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Abstract  
 

We prove the existence of solution for a Timoshenko beam model using Semigroups Theory, regularity results and a 
Theorem associated to the Lumer Phillips Theorem. Also, using multiplicative techniques and the classic Gearhart 
Theorem, introduced in Liu- Zheng (Liu, 1999), we prove that energy associated to the system decays exponentially 
to zero when t . Stability for another Timoshenko beam model has been considered in(Raposo, et all, 2005). 
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1. Introduction 
 

Our main goal is to prove the exponential stability of the model known as Timoshenko beams in the case when the 
friction acts naturally in both the rotation angle of filaments and the transversal vibrations of the beam. 
In 1921, Timoshenko (Timoshenko,1921)  introduced the following coupled hyperbolic system  
 

 
[]0,[]0,)()(=

[]0,[]0,)]([=



LinukEII

Linuku

xxxttp

xxtt


  (1.1) 

 

that describes transversal vibrations of a beam without damping in the equilibrium state, where t  is the time 
variable and x  is the space coordinate along the beam of length L . The function ),(= xtuu  is the transversal 
displacement of the beam in the equilibrium state and ),(= xt  is the rotation angle of the beam. The 
coefficients  , pI , E , I  y k  are respectively the density (the mass per unit length), the polar moment of 
inertia of a cross section, the Young's modulus of elasticity, the moment of inertia of a cross section and the shear 
modulus. 
 

For a physical derivation of this system we cite (Graff, 1975). 
System (1.1) together with boundary conditions of the form  
 

 0=|)(,0=| =
0=

=
0=

Lx
xx

Lx
xx ukEI    

 

is conservative, and so the total energy of the beam remains constant along the time.  
Kim and Renardy  (Kim,1987)  considered the system (1.1) together with two boundary controls of the form  
 

 0.,),(=),(,),(=),(),(  ttLtLEItLutLkutLk txtx   
 

and proved exponential decay for the total energy, using multiplicative techniques. They also provided numerical 
estimates to the eigenvalues of the operator associated to the system. A similar result was also established by Feng 
(Feng, et all, 1998).  
 

Soufyane and Weybe (Soufyane, 2003) proved that is possible to stabilize uniformly (1.1) by using a unique locally 
distributed feedback of the form txb )(  in the left hand side of the second equation in (1.1), where b  is a 
positive and continuous function, which satisfies  
 

 ][0,],[,0>)( 10 Laaxbxb o   

and proved that uniform stability holds if and only if the wave speeds are equal, that is 
pI

EIk =


. Otherwise only 

the asymptotic stability has been proved.  
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Muñoz and Racke (Muñoz, 2007) obtained a similar result when the damping function )(= xbb  is allowed to 
change its sign.  
Since )(tE  the total energy associated to Timoshenko beam system,  

 dxukbutE xxtt

L
}||||||||{

2
1:=)( 222

2
2

10
   

 

have a non positive derivative, that is 0)(  tE , the system is dissipative. 
Then, we want to know if 0)( tE  when t , and what is its decay rate?. The answer is affirmative, that is, 
there exist positive constants C  and   such that,  
 

 .0>(0))( teveryforeCEtE t  
 

Thus, our main goal is to prove the existence and uniqueness of global solution of a Timoshenko beam system and 
its exponential stability. 
 

We prove the existence of global solution for a Timoshenko beam system by using semigroups theory. Here, we 
give a full proof. Also, using multiplicative techniques and the classic Gearhart Theorem, introduced in Liu- Zheng 
(Liu, 1999), we prove that energy associated to the system decays exponentially to zero when t . 
 

Analogously, we prove for the case Timoshenko beam model with double damping. 
Remember that this analytic technique were applied to dissipative problems, like (Santiago, 2003, 2004, 2012). 
Our paper is organized as follows. In section 2 we state the preliminary results that we will use. In section 3 we 
prove the existence and uniqueness of global solution.  
 

In section 4, we prove the exponential decay of the solution. 
In section 5, we prove the global existence and exponential stability for a Timoshenko beam model with double 
damping.   
 

2.Preliminaries 
 

To prove existence of solution of the Timoshenko beams system, we will use a result associated to Lumer Phillips 
Theorem. Here we state this important result. The proof can be seen in ( Pazy, 1983).  
 

Theorem 2.1  Let A  be a linear operator with domain )(AD  dense in a Hilbert Space. If A  is dissipative and 
)(0 A , then A  is the infinitesimal generator of a oC  semigroup of contraction in this Hilbert space.  

By other hand, we know that the problem of providing an estimate to the energy )(tE  of the form  
 0,,(0))(   teECtE wt  

 

is equivalent to providing exponential stability for semigroup )(tS  
 

 ,0,)(   teCtS wt  
 

we cite (Liu, 1999). 
A necessary and sufficient condition for a semigroup oC  to be exponentially stable is given by the following result  
Theorem 2.2 (Gearhart)  Let 0))(( ttS  be a oC  semigroup of contraction in a Hilbert space. Then, 0))(( ttS  

is exponentially stable (that is 1M , 0>  such that tMe S(t) , 0t  ) if and only if   
a) },{:=)( RiiRA    

b)  
 <)(limsup 1

|| AIi .  
 

We will respectively use Theorems 2.1 and 2.2 to prove existence of solution and exponential stability of a 
Timoshenko beam system.   
 

3. The Abstract Cauchy Problem and Existence of Solution 
 

Here we study the following system type Timoshenko with a damping term  
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  RLtxuxuku txxtt []0,),(,0=)(][1   (3.1) 
  
  RLtxukb xxxtt []0,),(,0=][2   (3.2) 

  RttLttLutu ,0=),(=)(0,,0=),(=)(0,   (3.3) 
 ][0,,)(=,0)(,)(=,0)( 1 Lxxuxuxuxu to   (3.4) 
 ][0,,)(=,0)(,)(=,0)( 1 Lxxxxx to   (3.5) 

 

where L  is the length of the beam, and 1 , 2 , b , k  are positive constants. Here )(x  is a continuous 
function such that 0>)( ax  .  
 

To get the energy associated to the system, multiply (3.1) by tu  and integrate on ][0, L , having  

 0,=||)(}||||{
2
1 2

00

22
10

dxuxdxukdxuku
t t

L

xt

L

xt

L
  




 (3.6) 
 

also multiply (3.2) by t  and integrate on ][0, L  to have  

 .0=}||||||{
2
1

0

222
20

dxukdxkb
t xt

L

xt

L
  




 (3.7) 
 

Summing (3.6) with (3.7), we get  

 .0=||)(}||||||||{
2
1 2

0

222
2

2
10

dxuxdxukbu
t t

L

xxtt

L
  




 (3.8) 
 

Let  

 dxukbutE xxtt

L
}||||||||{

2
1:=)( 222

2
2

10
   

be the energy associated to the system (3.1) - (3.5) . 
Then  

 dxuxtE t

L 2

0
||)(=)(   

 

and since 0>)( ax   we have  

 ,0||)( 2

0
  dxuatE t

L
 

 

that is, the system is dissipative.  
With this )(tE  in mind, we introduce the following space  

 )(0,)(0,)(0,)(0,:= 21
0

21
0 LLLHLLLHX   (3.9) 

 

endowed with the norm  

 dxukbv xx

L

X
}||||||||{:= 222

2
2

10
 U  

 

for XvuU T ),,,(=  . 
We remark that X  is endowed with the scalar product  

 >,<>,<:=>,< 21221121  vvUU X  
 >,<>,< 221121   xxxx uukb  (3.10) 

where  

 ,1,2=,= iforX
v
u

U

i

i

i

i

i 
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and >,<   denotes the scalar product in )(0,2 LL .  
 

Thus, X  is a Hilbert space. 
Define  

 tuv :=  
 .:= t  

then system (3.1) –3.(5) can be simplified to the following initial value problem or first order evolution equation on 
X ,  

 
)(),,,(==(0)
)(=

)(
110 ADuuUU

tAUU
AC T

oo

t


 (3.11) 

with  

 
,

0)(0)(
000

0)()()(
000

:=

222

111



























xxx

xxx

bIkk
I

kIxk
I

A






  (3.12) 

 
)(0,))(0,)(0,()(0,))(0,)(0,(:=)( 1

0
1
0

21
0

1
0

2 LHLHLHLHLHLHAD   (3.13) 

and TvuU ),,,(=  . 
So we have the following result  
 

Theorem 3.1  The operator A  defined on (3.12)-(3.13) generates a 0C  semigroup of contractions 0))(( ttS  in 
the Hilbert space X .  
 

Proof.-  Clearly )(AD  is dense in X . Integrating by parts, we have  

 >,)(}{<>=,<
11

1 vvxukUAU xxx 



   

 >),(<
22

2 





  xxx ukb  

 >,< xxb   
 >,<   xx uvk  
 >,)(}{=< vvxuk xxx    
 >),(<   xxx ukb  
 >,< xxb   
 >,<   xx uvk  
 >,)(<>,<= vvxvuk xxx    
 >,<>,<   xxx ukb  
 >,< xxb   
 >,<>,<   xxx ukuvk  
 >,)(<>,<= vvxvuk xx    
 >,<>,< xxxx bb    
 >,<  xx uvk  
 >,)(<= vvx  
 ,0>,<  vva  
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then A  is dissipative. 
 
We claim that )(0 A . In fact, we will prove that )(1 XLA   .  
Let XffffF ),,,(= 4321 . We will prove that there is )(ADU   such that FAU = , where 

TvuU ),,,(=  . Thus, we have  
 1= fv  (3.14) 
 

2
11

=)(}{ fvxuk
xxx 




  (3.15) 

 3= f  (3.16) 

 .= 4
222

fkbuk
xxx 





  (3.17) 

 

Then 1= fv  y 3= f . Multiplying equation (3.15) by 1  we get  

 .)(= 121

k
fxfu xxx

   (3.18) 

Hence  
 .)(= xHux   (3.19) 

 

Now, multiplying equation (3.17) by 2 , we get  
 .= 42 fkbku xxx    (3.20) 

 

Substituting (3.19) in (3.20), we have  

 .)(= 42

b
xkHf

xx
  (3.21) 

 

Then, by elliptic regularity results 1
0

2 HH  . From (3.18) and elliptic regularity results 1
0

2 HHu  . 
That is, exists )(ADU   such that FAU = . 
 

Finally, using Theorem 2.1, we conclude that A  is the infinitesimal generator of a oC  semigroup of contraction 

0))(( ttS . And so, the Abstract Cauchy Problem  

 
)(=(0)

=
ADUU

AUU

o

t


 

has one unique solution oUtStU )(:=)( .  
 

4. Exponential Stability 
 

Next theorem is the main result.  
 

Theorem 4.1  The oC  semigroup of contractions 0)(( ttS  generated by A , is exponentially stable.  
 

Proof.-  We will use Theorem 2.2. First, we will prove  
 .},{=)( RiRiA    (4.1) 

Suppose (4.1) is false, then exists R  such that )(Ai   . 
Since )(0 A  y 1A  is compact, )(=)( AA p . That is, the spectral values are eigenvalues. 

Then, )(Ai p  . 

Let )(),,,(= ADvuU T  , 0=U , such that 0=)( UAIi  , i.e.  
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 .= UiAU   (4.2) 

 
 
Using definition of A , (4.2) holds if and only if  

 uiv =  (4.3) 

 vivxuk
xxx 





=)(}{

11

  (4.4) 

  i=  (4.5) 

 ,=
222







ikbuk
xxx   (4.6) 

 

that is, uiv =  and  i=   . 
 

Substituting (4.3) in (4.4) and multiplying by 1 , we get  
 .)(=2

1 uxiukku xxx    (4.7) 
 

Also, substituting (4.5) in (4.6) and multiplying by 2 , we have  
 .= 2

2   kkub xxx  (4.8) 
 

Now, multiplying equation (4.7) by u , we get  
 222

1 ||)(=|| uxiuukuku xxx    
 

and integrating by parts on ][0, L , we obtain  

 .||)(=||||| 2

0

2

0

2
10

0=
0

2

0
uxiuukuuuk

LL

x

LL
xx

L
  


 (4.9) 

 

Then  

 0=}||||{ 22
1

2

0
dxuukuk xx

L
   (4.10) 

 .0=||)( 2

0
dxux

L
  (4.11) 

 

From (4.11), 0> and 0>)( ax  , it holds that 0=||)( 2ux , which implies 0=u . Then, from (4.3) we 

get 0=v , and from (4.10) we arrive to 0=|| 2

0
dxuk x

L

 , i.e. 0=xu . This, from (4.8), leads to  

 .0=2
2   kb xx  (4.12) 

 

By other hand, from (4.7), we have 0=xk  and then 0=x  because 0>k . Next, by Poincaré inequality, 

0=  on 2L . Finally, since   is continuous, regular and 0=(0)  , we have 0= . Thus, 
 ==0== vu , which is a contradiction since 0=U . Therefore, )(AiR  .  

 

Now, we will prove that  
 .<)(limsup 1

||
 


AIi


 (4.13) 

 

Suppose (4.13) is false, i.e.  
 ,=)(limsup 1

||
 


AIi


 (4.14) 

 

then exist sequences XVn   and Rn   such that nVnVAIi nn  1)(  , 0>n . 

Thus )(Ai n   , or equivalently )()( 1 XLAIi n   , that is  
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 .1=,=)()( nnnnn UVUAIithatsuchADU    
 
 
So we have  

 nnn VAIiU 1)(=   
and  

 .)(
:=

  

nG
nn UAIin  nU  

Then nGnnU=1 , i.e. nG
n
1

. And taking n , we get  0=nn Glim   on X . 

Now, let T
nnnnn vuU ),,,(:=  . Then  

 >,>=<,< nnnnnn UAUUiUG   

 .>,<= 2
nnn UAUi nU  (4.15) 

 

Taking real part on inequality (4.15), we have  
 >,<>=,< nnnn UGReUAURe  

and then  

 0=>,<=||)(
1=

2

0
 nnn GUG


nnn

L
UGRedxvx  (4.16) 

since dxvxUAU n

L

nn
2

0
||)(>=,<  . Thus  

 .0||)( 2

0
 nwhendxvx n

L
  (4.17) 

 

Now consider equality (4.15) and multiply by i ,  
 .>,<=>,<

0
2|)|(

0
=

2

    



 nn

dxnvx
L

nnn UGiUAUi



 nU  (4.18) 

 

Since 0=>|,|<  nnn GUGnn UG  and, from (4.17), 02 nU  when n , we get to 0=1 , 
which is a contradiction. 
 

Thus, by Theorem 2.2, we conclude that 0))(( ttS  is exponentially stable.  
 

5. Application: Model with double damping 
 

We will proceed in a similar way for the following system type Timoshenko with double damping  
 

  RLtxuxuku txxtt []0,),(,0=)(][1   (5.1) 

  RLtxxukb txxxtt []0,),(,0=)(][2   (5.2) 

  RttLttLutu ,0=),(=)(0,,0=),(=)(0,   (5.3) 
 ][0,,)(=,0)(,)(=,0)( 1 Lxxuxuxuxu to   (5.4) 
 ][0,,)(=,0)(,)(=,0)( 1 Lxxxxx to   (5.5) 

 

when 0>)( ax  , 0>~)( ax  . 
 

So, we will prove the existence of solution and exponential stability for this system. 
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To obtain the energy, multiply equality (5.1) by tu  and integrate on ][0, L . Then using integration by parts, we 
have  

   .0=||)(||||
2
1 2

00

22
10

dxuxdxukdxuku
t t

L

tx

L

xt

L
  




 (5.6) 
 

Also, multiplying (5.2) by t  and integrating on ][0, L  we obtain,  
 

   .0=||)(||||||
2
1 2

00

222
20

dxxdxukdxkb
t t

L

tx

L

xt

L
  




 (5.7) 
 

Summing (5.6) and (5.7) we have  
 

   dxuxdxukbu
t t

L

tE

xxtt

L 2

0

:=)(

222
2

2
10

||)(||||||||
2
1   




  

 

 .0=||)( 2

0
dxx t

L
  (5.8) 

 

That is  
 

 dxxdxuxtE t

L

t

L 2

0

2

0
||)(||)(=)(     

 dxadxua t

L

t

L 2

0

2

0
||~||    

 .0  
 

That is, our system is dissipative. 
Working similarly, we obtain that system (5.1)- (5.5) can be reduced to the following initial value problem or first 
order evolution equation on X ,  
 

 
T

oo

t

uuUU
tAUU

AC
),,,(==(0)

)(=
)(

110 
 (5.9) 

with  

 ,
)()(0)(

000

0)()()(
000

:=

2222

111



























IxbIkk
I

kIxk
I

A

xxx

xxx









  (5.10) 

 

)(0,))(0,)(0,()(0,))(0,)(0,(:=)( 1
0

1
0

21
0

1
0

2 LHLHLHLHLHLHAD   (5.11) 

and TvuU ),,,(=  . 
 

We have the following result  
 

Theorem 5.1  Operator A  defined in (5.10)-(5.11) generates a 0C  semigroup of contractions 0))(( ttS  in the 
Hilbert space X .  
 

Proof.-  It is similar to the proof of Theorem 3.1. Here  
 

 >,)(<>,)(<>=,<  xvvxUAU   
 >,<~>,<= avva   
 0  

 
and equations (3.17) and (3.20) become respectively,  
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 4
2222

=)( fxkbuk
xxx 








  

and  
 .=)( 42 fxkbku xxx    

Having  

 
b

fxxkHf
xx

342 )()(=  
 

in place of (3.21). Then, using Theorem 2.2 the result follows. 
 

Theorem 5.2  The oC  semigroup of contractions 0))(( ttS  generated by A , is exponentially stable.  
Proof.-  Working similarly to the proof of Thorem 4.1, equations (4.6), (4.8) and (4.12), respectively, for this 
Theorem 5.2 become  

 ,=)(
2222









ixkbuk

xxx   

 

 ,=))(( 2
2   ixkkub xxx  

and  
 .0=))((2

2  ixkb xx   
 

By other hand, since dxxdxvxUAU n

L

n

L

nn
2

0

2

0
||)(||)(>=,<     , (4.16) becomes  

 

 .0=>,<=||)(||)( 2

0

2

0
  nnnn

L

n

L
GUGRedxxdxvx nn UG  

 

Then, for this Theorem 5.2 (4.17) becomes  

 anddxvx n

L
0||)( 2

0
   

  (5.12) 

 .0||)( 2

0
 nwhendxx n

L
  

 

Finally, (4.18) for the Theorem 5.2, is  

 .>,<=||)(||)(
00

2

0
0

2

0

2

  
    

 











  nnn

L

n

L

n UGidxxdxvxi  nU  

Since 0=>|,|<  nn GG nnn UUG  and, from (5.12), 02 nU  when n , we get to 0=1 , 
which is a contradiction. 
Thus, by Theorem 2.2, we conclude that 0))(( ttS  is exponentially stable. 
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