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Abstract

We prove the existence of solution for a Timoshenko beam model using Semigroups Theory, regularity results and a
Theorem associated to the Lumer Phillips Theorem. Also, using multiplicative techniques and the classic Gearhart
Theorem, introduced in Liu- Zheng (Liu, 1999), we prove that energy associated to the system decays exponentially
to zero when t — +oo . Stability for another Timoshenko beam model has been considered in(Raposo, et all, 2005).
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1. Introduction

Our main goal is to prove the exponential stability of the model known as Timoshenko beams in the case when the
friction acts naturally in both the rotation angle of filaments and the transversal vibrations of the beam.
In 1921, Timoshenko (Timoshenko,1921) introduced the following coupled hyperbolic system

pu, = [k(u, —y)l, in 10, L[x]0,+o] w.1)
e = (Ely,), +k(u, —y) in J0, L[x]0,+o0 ]

that describes transversal vibrations of a beam without damping in the equilibrium state, where t is the time
variable and x is the space coordinate along the beam of length L. The function u = u(t, x) is the transversal

displacement of the beam in the equilibrium state and y =y (t, x) is the rotation angle of the beam. The
coefficients p, 1,, E, Iy k are respectively the density (the mass per unit length), the polar moment of

inertia of a cross section, the Young's modulus of elasticity, the moment of inertia of a cross section and the shear
modulus.

For a physical derivation of this system we cite (Graff, 1975).
System (1.1) together with boundary conditions of the form

Ely, [5=0 , k(u,-y)[5=0
is conservative, and so the total energy of the beam remains constant along the time.
Kim and Renardy (Kim,1987) considered the system (1.1) together with two boundary controls of the form
ky (L,t) —ku , (L,t) = au,(L,t), Ely (L,t)=-By (L,t),Vt=>0.

and proved exponential decay for the total energy, using multiplicative techniques. They also provided numerical
estimates to the eigenvalues of the operator associated to the system. A similar result was also established by Feng
(Feng, et all, 1998).

Soufyane and Weybe (Soufyane, 2003) proved that is possible to stabilize uniformly (1.1) by using a unique locally
distributed feedback of the form b(X)y, in the left hand side of the second equation in (1.1), where b is a
positive and continuous function, which satisfies

b(x)>b,>0,vVxela,, a]c][0 L]
and proved that uniform stability holds if and only if the wave speeds are equal, that is K = E Otherwise only

Pl
the asymptotic stability has been proved.
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Mufioz and Racke (Mufioz, 2007) obtained a similar result when the damping function b =b(x) is allowed to
change its sign.
Since E(t) the total energy associated to Timoshenko beam system,

1 eL
E(t):= Efo{pl lu, [+, [y, P 4By, [* +k [u, =y ["Ydx

have a non positive derivative, that is E'(t) <0, the system is dissipative.
Then, we want to know if E(t) -0 when t — +o0, and what is its decay rate?. The answer is affirmative, that is,
there exist positive constants C and y such that,

E(t) <CE(0)e ™ forevery t>0.
Thus, our main goal is to prove the existence and uniqueness of global solution of a Timoshenko beam system and
its exponential stability.

We prove the existence of global solution for a Timoshenko beam system by using semigroups theory. Here, we
give a full proof. Also, using multiplicative techniques and the classic Gearhart Theorem, introduced in Liu- Zheng
(Liu, 1999), we prove that energy associated to the system decays exponentially to zero when t — +co .

Analogously, we prove for the case Timoshenko beam model with double damping.

Remember that this analytic technique were applied to dissipative problems, like (Santiago, 2003, 2004, 2012).
Our paper is organized as follows. In section 2 we state the preliminary results that we will use. In section 3 we
prove the existence and uniqueness of global solution.

In section 4, we prove the exponential decay of the solution.
In section 5, we prove the global existence and exponential stability for a Timoshenko beam model with double
damping.

2.Preliminaries

To prove existence of solution of the Timoshenko beams system, we will use a result associated to Lumer Phillips
Theorem. Here we state this important result. The proof can be seen in ( Pazy, 1983).

Theorem 2.1 Let A be alinear operator with domain D(A) dense in a Hilbert Space. If A is dissipative and
O0e€ p(A), then A isthe infinitesimal generator of a C, semigroup of contraction in this Hilbert space.
By other hand, we know that the problem of providing an estimate to the energy E(t) of the form
E(t) <CE(0)e™,Vt >0,
is equivalent to providing exponential stability for semigroup S (t)
IS(t)| <Ce™, vt>0,

we cite (Liu, 1999).
A necessary and sufficient condition for a semigroup C, to be exponentially stable is given by the following result
Theorem 2.2 (Gearhart) Let (S(t))., bea C, semigroup of contraction in a Hilbert space. Then, (S(t)),.,
is exponentially stable (thatis 3M >1, x>0 suchthat |S(t)| < Me™, Vt>0 )if and only if

a) p(A)oiR:={ip,p € R}

b) limsup,,_,,,|(iB1 = A) | <oo.

We will respectively use Theorems 2.1 and 2.2 to prove existence of solution and exponential stability of a
Timoshenko beam system.

3. The Abstract Cauchy Problem and Existence of Solution
Here we study the following system type Timoshenko with a damping term
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pu, —Klu, —w], +a(X)u, =0, (xt)€]0,L[xR" (3.1)

PV — bl//xx - k[ux _l//] = 0’ (X,t) 6]01 I—[XRJr (32)
u(0,t) =u(L,t)=0, w(O,t)=y(Lt)=0,teR" (3.3)
u(x,0) =u,(x), u,(x,0)=u,(x), xe[0,L] (3.4)
w(x0) =y, (X), v (x0)=y,(x), xe[0,L] (3.5)

where L is the length of the beam, and p,, p,, b, k are positive constants. Here «(X) is a continuous

function such that a(x)>a>0.

To get the energy associated to the system, multiply (3.1) by u, and integrate on [0, L], having

10 ¢t L L
5 o b u U Plax =k [y de [0 [u, F dx =0, (3.6)
also multiply (3.2) by y, and integrate on [O,L] to have
10 ¢t L
3 oo P2 1w 401y Pk ly Phax =K yru,dx =0, (37)

Summing (3.6) with (3.7), we get

01 .

ag_[o{pl lu, [ +p, [y, & +b |y, P +k | u, —y |2}dX+J.Oa(X) |u, > dx = 0. (3.8)
Let

1 eL
E(t):= Efo{pl lu P+, [y, P +by, [P +k |u, —y PYdx

be the energy associated to the system (3.1) - (3.5) .
Then

L
E'(t) = —La(x)lut > dx
and since a(x)>a>0 we have
E'(t) < —ajoL lu, |2 dx <0,

that is, the system is dissipative.
With this E(t) in mind, we introduce the following space
X = Hg(0,L)x L*(0,L)x H;(0,L)x L*(0, L) (3.9)
endowed with the norm
Ul = [0 IVE +p, 19 [F b1y, |* +k U, —y [P}

for U = (u,v,l//,(p)T eX.
We remark that X is endowed with the scalar product
<UpU, >=p <V, > +p, <oy, 0, >
+0 <y, W > HK <UL -y Uy -y, > (3.10)
where
i
v .
U, = e X, fori=1.2,
Vi
;i
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and <--> denotes the scalar product in L*(0,L).

Thus, X isa Hilbert space.

Define
Vi=Uu,
Q=Y.
then system (3.1) —3.(5) can be simplified to the following initial value problem or first order evolution equation on
(AC) U, = ] AU (1) (3.11)
U@ = Ug=(u,u,y,w,) €D(A)
with
y 0 E ) kO 0
o (X
LS I - ( 0
e | P () o ol () (3.12)
' 0 0 0 Ik
S Y T S O T
P2 P2 P2
D(A):= (H?(0,L) nHg(0,L))x Hg(0,L) x (H?(0,L) " H5(0,L)) x Hg(0, L) (3.13)

and U :(U,V,l//,(p)T.

So we have the following result

Theorem 3.1 The operator A defined on (3.12)-(3.13) generates a C, semigroup of contractions (S(t)),., in
the Hilbert space X .

Proof.- Clearly D(A) isdensein X . Integrating by parts, we have

a(X)

<AU,U >= p1<£{uxx_l//x}_ v,v>
1

1

b k
+ 0, <;Wxx +7(ux _V/)!(D>

2 P
th<o.p, >
+k<v,—o,u, -y >
=<k{u, -, }—a(x)v,v>
+<by, +k(u —y),0>
+b<o.y, >
+k<v,—o,u, -y >
=k <u, —w,,v>—<a(X)v,v>
+b<y,,p>+k<u, -y,p>
th<o.p, >
+k<v,u, -y >-k<ou,-y>
=—k<u, -y,v,>-<a(x)v,v>
—b<y,.o>+b<y,.0,>
+k<v,u, -y >
=—<a(x)v,v>
<-a<v,v><0,
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then A is dissipative.

We claim that 0 € p(A) . In fact, we will prove that JA™ € L(X).
Lete F=(f,f, f;,f,)eX . We will prove that there is U e D(A) such that AU =F , where

U =(u,v,,p)" . Thus, we have

v=f (3.14)
£{uxx _l//x}_ a(X) V= f2 (3.15)
Py 1

p=f, (3.16)

Lux-i_gl//xx_iw = f4' (3.17)

P2 P2 P2
Then v=f, y ¢ = f,. Multiplying equation (3.15) by p, we get
_pf+a(x) fl.

Uy — Wy k (318)
Hence
u, =y +H(x). (3.19)
Now, multiplying equation (3.17) by p,, we get
ku, +by,, —ky = p, f,. (3.20)
Substituting (3.19) in (3.20), we have
o = P f4 _ka (X) (3.21)

Then, by elliptic regularity results Iy € H*> ~H; . From (3.18) and elliptic regularity results Jue H*> N H; .
That is, exists U € D(A) suchthat AU = F .

Finally, using Theorem 2.1, we conclude that A is the infinitesimal generator of a C_ semigroup of contraction
(S(t)).s - And so, the Abstract Cauchy Problem
U,

U (0)

AU
U, e D(A)

has one unique solution U (t) :=S(t)U, .
4. Exponential Stability
Next theorem is the main result.

Theorem 4.1 The C_ semigroup of contractions (S(t),., generated by A, isexponentially stable.

Proof.- We will use Theorem 2.2. First, we will prove
p(A) o IiR ={ig, p R} 4.1)
Suppose (4.1) is false, then exists € R suchthat if e o (A).

Since 0e p(A) y A™ iscompact, o(A) = o ,(A) . That is, the spectral values are eigenvalues.
Then, iBea, (A).
Let U =(u,v,,p)" e D(A), U #0, suchthat (il —AU =0, i.e.
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AU =ipU. (4.2)
Using definition of A, (4.2) holds if and only if

v=ifu 4.3)
£{uxx _l//x}_ a(X) V= |ﬁV (44)
1 1
¢ =iy (4.5)
k b k .
7ux+7wxx_7y/:|ﬁ¢, (4.6)

P2 P2 P2
thatis, v=ipu and ¢ =ify
Substituting (4.3) in (4.4) and multiplying by p, , we get

ku, —ky, + p,B%U =iBa(X)u. (4.7)
Also, substituting (4.5) in (4.6) and multiplying by p,, we have
bl//xx + kux - kl// = _ﬁzpzl//' (48)

Now, multiplying equation (4.7) by u, we get
kuou—ky,u+p B [ul=ipa(x)|uf’
and integrating by parts on [0, L], we obtain

L L L B L
—k[Ju, P +uuls =k [y u+p B[ CIuP=iB] a(x)|ul. (4.9)
=0
Then
[EKlu, [P —ky,u+ p,5% |u3dx =0 (4.10)
[ pa(9|uf dx=0. (4.11)

From (4.11), B> 0and a(x)>a >0, it holds that Ba(X)|u|*=0, which implies u=0. Then, from (4.3) we
get v=20, and from (4.10) we arrive to LLk |u, |*dx=0,i.e. u,=0.This, from (4.8), leads to

by, —ky +B°pp =0. (4.12)
By other hand, from (4.7), we have —Kky, =0 and then y, =0 because k >0. Next, by Poincaré inequality,

w=0 on L2 . Finally, since w is continuous, regular and w(0)=0 , we have w =0 . Thus,
u=v=0=y = ¢, whichis a contradiction since U # 0. Therefore, iR c p(A).

Now, we will prove that

limsup H(iﬁl - A)*H < oo, (4.13)
|Bl->e
Suppose (4.13) is false, i.e.
limsup H(iﬁl - A)*H = o0, (4.14)
|Bl->e

then exist sequences V, € X and S, € R such that H(iﬁnl - AV,
Thus i, € p(A), or equivalently 3(iB,1 — A)™" e L(X), that is
146
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AU, e D(A) such that (i1 - AU, =V,, U, =1

So we have
Un = (Iﬁnl - A)ilvn
and

U, =n(iB,1 -AU, .
G, =

n:

n—+o — N

Then 1=|U,|>nG,

Now, let U, :=(u,,v,,y,,¢,)" . Then
<G, U,>=<ipU, -AU U, >
=i,U,|°~< AU, U, >.
Taking real part on inequality (4.15), we have

—Re< AU ,U, >=Re<G, U, >
and then

[[a()Iv, [ dc=Re<G,,U, ><[G,|U,[=G,| >0

=1

since < AU, U, >= [ a(x)|v, [* dx. Thus
LLa(x) |v. | dx — 0 when n — -+,

Now consider equality (4.15) and multiply by i,
-BU,|" i< AU, U, > =i<G,U, >

L —0
:.[ a (x| dx
0

since |<G,,U, ><|G,|U,|=|G,|—>0 and, from (4.17),
which is a contradiction.

Thus, by Theorem 2.2, we conclude that (S(t)),., is exponentially stable.

5. Application: Model with double damping

e iZGn.Andtaking n—>oo,weget lim G =0 on X.

(4.15)

(4.16)

(4.17)

(4.18)

We will proceed in a similar way for the following system type Timoshenko with double damping

pu, —Klu, —yw], +a(x)u, =0, (xt) €]0, L[xR"
P« — by, —K[U, —w]+y(X)y, =0, (x,1) €]0, L[xR"
u(0,t) =u(L,t)=0, w(0,t)=w(L,t)=0,teR"
u(x,0) =u,(x), u,(x,0)=u,(x), xe[0,L]
v(x,0)=w,(X), v, (x0)=y,(x), xe[0,L]
when a(x)>a>0, y(x)>a>0.

So, we will prove the existence of solution and exponential stability for this system.

(5.1)
(5.2)
(5.3)
(5.4)
(5.5)

UnH2 —0 when n— +00, we get to 1=0,
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To obtain the energy, multiply equality (5.1) by u, and integrate on [0, L]. Then using integration by parts, we
have

10 }
> pl|u P +k |u, |? dx kjwutxdx+ja(x)|u P dx =0. (5.6)
Also, multiplying (5.2) by y, and integrating on [O,L] we obtain,
10
NAARC AR As dx} K[ updx+ [ 70w, dx=0. (5.7)
20t
Summing (5.6) and (5.7) we have
o1l L
2o Lo luF o, 1y P bly, P oklu, —y dx}+j0a(x)|ut [ dx

E(t):=
L 2
+[ 7001y [ dx=0. (5.8)
That is
L L
E'(t) =—[ a0y [* dx—[ 7() |y, [* dx
L L
—af Ju * dx=a [y, [ dx
<0.

That is, our system is dissipative.
Working similarly, we obtain that system (5.1)- (5.5) can be reduced to the following initial value problem or first
order evolution equation on X ,

(AC) = AU (tT) (5.9)
U(O) = UO = (uo’ul’y/o’l//l)
with
) 0 E ) ko 0
e - -0, 0
A= P1 P1 P1 (5.10)
' 0 0 0 I :
O VY R S IS S 4O
P2 P2 P2 P2
D(A):= (H20, L)Yn H(, L)) x HX(0, L)x (H?(@©, LYn H!(0, L)) x H}(0, L) (5.11)

and U = (u,v,l//,(p)T :

We have the following result
Theorem 5.1 Operator A defined in (5.10)-(5.11) generates a C, semigroup of contractions (S(t)).., inthe
Hilbert space X .
Proof.- It is similar to the proof of Theorem 3.1. Here
<AU,U >=—-<a(x)v,v>-<y(X)p,p >
=-a<vw>-a<e,p>
<0

and equations (3.17) and (3.20) become respectively,
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k b k X

7ux+7l//xx_7l//_?/( )

P2 P2 P2 P2

p=f,

and
kux +bl//xx _kl// _V(X)(D =P f4'
Having
_ P —kHO) +y(x) f,
Vi = b
in place of (3.21). Then, using Theorem 2.2 the result follows.

Theorem 5.2 The C_ semigroup of contractions (S(t)),., generated by A, is exponentially stable.

Proof.- Working similarly to the proof of Thorem 4.1, equations (4.6), (4.8) and (4.12), respectively, for this
Theorem 5.2 become

k b k X .
7ux+7l//xx_7l//_?/( )(D:Iﬁ(o!
P> P> P> P>

bl//xx + kux - kl// _7(X)(Iﬁ)l// = _ﬁzpzl//’
and

by, —ky + B2 p,y =y (X)(iB)y = 0.
By other hand, since < AU_,U_>= —LLa(x) v, [ dx—LLy/(x) lp, | dx , (4.16) becomes

L 2 L 2
[[a()1v, P dx+ [ () |,  dx=Re<G, U, ><|G U] =[G, - 0.

Then, for this Theorem 5.2 (4.17) becomes
L
La(x) |v. > dx — 0 and

(5.12)

LLJ/(X) | @, |* dx — 0 when n — +o.

Finally, (4.18) for the Theorem 5.2, is

~BJU i [atolv, P dx+ [0l o, P dxp=i<6,U, >

-0

-0 —0

since |<G,,U, ><|G,|lU, =|G,| =0 and, from (5.12),
which is a contradiction.
Thus, by Theorem 2.2, we conclude that (S(t)),., is exponentially stable.

UnH2 —>0 when n— 400, we get to 1=0,
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