 No. 
34 4  1000 1000 Mostly yes. 
35 4  2500 250 Partly yes. 
36 4  2500 500 Yes. 
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37 5 Max. Ent.Dist. 250 250 No. 
38 5 Max. Ent.Dist. 250 500 No. 
39 5 Max. Ent.Dist. 250 1500 No. 
40 5 Max. Ent.Dist. 500 250 No. 
41 5 Max. Ent.Dist. 500 500 No. 
42 5 Max. Ent.Dist. 500 1000 No. 
43 5 Max. Ent.Dist. 1000 1000 No. 
44 5 Max. Ent.Dist. 2500 250 No. 
45 6  250 250 Mostly yes 
46 6  250 500 Partly yes. 
47 6  250 1500 No. 
48 6  1000 1000 Mostly yes. 
49 6  1000 4000 Yes. 
50 6  2972 2000 Yes 
51 6  4000 500 Mostly yes. 
52 6  4000 1000 Mostly yes. 

Table VIII: Correlation matrix of entropy estimators for model 34 
 

 Shannon Ré(0.5) Ré(0.99) Ré(1.5) Ré(2) Ts(0.5) Ts(0.99) Ts(1.5) Ts(2) 
Shannon 1 0.98 0.84 0.99 0.97 0.98 0.84 0.99 0.97 
Ré(0.5) 0.98 1 0.83 0.95 0.91 0.99 0.83 0.95 0.91 

Ré(0.99) 0.84 0.83 1 0.83 0.82 0.83 1 0.83 0.82 
Ré(1.5) 0.99 0.95 0.83 1 0.99 0.95 0.83 0.99 0.99 
Ré(2) 0.97 0.91 0.82 0.99 1 0.91 0.82 0.99 0.99 

Ts(0.5) 0.98 0.99 0.83 0.95 0.91 1 0.83 0.95 0.91 
Ts(0.99) 0.84 0.83 1 0.83 0.82 0.83 1 0.83 0.82 
Ts(1.5) 0.99 0.95 0.83 0.99 0.99 0.95 0.83 1 0.99 
Ts(2) 0.97 0.91 0.82 0.99 0.99 0.91 0.82 0.99 1 

 

Table IX:  Coefficients of Variation for various normalized entropies 
 

Coefficient of Variation 
Index Minimum Mean Maximum Range 

SH 0.000242 0.010516 0.03676876 0.036527 
Ré(0.5) 0.0001354 0.0101 0.05907258 0.058937 
Ré(0.99) 0.0048117 0.025334 0.13464958 0.129838 
Ré(1.5) 0.0003991 0.026556 0.12136609 0.120967 
Ré(2) 0.0004916 0.03449 0.14731634 0.146825 

Tsa(0.5) 0.0001877 0.014241 0.08300134 0.082814 
Tsa(0.99) 0.0049494 0.025838 0.13448719 0.129538 
Tsa(1.5) 0.0002767 0.019177 0.08900824 0.088732 
Tsa(2) 0.0001928 0.018698 0.09058598 0.090393 

 

Table X: Normality tests of Shannon entropies calculated in 34 
 
 

Tests Shannon Ré(0.5) Ré(0.99) Ré(1.5) Ré(2) Ts(0.5) Ts(0.99) Ts(1.5) Ts(2) 
Shapiro-Wilk W normal normal no normal normal normal no normal normal 

Anderson-Darling normal normal no normal normal normal no normal normal 
Martinez-Iglewicz normal normal no normal normal normal no normal normal 

Kolmogorov-Smirnov normal normal no normal normal normal no normal normal 
D'AgostinoSkewness normal no no normal normal normal no normal normal 
D'Agostino Kurtosis normal normal no normal normal normal no normal normal 
D'Agostino Omnibus normal no no normal normal normal no normal normal 

Figures 
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Figure I: Ranges of coefficients of determination calculated for various entropy measures 
 

 
Figure II: Frequency distributions of entropies calculated for 34th model 
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