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Abstract

Marine cables are exposed to the action of water in relative motion, and hence the need to predict the dynamic
behavior of these complex mechanical systems under the typical working conditions since the outset of the
corresponding design processes. This paper describes the basic principles that can be used in a computer
program meant to support the design of marine cables that should work under a combination of static and
dynamic loadings. A unique mathematical model and a matching numerical method based on finite differences
are used, first for determining the static equilibrium configuration of the riser, and then for findings its dynamic
response around the formerly computed static configuration. A computer program was specially developed for
implementing the proposed model, and a step-by-step method for the design of marine cables similar to the ones
in operation at the Black Sea are herein presented. The conclusion is that this new model provides a coherent and
efficient means to analyze the dynamic behavior of marine cables, as required during the design process.

Key Words: marine cables; dynamic behavior; finite differences; optimization
1. Introduction

The main objective of this study is to deploy a coherent and efficient mathematical model for the cable
mechanics. Beginning from this of this model will be determinate the cable/chains mechanics for different
technical situations. Starting from this model, the cable behavior for different technical situations is analyzed, and
the corresponding original computer programs were used to determine the cable’s mechanics. The marine
cable/chains utilization presents actually a great diversity including:

1. Moored systems: vessels, offshore exploration units, surface or underwater body, floating dock, other floating
structures; 2. Towed systems: surface vessels, underwater body, fishing nets.
Problem Formulation

A flexible towing/mooring cable presents a difficult problem in dynamic analysis so looking the mathematical
model formulation but especially concerning the numerical computation.
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By making key assumptions is possible to obtain a satisfactory accuracy of mathematical model and of
computation results respectively. Several mathematical models are used to describe the dynamical behavior of
cable. In the present time our experience is confirmed relative to two principal methods, which are applied in the
design of moored/towed systems. The first approach taken for moored/towed systems prediction has been to
represent the continuous cable with a series of rigid segments having the mass-elastic characteristic concentrated
at discrete points along the cable. It is a development of the lumped-mass method [7]. The equations of motion are
obtained by expressing the condition of dynamical equilibrium — D’ Alembert principle- for each cable element or
these equations of motion are derived by Lagrange’s equations. One can mention the analyses of Walton &
Polachek were based on the use of a lumped characteristics model [12]. In 1980, Nakajima et al. developed a new
method based on a lumped mass model that can be used for the complete analysis — both static and dynamic —
of cable mechanics [10].

The second approach taken for moored/towed systems prediction has been to represent the marine cable as a
continuous medium having the mass-elastic characteristic distributed along the cable. The cable motion is
described by a system of partial differential equations. Wicker, L.E. obtained a solution for these equations using
the method of characteristic based on the partial differential equations of the cable motion in a bi-dimensional
space [1]. Bernitsas, M. M. developed a study for a three dimensional nonlinear large deflection model for
dynamic behavior of risers, pipelines and cables [4]. In addition, several researchers have developed mathematical
models to take in account the bending stiffness and torsion stiffness [5, 6], as well as more accurate expressions
for the hydrodynamic forces and for the mass distribution [6]. Some other methods for the mooring/towing cables
design were developed [2, 3, 5, 6, 7, 10, 11]. Several studies on cable systems have been made by our R&D
group. The present paper reports the basic approach that has been made on modeling a mooring/towing system, on
deriving the equations for the marine cable mechanics, and on the introducing the necessary engineering
assumptions to achieve practical solutions.

Moored/Towed Systems

The approach taken for moored/towed system has been to represents the continuous cable composed of elastic
segments “ds” having mass and elastic characteristic distributed along the elements. As such the mechanical
model of cable dynamics approximates the set of exact partial differential equations with another set of non-linear
ordinary differential equations because they are amenable to direct solution by computation. The assumptions can
be summarized as follow:

1. The cable is represented by “n” rigid segments;

2. The mass-elastic characteristic of cable is distributed along the each segment;

3. The elongation of the cable is considered;

4. Accelerations arising from changes in the towing ship’s turning rate or speed are assumed to be
negligible;

5. Accelerations due to the products of angular rates-gyroscopic effect- are assumed to be negligible;

6. Dynamic coupling between model segment due to inertial effects can be neglected,;

7. The towline length can be constant or variable respectively.

The hydrodynamic forces acting on each element are determinates by using the relative velocity distribution along
each element. These forces are reduced at the discrete points of cable. The hydrodynamic forces are nonlinear
functions of the relative water velocities of each segment.

2. The Dynamics of Marine Cable in a Bi-Dimensional Space

In several cases, both the ends of the cable and the water flow are located in the same vertical plane (Figure 1).
Also the cable excitation is made in the same plane. In those cases, the cable motion is performed in the same
vertical plane. As a general feature of our approach we have developed a mathematical model for dynamic
analysis of cable motion from which, by particularizing, one can deducts the model of marine cable equilibrium
configuration (Figure 1). The marine cable equilibrium configuration is needed for the complete analysis of
marine cable motion, because it determines the initial configuration of the cable, which is considered an
equilibrium configuration. A broad model has been developed to support the prediction of the cable motion in an
offshore operation condition. The model is composed by the differential equations of the cable motion, and the
related methods can be used in several specific situations:
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1. Single or compound moored systems (Composed by cables, chains, underwater or surface bodies, buoys,
weights and docks.);

. Distinct boundary conditions at both the lower and the upper ends;

. Different loads, both concentrated and/or distributed;

. Different continuity condition in the points where bodies are located, or in the points where distinct cables
are coupled,

5. Distinct bi-dimensional and three-dimensional geometric configurations;

6. Diverse water depth;

7. Diverse seabed topography;

8. Single or compound mooring/towing systems.

The solutions can be obtained in two different cases:

1. The boundary conditions are imposed at both ends of the cable. Only a part of the configuration parameters
is known, and the remaining parameters are determined through computation;
2. The boundary conditions are imposed only at one of the cable ends.

All the parameters must be known in the cable end where the computation begins. The conditions that are
required for stopping the computation are imposed in the other cable end.

A wWN

Kinematics Relationships

Taking into account the fact that the differential equations of cable motion will be solved by integrating step by
step on time, the relationship between speed, velocity and displecemts must be expressed as it follows.
If the index of cable point M is noted by ,,u” and the index of cable point M is noted by ,,u+1” (Figure 2a) then

We can writte.
For the current point of cable, M, we can note:
a. Position vector of point M in the coordinates system xOz:

()= (ot 275 (o) =Ky Zyo) (1)
where (r, ) defines the current position of point M at the instant t in the coordinate system xOz, and (r, ,) defines
the initial position of point M relative to the coordinate system xOz; x,.,z, are the coordinates of the current
point, M, in the coordinate system xOz at the current time, t; and x, 4,2, , are the coordinates of the current
point, M, in the coordinate system xOz, at the initial time, t,, as found during the previous static analysis.

b. Velocity vector of point M at time t+At in the coordinate system xOz:

(f’v 1T+ At ) = (Xv,t+At 2\/,tJrAt)T (2)
and velocity vector at time t:
(Fy.0) = (kv 2y)" (3)

where At is the time step for the displacement of point M.
The components of the velocity vector at time t+At, can be expressed as:

Xy, trat =Xyt .

. . Zyteat — Lyt
AL v lyteat =Lyttt ———

Xy teat =Xyt + A

(4)

where x, ¢, and z, ., o, are the coordinates of current point M, at time t+At.

c. The acceleration vector of point M in the coordinate system xOz, at time t+At , can be expressed as

(Fotrat) = Ry teat Zyerar)’ (5a)
The same vector at time t can be expressed as:
(Fy.0) = (v Zy)" (5b)
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The components of the vector (5a) can be expressed as:

N s Xy trat =Xyt ., . Zyt+at —Zut 5
Xy, trat = Xyt +—At v Ly trat =Lyt +—At (5¢)

The projections of the velocity and of the acceleration of the midle point of the element ,,ds” (Figure 2), can be
written as

P = Xyy1 T X, : zi= Zy1tZy (6a)
2 2
. Xy + X ) Zyaq+2
Vx(Zi)=Xi=%i Vz(Zi)=Zi=% (6b)
= XU+1+XU D3 = ZU+1+ZU (GC)
2 2
(@) = (Kiy 2" (6d)

i=1,...,n; v=1,...,n; where n is the number of riser elements.
The velocity of the riser relative to the water in the coordinate system xOz (see Figure 2b) can be written as:

Ve (zi)=[lve (zi)siny ]+ vy (z))]i +[[-Vc(zi) cosy]+ v, (zi)IK (7a)
where v.(z;)is the water current velocity in the midle point of the current element ,,ds”, (Figure 2), and
vy (z;), v, (z;) are the components of the velocity vector (v(z;))at the midle point of element ,,ds” relative to the
inertial coordinates system xOz.

One should notice that:
(V(zi) = (v (zi) Vv, (z)" D (Ve@i) = (Vex (Z1) Ve (z)T (7b)

Because the parameters of the next riser point are unknown during the iterative computation of the equilibrium
riser configuration, the expression of the relative velocity is written as:

Ve (zy)=[ve(zy)sinyli+ [-ve(zy ) cos ylk (8)
The relative velocity unit vector, corresponding to the middle point of element ,,ds” can be expressed as:

) = = )+ )k (%)

and the relative velocity unit vector in the current riser point is:
ve(z,) _

) = [y oy = BT+ U2k (9b)
Where

Uy (zi) =[V (Zi)siny(z;) +Vy (2)1/| Ve ()|

(10a)

Uz (z)=[-Ve(zi) cosy(zi) +V, ()| vy (i)
For determining the equilibrium configuration, we will use:

Uy (zy) =[Vve(2y)siny(z)l/| ve (2,)]

(10b)

uz(zy)=[-vc(zy)cosy(zy)l/| v (z,)
The hydrodynamic forces acting on the riser unit length (Figure 2a) are expressed in the coordinate system of
unit vectors [, n, which expressions are:
— Tangent unit vector, [I: 1 =1,i+ 1,k= cos0i+sinOk
— Normal unit vector, n: n=nyi+n,k =sin8i—cos6k

181



International Journal of Applied Science and Technology Vol. 4 No. 2; March 2014

In the system of unit vectors [, n, we have the following expressions for the hydrodynamic forces acting on the
cable unit length [1]:

F. =%pw de ¢, V2 [0.083¢0s (v, T)—0.035¢082 (v, 7)]
(11)

1 20 .
F, =2 Pw de CpVF |sin (vy,7)[sin (v, 1)

where cos(vy, [1) = ull, p,, Iis the water density, ¢ [ c,are the hydrodynamic coefficients for the bare cable [1],
and d, is the external diameter of the cable hosepipe.

One can neglect the effect of the frictional forces when the water flow velocity is low. According the Pode’s
testing data [1], usually one can neglect the tangential component of the hydrodynamic force. The hydrodynamic
forces for the cable element can be expressed in the inertial coordinates system xOz using the matrix notation.
Denoting by (F) the vector of the hydrodynamic forces in the system of unit vectors 1, n, and by (f) the vector of
the same forces in the coordinate system xOz, we can notice that

(A=(F R)T i (f)=(f )T (12)
And

(F)=[R](F) (13)
where [R] is the transformation matrix between the system of unit vectors (1, n, and the coordinate system xOz:

[R]:{TX nx}z{c_ose sine} (14)

T, N, sin® —cosO

For the tension at both ends of the riser element “ds”, we have:

(M=RI(TL) (15)
where:

M=(T, T (16)

(V=T oF (17)
At the lower end of element “ds”, there is

(T)=[R]+d[R]T) (18)

where d[R[] is the total differential of the matrix [RIJ[1[][Jthe second and higher-order infinitesimals being
neglected. In addition:

(T )= (T+dT 0)T (19)

To apply the D’ Alembert’s principle we need to know the vector of inertial forces. The mapping of the vectors of
inertial force between the coordinate system xOz as (F;) and the system of versors [, n, i.e. (Fi.), is given by:

(F) = (Fn)+[RIF) (20)
Where

(F) = (Fx I:iz)T i (Fin) =(Finx Fin,z)T + Finx =PcXi s Finz =pcii (21)
with p. being the mass per unit length of the cable.
The vector of added mass per unit lenght of the cable is

R)=CF., R, (22)
which elements in the the system of unit vectors [, n are given by
Fk‘t 27\..53.E ) Fkn anan (23)
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where the acceleration projections in the the system of unit vectors [, n, are a;, and a,, and
1 1
Mn =7“p =§Pw Cin“dg; Ay =§Pw Cirndgv (24)

pw being the mass density of water, d, the external diameter of the cable, and c;,,c;, the inertial coefficients that
are determined through experimental tests.

Based on the expression

@ =[RT" @) (25)
where the (a), can be expressed by the relationship:
@ =(a, ap){ (26)

one can write:
ap =Ty X + 172t =C0SO(V)X; ¢ +sin O(t)Z;
(27)
ap =Ny X +N;2Z; ¢ =sinO(t)X;  —cos 6(t)Z; ;

Now, applying the D’ Alembert’s principle, the dynamic equilibrium equation of element “ds” can be written as:

(T)+(Ty)+(f)ds+(P)ds+(F)ds=0 (28)
where *“ds” is the initial length of the cable element. The weight vector, (P), for the unit length of the cable is:
P)=(0 o) (29)

where q is the weight in water per unit cable length, and (T), (T,) are the cable tension vectors at both ends of the

cable element. Thus, the differential equations of cable motion can be written as:
dT do az 92
—=(a;-e))ct; —=(—=+)cT;
ds(l 1)cT 15 (T T)T
ds

i

(30)

dx dz . T
CT;, —=C7C0sS0; —=c75sin6; ¢ =1+—
Ty T ds T T EA

where:
ay =0sin0+p.(Xj cosO+Z;sinB); a, =qcos0—pg(XjsinO®—Z;cosb)

e =F +A.a;; ey =F,+Aqa,
After the integration of the Eq. (30) one can integrate the equations
. ox . dz . dx . dz
X=—; ;2=—X=—i=—
dt dt dt dt
The Static Equilibrium Configuration
In the specific case of the equilibrium configuration, by particularizing Eq. (30)
a,=0sin0; a, =qcos0O; e, =F; e, =F,

(31)

one can write the following differential equations:
dT . de q Fn
—=(gsin6-F,c7); —=(=cosO +—)cT;
ds (q T T) ds (T + T) T
(32)

dx—c cos 0; dz—c sin 0; dS—c
ds | " ds T ‘ds T

The non-linear differential Eqs. (32) are defined in the global coordinate system xOz (Figure 1), where s is cable
arc (for the inextensible cable) at the current point, as measured from point O; S is cable arc (for the elastic cable)
at the current point, as measured from the same point O; q is the weight (in water) of the unit cable length; x, z are
the current point coordinates;
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T is the cable tension at the current point; 0 is the angle between the x-axis and the tangent unit vector at the
current point; and F- 1 Fy are the tangential and normal components of the hydrodynamic force per unit length of
the cable (Figure 2a). The expressions for both these components are the following:

1 1 . .
F: =§Pw de CrV(Zv)COSZ 9|V(Zv)| > Fn =§pw de CnV(Zv)Sme|V(Zv)Slne| (33)

where p,,is the water density; d.is the characteristic diameter of the cable; c.[J c, are the hydrodynamic
coefficients (c; =00 ¢, = 1); and v(z,,) is the flow velocity corresponding to the coordinate z, of the cable’s

current point. Due to the infinitesimal length of the line element, “ds”, it is assumed that the water flow velocity is
uniform along the element, and it is equal to the flow velocity that corresponds to the z-coordinate of the cable’s
current point, M (see Figure 2).

The solutions for Eqg. (30) and Eq. (33) are obtained by numerical integration after they are transformed in an
algebraic system — Eqg. (34) and Eq. (35) - by using the finite-difference method with “h” step size.

2.1- For the Cable Motion in the Plane Xoz:
TJ (t+At) =ijl (t +At) + h(al’j,l = hel’jfl)CT

h
GJ (t+At)=6j,l(t+At)+T.—[a2’j,l +92’j71]CT

-1
Xj(t+A)=xj1(t+At)+hcy cos0j_y (t+At) (34)
zj(t+At)=zj 4 (t+At)+hcysin0jy (t+At)

Sj(t+At)=Sj 1 (t+At) +hcy
Where

aT = ‘Cxxi’t +‘szi’t = COSOj,l(t)xi’t +sin Oj,l(t)ii,t
ap = NyXj+Nz2Zj¢ =sin ej,l(t)i(i,t —cosej,l(t)zi,t
ayj1 =0Cc0s0j 3 (1) +pc(XjsinOjy(t)+Zj cosBj4(t));

a1 =0sin01(t)—pc(XjrcosOjy(t)—Zj sin (1))
Tj—l (t + At)
EA
After determining the dynamic configuration, one can find the velocities and the accelerations:

Xi(t+At)=x;(t) ] Zi(t+At)—z;(t)
%;zj(nm):zj(tpr%

elyj_leTHLTaT ; e2’j_1:Fn +Apa, ; CcT =1+

Xj(t+At)=Xj(t)+
(35)

Because the motion of the upper end - point A, (Figure 1) - is imposed, then the last connecting point for
determining the velocity and the acceleration is the connecting point with the index n-1.

2.2- For the Cable Equilibrium Configuration in the Plane Xoz:
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dT . de q Fn
—=(gsin0—-F.c7); —=(=c0s0 +—)Cc;
ds (q T T) ds (T T) T

(36)
dx dz . ds
— =CTC€0SO; —=CTSINO;, —=c
ds T ds T ds T

And one can obtain particular solutions for diverse cases, each case being characterized by specific boundary
conditions.
2.1. Moored Systems

2.1.1 Static Analysis

The numerical computation for static analysis is described in the paper [12]. This analysis refers to the both cases,
cable tangent to the bottom and cable detached from the bottom. For all the cases, we have a problem with
boundary conditions at the both ends of cable (bi-local boundary condition).

2.1.2 DynamicAnalysis

The numerical computation begins from the equilibrium cable configuration as the initial mechanical cable state.

a. For the cable of a moored system (as shown in Figurel). The initial mechanical state of cable: initial cable
configuration (the coordinates x, z of cable points in the coordinates system xOz), the tensions in all cable
elements, the angles 6 for all elements; the motion of the upper end (point A): Xx=x  (t), Z=z 4 (t) ; the velocities

and the accelerations of cable points. The cable is composed by a number of elements. For the elements that are
placed on the sea bottom the tensions are the same and equal to the tension of the first element detached from the
sea bottom.

b. The dynamic cable behavior is determined by solving the differential equations of cable motion (36). For
determining the dynamic response to the excitation induced in the upper end the solution of the differential
equations are determined on the steps of time, At. In the frame of each time step an iterative method is used for
determining the cable dynamic configuration that must satisfy the boundary condition. These conditions can be
attained by fitting the initial value of the cable tension, T, , in the first element that is connected in the upper end

A, and also by fitting the initial value of the angle 6 5 of the same element.

The imposed boundary conditions are:
1. Inthe point a (upper end): xao=Xa(t), za =z (1) ; the angle 6 5 and the tension T are not known.

2. In the point D-for the cable tangent to the bottom, or the point O for the cable detached from the bottom-
(lower end): z=0 is known.
3. The cable length is L.

The iterative process begin, first iteration, by fitting the value of the angle 6 5 or of the tension T, as follows:
0a=%ks1 Bt Ta=%ks Ta» Where 1>y >0; for the first iteration ;=1 and B,=90°, T,-the admissible cable
tension; for the second iteration, k=1, x;=0,5and yx,_; =0, k=1, %1=0,55si %1 =0, k=1,...,Npmax ,» Where nq..
is the maximum number of iterations.
The computation stops if the boundary conditions are attained at the lower end, as follows:
At the time step « -th:

X (T+HAD) =X p (1) + AX p (t+AL) =X A (1) + @y (Sin o(t+ At) —sin wt) and

Zp (t+A) =2 (1) +AZA (E+AY) =24 (1) + @, (Sin oo(t + At) —sin ot);
Where the initial values of the coordinates of upper end A are the values that result for equilibrium configuration,
Xa(to) =Xa, Za(to) = Za
If the point A is connected to a fixed body, for example a quay, and the motion of the moored vessel under the
external excitations is known, x =X (t), za =z (t) , the computation follows the same steps and the boundary
condition at the lower-point A-are: X, =Xqy; Z, =2, Where x,and z, are the imposed value of the
coordinates of the point A .
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2.2. Towed Systems
2.2.1Static Analysis

a. The method that was presented for a moored system is also applied for any towed system — floating body,
cable or towing vessel. The coordinate system xOz is attached to the towed body in translational motion (Figure
3). In the cable’s attachment point to the body, O, we have the following conditions: x =z=s=S=0, (1[1(1.. In
the cable’s attachment point to the towing ship (point A), we have one only stop condition: either the length of the
cable, L, or another condition that depends on the engineering requirements. For example, should the stop
condition be x = d,, where d, is an imposed horizontal spacing between the body and the towing ship, or an
imposed value of the depth of the towed body, z=H . In this case we need to take into account the velocity of

the towing ship in the relationship (7a) that is now:
Vr (zi)=[Ivc @i)siny ]+ vy (i) +Vrs]i+[[-vc (zi) cos v]+ v, (zi)]K
where vg is the velocity of the towing ship as is shown in Fig. 3 for the underwater towed vehicle.

The tension in the attachment point of the cable, T, , is understated (this tension is due to the hydrodynamic forces
acting on the body combined with the vehicles weight in water). Also, is known the angle 6, .

The iterative process begin from the point O and the computation stops if the boundary conditions are attained at
the upper end: if z= H . The another boundary conditions for stops computation could be: if x= d, or if s=L

In these cases, we have a problem with boundary conditions at only one of the cable ends.

2.2.2 Dynamic Analysis

A complete dynamic analysis takes into account the motion of all three components of the system: towed vessel,
cable and towing vessel. It is a complex problem that not is our preoccupation in this paper.

However, it must underline that our proposed model for cable dynamics can be used for all cases above presented.

3.The Compound Marine Cables

A typical compound marine cable is made of several components, and one can use the mathematical model that
was established for single cable for any compound marine cables (Figure 4). However, the conditions of
continuity of the compound marine cables must be specified since the boundary conditions are unknown at the
points where the components are located. Moreover, the conditions of continuity in the joints between the
elements must be satisfied. The starting point for the numerical computation can be any one of both compound
marine cables ends and must be re-started at each joint. The static analysis is described in the paper [12].

The dynamic behavior of the cable is determined by solving the differential equations of motion i.e., Eg. (35). For
determining the dynamic response to the excitation induced in the upper end, the solution of the differential
equations is determined along the time, considering the time step amplitude At, and an iterative method is used at
each instant for determining the riser configuration that satisfies the boundary conditions. These conditions can be
attained by fitting the initial values of the cable tension, T,, and of the angle 6, in the element that is located at

the lower end O.

The imposed boundary conditions are:

- At point O (lower end): x=z=0; the angle 6,and the tension T,are unknown.

- At point A (upper end): Xx=x (t), and z=z (t) .

- The buoyancy, B, and length of both parts of the cable, L, L, are also imposed.

The iterative process begins by fitting the value of the angle 6, or of the tension T, as follows:
- for the first iteration: 0, =B, To=7%k Ta, Where 1>y >0; x;=1and B, =90°

- for the second iteration: 6, =y B¢, To=%ku Tar K=1, x1=0,581 %1 =0, k=1,...,Nppax -

The computation stops if the boundary conditions are attained at the upper end, as follows:

At the « -th time step:

For Section 1 (between the point O and point Og):
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- Position of point A at the time step « -th:

X (T+HAY) =X p (1) + AX p (t+AL) =X A (1) + @y (Sin o(t+ At) —sin wt) and

Zp (t+A) =ZA (1) +AZA (L+HAY) =24 (1) + 2, (Sin ot + At) —sin wt);
where the initial values of the coordinates of upper end A are the values that result for equilibrium configuration,
Xa(to) =Xw, Za(to) = Ha

- The cable motion is computed by using an iterative method for solving Eq. (35), where the tangential and
normal components of the hydrodynamic force per unit length of the cable are  determined through Eq. (34).

The conditions for re-starting (Figure 5) the computation are: if s=L,, then
1 . . 1 1
Ayt =Dghg ; FHy =§Afo(ZH)|X(ZH)| » Mn =§chinf“D$; At =§pWTCDf2

Tu sin 6H +(ms +7Lfn)5(H +FH,
B+ (Mg +hg )2, +T, c0S0, (37)

0,1 =arctg

B+ (ms +}Lfr)2H +T,cos0, T, sin 0, +(my¢ +}Lfn)5(H +FH

u+l = -
oS 0,41 Sin6,,1

Where m;¢ is the mass of the buoy, and A and ¢, are the tangential and normal added mass of the buoy.
For Section 2 (from point Og to point A - upper end):
The numerical computation begins at the re-starting point, Og (see Figure 6).
The following boundary conditions are used
s=L1;0=0,,1-7/2, T=T,y (38)

and the computation stops if s=L; +L, and Xx=x,  (t+At), z=z,  (t+At).

If the number of iterations, n, becomes equal to the maximum number nn. and the stop computation condition is
not accomplished, then the solution is not valid. In this case, the boundary conditions must be revised.

For the integration of the Eq. (32) and Eg. (33) we have used the following optimizing procedure:
a) Valid solutions

The solution that corresponds to the pair (T(2),06(2)) is valid if it satisfies all the conditions but x(n) = x,, and z(n)
= Ha. The errors (or conditions) that make a solution not valid are the following:

1. z(j) > Hp at Section 1;

2. (j) < 0°at Section 1;

3. (j) > 90° at Section 1;

4. wuoy > 0, Where [y I the angle of the cable just after the buoy (at the right side of the buoy);
5.(G)>0°;

6. g()j) < 0O at Section 2;

7. (j) > 90° at Section 2;

8. (J) < [1(j-1) at Section 2.

The variables were scalled as follows: T(1) = T.T,4, 6(1) = 6.90 (39)
Where
T €[04],0 €[04] (40)

b) The system of equations
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The next step for the admissible solutions (T(1),6(1)) or (T,8)is to solve the system of equations

fx(m)=xy: z(n)=Ha (41)

that is expressed in the scaled form through

fl(T,g)zx(n)—_XV"zo;fz(T,@)zw (42)
Xw Ha

and the following four inequations must be added:
0<T<I 0<0<1 (43)

It is very difficult to use a standard algorithm to solve these in equations. Hence, the problem is reformulated as
an optimization problem with simple marginal restrictions. This means that the following objective function
should be minimized:

1
9= (ff +12) (44)

By taking into consideration the restrictions of simple margin expressed by Eq. (43)
A few methods can be used for solving the optimization problem:

- A version of the quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, BFGS) algorithm especially adapted to
consider the restrictions. The gradient of the function, g, is computed through finite differences.

- A version of the Newton algorithm where the Hessian matrix is aproximated by finite differences, but modified
in order to consider the restrictions. Additionally, the finite differences approximation of the first order
derivatives is attained with a higher order of precision.

- A Levenberg-Marquardt least squares technique where the Jacobian matrix is approximated through finite
differences.

The aforementioned algorithms were used to solve the non-linear problem represented by Eq. (44) with several
different starting points, always leading to the same solution. This proves that the solution for Eq. (44) is unique.
The method for determining the dynamic behaviour of the cable can be summarized as follows:

i. The initial configuration of the cable - corresponding to the equilibrium configuration — is determined according
to the method that is described in reference [12] and detailed above for different cases. Eqg. (33) is used for
analyzing the bi-dimensional configurations that are discussed in the present paper.

ii. The cable motion is initiated by applying an external excitation, and the starting point is the static equilibrium
configuration. In most cases the excitation is defined as the displacement, the velocity and the acceleration of the
upper end. The dynamic response of the cable is attained by integration of Eq. (32), and one should notice that
this is done through a computational procedure that is similar to the one that is used for determining the
equilibrium configuration of the cable. This is due to the fact that Eq. (32) is of the same kind of Eg. (33), which
relates to the dynamic equilibrium equation, in which the boundary and the continuity conditions must be satisfied
at each instant of the cable motion.

4.Computed Results
Case Studies

An original computer program (DYNCAB) based on the above-mentioned mathematical model was written to
implement the numerical computation of the complete analysis - static equilibrium configuration and dynamic
behavior of marine cables. An analysis of the static equilibrium configuration by using the abovementioned
program, as well as the validity of the approach, was made by Matulea et al. [12]. This was done by comparing
the DYNCAB results with the results obtained through a lamped mass method [13]. Additionally, Matulea et al.
[12] have shown that there is a good correlation between the result of numerical simulations and the results
attained with the tank tests. The present paper shows that the approach is also suitable for a comprehensive
dynamic analysis in order to find the best solution for different operating conditions.

Case study: Model of a compound cable with a float
Now, our goal is to validate the proposed approach for the dynamic behaviour of a marine cable.
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Figure 8a and 8b show the results obtained by using the proposed method. For a matter of comparison, the results
obtained through the “lamped mass method” of Nakajima et.al [13] are also shown. As one can see, there is a
good correlation between the proposed method and the “lamped-mass method”.

The values of the vertical component of the cable tension in the upper end A, T, ., are the same for both the
proposed method and “lumped-mass method”. The same apply to the experimental tests as well (see Figure 8a
and 8b). In the Figure 8a there are noted by TX’X and TX’Z the initial values of the tension components on

coordinate axes in the upper end A. These values result from static analysis.

5. Concluding Remarks

A novel method based on a very flexible and efficient mathematical model for the complete static and dynamic
analysis of marine cable dynamics was presented in this paper. The model takes into account most of the non-
linearities of marine cable, such as nonlinear water velocity profiles, large marine cable deflections and nonlinear
constraints.

The computer program that implements the method is a general purpose one. It can handle the instability that is
due to bifurcation, and makes it possible to study a large number of operating conditions and system
configurations in a cost-effective way.

Using the program for analyzing some cases of marine cable tested the soundness of the model. The numerical
experiments that are presented in the paper show a very good correlation with the results obtained by Nakajima et
al. [13] as shown in Figures 7a and 7b.

The use of lumped mass models imparts some practical difficulties: first, the marine cable length must be
provided as input data; second, the data preparation is a laborious task; third, it is hard to find out the location of
the point where the marine cable contacts with the seabed.

On the contrary, the mathematical model hereby presented proved to be more flexible and efficient because it is
based in non-restrictive assumptions that express very well the most typical engineering design requirements. In
fact, the new model allows for the use of the cable arch as an integration variable, as well as the marine cable
coordinates. In addition, the proposed model makes very easy to consider different boundary conditions as well as
distinct continuity conditions.

As a general conclusion arising — both from the theoretical standpoint and the results of the performed
calculations - one can point out:

- static analysis is particularly useful in defining the design parameters and the initial configuration that is
required to perform the dynamic analysis;

- dynamic analysis is required to evaluate the occurrence of large stresses due to dynamic loading, and the
analysis in the time domain allows a very complete and accurate prediction of all the most important aspects of
the marine cables behavior.

In order to improve the computer program, it is still necessary to add the possibility of taking into account the
variable marine cable bending stiffness and the variable buoyancy close to the sea surface, as a means to allow the
analysis of some more involved marine cables systems that are being studied by some of the program users.
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Nomenclature

- [¢ - virtual angle used in computation process that must be found by trial and error.

- 0 - angle between the tangent to the riser and the z-axis at the current point

- v - angle between the unit vector t and the vector of the current water velocity at coordinate z
-v(z) - relative velocity to the water

- V¢(2) - water current velocity
- py - water density

- (ry) - vector of the current position, at the time t, of the point M
- (f, 1) - velocity vector of the point M at the time t

- (F, ) - acceleration vector of the point M at the time t

- Fn, Ft - normal and tangential components of hydrodynamic forces acting on the unit cable length
- (F;.) - added mass vector

- A, A, - added mass for a unit length of cable
- Cin, Ci - Inertial coefficients

- A - effective area of the cable section

- Cn, C, - coefficients of hydrodynamic forces
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- d. - characteristic diameter of the riser

- E - longitudinal modulus of elasticity

- [R] - transform matrix between the system of vectors (1, n and the coordinate system xOz
- h - computational step in the finite difference method

- H - water depth

- g - line weight in water per unit length

- s - arc of non-stretched line at current point

- S - arc of the stretched line at current point

- T - cable tension in the current point

- X, Z - coordinates of the current point

- B - buoyancy

- Ly, L, - lengths of the components of a multicomponent line
- Xa, Za - coordinates of the upper end
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Table 1-Cable Characteristic

Material - Steel
Weight in air N/m 2,22
Weight in water N/m 1,938
Volume/unit length cm*/m 28,2
Elasticity modulus (E) N/m* 21,5x10"™
Diameter d cm 0,599
Table 2-Buoy
Weight in air 0,7N
Weight in water -30N
Table 3-Characteristic of Equilibrium Configuration
1 0,00 46,2 0,00 0,00 0,00
5 453 495 0,00 411 0,9
10 9,00 47,4 15,30 9,04 2,35
14 13,10 475 20,25 13,02 2,39
18 16,10 48,2 22,34 16,52 2,73
19 18,00 50,35 24,00 17,60 3,00
’ _ : - I ¢y — 2,18 ¢, = 0.17
Free surface A A” — 108 )ut — 02
L N Xa = 17.5m Zp = 3,00 m
1 Ly =9m L2—91n
] Sea bottom x I'GA__ 46 N I'OA__}, = 10N
q = 1,938 N/m B=-30N
< T=12s =53
5( (4] \\
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. . //_‘\. /:“§T . /- :,\.
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Cph. €y - Ay and A are determinated by experimental tests

———— The results of numerical computation obtained with the proposed method
I'he results of experimental testing - [13]
The results of numerical computation obtained with the “lumped mass method - [13]

Figure 7a: The Model Behavior under Dynamic Loading
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Figure 7b: The Model Behavior under Dynamic Loading for the Time Period T=1.2 S
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