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Abstract 
 

A numerical computer model based on the dual reciprocity boundary element method (DRBEM) is extended to 
study the generalized thermoelastic responses of functionally graded anisotropic rotating plates. In the case of 
plane deformation, a predictor-corrector implicit-explicit time integration algorithm was developed and 
implemented for use with the DRBEM to obtain the solution for the displacement and temperature fields in the 
context of the Lord and Shulman theory. Numerical results that demonstrate the validity of the proposed method 
are also presented in the tables. 
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1. Introduction 
 

Biot [1] introduced the classical coupled thermo-elasticity theory (CCTE) to overcome the first shortcoming in the 
classical thermo-elasticity theory (CTE) introduced by Duhamel [2] and Neuman [3] where it predicts two 
phenomena not compatible with physical observations. First, the equation of heat conduction of this theory does 
not contain any elastic terms. Second, the heat equation is of a parabolic type, predicting infinite speeds of 
propagation for heat waves. Most of the approaches that came out to overcome the unacceptable prediction of the 
classical theory are based on the general notion of relaxing the heat flux in the classical Fourier heat conduction 
equation, thereby introducing a non-Fourier effect. One of the simplest forms of these equation is due to the work 
of Lord and Shulman [4] who introduced extended thermo-elasticity theory (ETE) with one relaxation time by 
constructing a new law of heat conduction to replace the classical Fourier's law. This law contains the heat flux 
vector as well as its time derivative. It contains also new constant that acts as relaxation time. Since the heat 
equation of this theory is of the wave-type, it automatically ensures finite speeds of propagation for heat and 
elastic waves. Green and Lindsay [5] included a temperature rate among the constitutive variables to develop a 
temperature-rate-dependent thermo-elasticity theory (TRDTE) that does not violate the classical Fourier's law of 
heat conduction when the body under consideration has a center of symmetry; this theory also predicts a finite 
speed of heat propagation and is known as the theory of thermoelasticity with two relaxation times.  



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

131 

 
According to these theories, heat propagation should be viewed as a wave phenomenon rather than diffusion one. 
Relevant theoretical developments on the subject were made by Green and Naghdi [6, 7] they developed three 
models for generalized thermoelasticity of homogeneous isotropic materials which are labeled as model I, II and 
III. It is hard to find the analytical solution of a problem in a general case, therefore, an important number of 
engineering and mathematical papers devoted to the numerical solution have studied the overall behavior of such 
materials (see, e.g., [8-27]). 
 

Functionally graded materials (FGMs) are made of a mixture with arbitrary composition of two different 
materials, and the volume fraction of each material changes continuously and gradually. The FGMs concept is 
applicable to many industrial fields such as aerospace, nuclear energy, chemical plant, electronics, biomaterials 
and so on. Works by Skouras et al. [28], Mojdehi et al. [29], Loghman et al. [30] and Mirzaei and Dehghan [31] 
are examples involving functionally graded materials. 
 

One of the most frequently used techniques for converting the domain integral into a boundary one is the so-
called dual reciprocity boundary element method (DRBEM). This method was initially developed by Nardini and 
Brebbia [32] in the context of two-dimensional (2D) elastodynamics and has been extended to deal with a variety 
of problems wherein the domain integral may account for linear-nonlinear static-dynamic effects. A more 
extensive historical review and applications of dual reciprocity boundary element method may be found in 
Brebbia et al. [33], Wrobel and Brebbia [34], Partridge and Brebbia [35], Partridge and Wrobel [36] and Fahmy 
[37-40]. 
 

The main objective of this paper is to study the generalized thermoelasticity problems in a rotating anisotropic 
functionally graded plate in the context of the Lord and Shulman theory. A predictor-corrector implicit-explicit 
time integration algorithm was developed and implemented for use with the dual reciprocity boundary element 
method (DRBEM) to obtain the solution for the temperature and displacement fields. The accuracy of the 
proposed method was examined and confirmed by comparing the obtained results with those known before.  
 

2. Formulation of the Problem 
 

Consider a Cartesian coordinates system ܱݖݕݔ as shown in Fig. 1. We shall consider a functionally graded 
anisotropic plate rotating about it with a constant angular velocity. The plate occupies the region ܴ =
ቄ(ݕ,ݔ, :(ݖ 0 < ݔ < ,ߛ 0 < ݕ < ,ߚ 0 < ݖ <   .ቅ with graded material properties in the thickness directionߙ
In this paper, the material is functionally graded along the 0ݔ direction. Thus, the governing equations of 
generalized thermo-elasticity in the context of the Lord and Shulman theory can be written in the following form: 
 

,ߪ − ݔ)ߩ + 1)߱ଶݔ = ݔ)ߩ + 1)̈ݑ ,                                                                                                                            (1) 
ߪ = ݔ) + 1)ൣܥݑ, − ܶ)ߚ − ܶ)൧,                                                                                                                        (2) 
݇ ,ܶ = ߚ ܶൣ̇ݑ, + ߬ଵ̈ݑ,൧  + ݔ)ܿߩ + 1)ൣܶ̇ + ߬ଵܶ̈൧.                                                                                              (3) 
 

where ߪ is the mechanical stress tensor, ݑ is the displacement, ܶ is the temperature, ܥ and ߚ are 
respectively, the constant elastic moduli and stress-temperature coefficients of the anisotropic medium, ߱ is the 
uniform angular velocity, ݇ are the thermal conductivity coefficients satisfying the symmetry relation ݇ =
݇ and the strict inequality (݇ଵଶ)ଶ − ݇ଵଵ݇ଶଶ < 0 holds at all points in the medium, ߩ is the density, ܿ is the 
specific heat capacity, ߬ is the time, and ߬ଵ is the mechanical relaxation time. 
 

3. Numerical Implementation 
 

Making use of (2), we can write (1) as follows 
ݑܮ = ݑ̈ߩ − ൫ܦܶ + Λܦଵݑ − ൯ݔଶ߱ߩ = ݂ ,                                                                                                          (4) 
where 

ܮ = ܦ
߲
ݔ߲

ܦ, = ,ߝܥ ߝ =
߲
ݔ߲

,Λ =
݉

ݔ + 1
, 

ܦ = ߚ− ቀ
డ
డ௫್

+ δୠଵΛቁ , ݂ = ݑ̈ߩ − ൫ܦܶ + Λܦଵݑ −  .൯ݔଶ߱ߩ
The field equations can now be written in operator form as follows 
ݑܮ = ݂ ,                                                                                                                                                                                 (5) 
ܶܮ = ݂ ,                                                                                                                                                                                   (6) 
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where the operators ܮ and ݂ are defined in equation (4), and the operators ܮ and ݂ are defined as follows 
 

ܮ = ݇
߲
ݔ߲

߲
ݔ߲

,                                                                                                                                                                    (7) 

݂ = ݔ)ܿߩ + 1)ൣܶ̇ + ߬ଵܶ̈൧+ ߚ ܶ̇ݑ, .                                                                                                                           (8) 
 

Using the weighted residual method (WRM), the differential equation (5) is transformed into an integral equation 

න ݑܮ) − ݂)ݑௗ∗

ோ

ܴ݀ = 0.                                                                                                                                                    (9) 

 

Now, we choose the fundamental solution ݑௗ∗  as weighting function as follows 
 

∗ௗݑܮ = ,ݔ)ߜௗߜ−  (10)                                                                                                                                                           .(ߦ
 

The corresponding traction field can be written as 
 

∗ௗݐ = ௗ,ݑܥ
∗ ݊ .                                                                                                                                                                (11) 

 

The thermoelastic traction vector can be written as follows 
 

ݐ =
̅ݐ

ݔ) + 1) = ൫ܥݑ, − ܶ)ߚ − ܶ)൯݊ .                                                                                                            (12) 
 

Applying integration by parts to (9) using the sifting property of the Dirac distribution, with (10) and (12), we can 
write the following elastic integral representation formula 

(ߦ)ௗݑ = න(ݑௗ∗ ݐ − ∗ௗݐ ݑ + ∗ௗݑ (ܶ݊ߚ


ܥ݀ − න ݂ݑௗ∗ ܴ݀.
ோ

                                                                                  (13) 

The fundamental solution ܶ∗ of the thermal operator ܮ, defined by 
 

∗ܶܮ = ,ݔ)ߜ−  (14)                                                                                                                                                                    .(ߦ
 

By implementing the WRM and integration by parts, the differential equation (6) is transformed into the thermal 
reciprocity equation 
 

න ∗ܶܶܮ) − ܴ݀(ܶ∗ܶܮ = න(ݍ∗ܶ − ,ܥ݀(∗ܶݍ
ோ

                                                                                                              (15) 

 

where the heat fluxes are independent of the elastic field and can be expressed as follows: 
 

ݍ = −݇ ,ܶ݊ ,                                                                                                                                                                         (16) 
∗ݍ = −݇ ,ܶ

∗݊ .                                                                                                                                                                       (17) 
 

By the use of sifting property, we obtain from (16) the thermal integral representation formula 

(ߦ)ܶ = න(ݍ∗ܶ − ܥ݀(∗ܶݍ


− න ݂ܶ∗ܴ݀.
ோ

                                                                                                                          (18) 

The integral representation formulae of elastic and thermal fields (13) and (18) can be combined to form a single 
equation as follows 

ݑௗ(ߦ)
(ߦ)ܶ ൨ = න ൜−ݐௗ

∗ ∗ௗݑ− ݊ߚ
0 ∗ݍ− ൨ ቂݑܶ ቃ + ݑௗ

∗ 0
0 −ܶ∗

൨ ቂݐݍ ቃൠ ܥ݀ − න ݑௗ
∗ 0
0 −ܶ∗

൨  ݂
− ݂

൨ ܴ݀.
ோ

                      (19) 

 
 
 
 
It is convenient to use the contracted notation to introduce generalized thermoelastic vectors and tensors, which 
contain corresponding elastic and thermal variables as follows: 
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ܷ = ൜ݑ         ܽ = ܣ = 1, 2, 3;
ܣ          ܶ = 4,                                                                                                                                                                (20) 

Τ = ൜ ݐ         ܽ = ܣ = 1, 2, 3;
ܣ          ݍ = 4,                                                                                                                                                                 (21) 

 

ܷ∗ = ൞

∗ௗݑ         ݀ = ܦ = 1, 2, 3; ܽ = ܣ = 1, 2, 3;
0           ݀ = ܦ = 1, 2, ܣ;3 = 4;               
ܦ           0 = 4; ܽ = ܣ = 1, 2, 3;               
−ܶ∗ ܦ        = ܣ;4 = 4,                                  

                                                                                                          (22) 

 

෨ܶ∗ = ൞

∗ௗݐ         ݀ = ܦ = 1, 2, 3;ܽ = ܣ = 1, 2, 3;
∗ௗݑ−       ݀ = ܦ = 1, 2, ܣ;3 = 4;                 
ܦ          0 = 4; ܽ = ܣ = 1, 2, 3;               
ܦ      ∗ݍ− = ܣ;4 = 4,                                  

                                                                                                           (23) 

 

∗ௗݑ = ∗ௗݑ ߚ ݊ .                                                                                                                                                                        (24) 
 

The thermoelastic representation formula (19) can be written in contracted notation as: 
 

ܷ(ߦ) = න൫ܷ∗ Τ − ෨ܶ ܷ൯݀ܥ − න ܷ∗ ܴܵ݀,
ோ

                                                                                                           (25) 

 

The vector ܵ can be written in the split form as follows 
 

ܵ = ܵ
 + ܵ

் + ܵ
௨ + ܵ

்̇ + ܵ
்̈ + ܵ

௨̇ + ܵ
௨̈ ,                                                                                                                        (26) 

 

Where 
 

ܵ
 = ൜߱ߩ

ଶݔ          ܽ = ܣ = 1, 2, 3;
ܣ                   0 = 4,                                                                                                                                                       (27) 

 

ܵ
் = ωிܷி          with    ωி = ൜−ܦ ܣ                = 1, 2, ܨ;3 = 4;

0                         otherwise,                                                                                        (28) 
 

ܵ
௨ = −൫ܦ + Λܦଵ൯℧ܷி       with    ℧ = ൜1         ܽ = ܣ = 1, 2, 3; ݂ = ܨ = 1, 2, 3;

0                        otherwise,                                                                    (29) 
 

ܵ
்̇ = ݔ)ܿߩ− + 1)ߜிܷ̇ி   with  ߜி = ቄ1              ܣ = ܨ;4 = 4;

0              otherwise,                                                                                     (30) 
 

ܵ
்̈ = ݔ)ܿߩ− + 1)߬ଵߜிܷ̈ி ,                                                                                                                                                 (31) 

 
 

ܵ
௨̇ = − ܶÅߜଵߚܷ̇ߝி ,                                                                                                                                                            (32) 

 

ܵ
௨̈ = Ⅎܷ̈ி                with    Ⅎ = ൜ܣ                                        ߩ = 1, 2, 3; ܨ  = 1, 2, 3;

ܣ                                                  0 = 4; ݂ = ܨ = 4..                                                      (33) 
 

The thermoelastic representation formula (19) can also be written in matrix form as follows: 
 

[ ܵ] = ߱ߩ
ଶݔ
0

൨+ ቂ−ܦܶ
0

ቃ + −൫ܦ + Λܦଵ൯ݑ
0

൨ 

ݔ)ܿߩ)+                 + 1)) ቂ0
ܶ̇
ቃ − ݔ)ܿߩ + 1)߬ଵ ቂ

0
ܶ̈
ቃ − ܶ 

0
,ݑ̇ߚ

൨+ ቂݑ̈ߩ
0
ቃ .                                                             (34) 

 

Our task now is to implement the DRBEM. To transform the domain integral in (25) to the boundary, we 
approximate the source vector ܵ in the domain as usual by a series of given tensor functions ݂ே

  and unknown 
coefficients ߙே
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ܵ ≈  ݂ே
 ேߙ

 .
ே

ୀଵ

                                                                                                                                                                        (35) 

 

According to the DRBEM, the surface of the solid has to be discretized into boundary elements. In order to make 
the implementation easy to compute, we use ܰ collocation points on the boundary  and another ܰ in the 
interior of ܴ so that the total number of interpolation points is  ܰ = ܰ + ܰ. 
Thus, the thermoelastic representation formula (25) can be written in the following form 
 

ܷ(ߦ) = න൫ܷ∗ ܶ − ෨ܶ∗ ܷ൯݀C−න ܷ∗ ݂ே
 ܴ݀

ோ

ே

ୀଵେ

ேߙ
 .                                                                                              (36) 

 

By applying the WRM to the following inhomogeneous elastic and thermal equations: 
 

ݑܮ
 = ݂

 ,                                                                                                                                                                            (37) 
ܶܮ = ݂

 ,                                                                                                                                                                              (38) 
 

where the weighting functions are chosen to be the elastic and thermal fundamental solutions ݑௗ∗  and ܶ∗. Then 
the elastic and thermal representation formulae are similar to those of Fahmy [41] within the context of the 
uncoupled theory and are given as follows 

ௗݑ
 (ߦ) = න൫ݑௗ∗ ݐ

 − ∗ௗݐ ݑ
 ൯



ܥ݀ − න ∗ௗݑ ݂
 ܴ݀,

ோ

                                                                                                       (39) 

ܶ(ߦ) = න(ݍ∗ܶ − (∗ܶݍ


ܥ݀ − න ݂ܶ∗ܴ݀.
ோ

                                                                                                                   (40) 

The dual representation formulae of elastic and thermal fields can be combined to form a single equation as 
follows 

ܷே
 (ߦ) = න൫ܷ∗ ܶே

 − ܶ
∗

ܷே
 ൯݀C



− න ܷ∗ ݂ே
 ܴ݀,

ோ

                                                                                                   (41) 

with the substitution of (41) into (36), the dual reciprocity representation formula of coupled thermoelasticity can 
be expressed as follows 

ܷ(ߦ) = න൫ܷ∗ ܶ − ෘܶ∗ ܷ൯݀C


+ ቌܷே
 (ߦ) + න൫ ܶ

∗
ܷே
 −ܷ∗ ܶே

 ൯݀ܥ


ቍ
ே

ୀଵ

ேߙ
 .                                             (42) 

To calculate interior stresses, (42) is differentiated with respect to ߦ as follows 

߲ܷ(ߦ)
ߦ߲

= −න൫ܷ,
∗

ܶ − ෘܶ,
∗

ܷ൯݀C


 

                      + ቌ
߲ܷே

 (ߦ)
ߦ߲

− න൫ ܶ,
∗

ܷே
 −ܷ,

∗
ܶே
 ൯݀ܥ



ቍ
ே

ୀଵ

ேߙ
 .                                                                              (43) 

 

According to the steps described in Fahmy [42], the dual reciprocity boundary integral equation (42) can be 
written in the following system of equations 
 

ݑሚුߞ − ݐ̌ߟ = ൫ߞ ෙܷ −  (44)                                                                                                                                                        .ߙ൯℘ߟ
 

It is important to note the difference between the matrices ߞ and ߞሙ: whereas ߞ contains the fundamental solution 
ெܶ
∗ , the matrix ߞሙ contains the modified fundamental tensor ෘܶெ∗  with the coupling term. 
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The technique was proposed by Partridge et al. [43] can be extended to treat the convective terms, then the 
generalized displacements ܷி and velocities ܷ̇ி are approximated by a series of tensor functions ி݂

  and 
unknown coefficients ߛ

  and ߛ
  

 

ܷி ≈  ி݂
 ߛ(ݔ)

 ,
ே

ୀଵ

                                                                                                                                                                 (45) 

ܷ̇ி ≈  ி݂
 ߛ(ݔ)

 ,
ே

ୀଵ

                                                                                                                                                                (46) 

 

The gradients of the generalized displacement and velocity can be approximated as follows 

ܷி, ≈  ݂ ,
 ߛ(ݔ)

 ,
ே

ୀଵ

                                                                                                                                                             (47) 

ܷ̇ி, ≈  ி݂,
 ߛ(ݔ)

 .
ே

ୀଵ

                                                                                                                                                           (48) 

 

These approximations are substituted into equations (28) and (32) to approximate the corresponding source terms 
as follows 

ܵ
் =  ܵ

,்

ே

ୀଵ

ߛ
 ,                                                                                                                                                                       (49) 

ܵ
௨̇ = − ܶߚߝ ܵ

௨̇,

ே

ୀଵ

ߛ
 ,                                                                                                                                                     (50) 

where 

ܵ
,் = ܵி ி݂,

 ,                                                                                                                                                                         (51) 

ܵ
௨̇, = ܵி ி݂,

 .                                                                                                                                                                         (52) 
 

The same point collocation procedure described in Gaul, et al. [44] can be applied to (35), (45) and (46). This 
leads to the following system of equations 
 

ሙܵ = ܷ          ,ߙܬ = ܷ̇           ,ߛ′ܬ =  .                                                                                                                                     (53)ߛ′ܬ
 

Similarly, the application of the point collocation procedure to the source terms equations (29), (30), (31), (33), 
(49) and (50) leads to the following system of equations 
 

ሙܵ௨ = −൫ܦ + Λܦଵ൯℧ܷி       with    ℧ = ൜1         ܽ = ܣ = 1, 2, 3; ݂ = ܨ = 1, 2, 3;
0                        otherwise,                                                                    (54) 

ሙܵ ்̇ = ݔ)ܿߩ + 1)ߜிܷ,̇                                                                                                                                                           (55) 
ሙܵ ்̈ = ݔ)ߩܿ− + 1)߬ଵߜிܷ,̈                                                                                                                                                   (56) 
ሙܵ ௨̈ = ̈,ሚܷܣ                                                                                                                                                                                     (57) 
ሙ்ܵ = ℬ்(58)                                                                                                                                                                                   ,ߛ 
ሙܵ ௨̇ = − ܶߚߝℬ௨̇ߛ.                                                                                                                                                                 (59) 

 

Solving the system (53) for ߛ ,ߙ and ߛ yields 
 

ߙ = ଵିܬ ሙܵ,           ߛ = ߛ            ,ଵܷି′ܬ = ̇,ଵܷି′ܬ                                                                                                                      (60) 
 

Now, the coefficients ߙ can be expressed in terms of nodal values of the unknown displacements ܷ, velocities ܷ̇ෙ 
and accelerations ܷ̈ෙ as follows: 
 

ߙ = ଵିܬ ቀ ሙܵ + ൣℬ்ܬ′ିଵ − ൫ܦ + Λܦଵ൯℧൧ܷ + ቂݔ)ܿߩ + 1)ߜி − ܶߚߝℬ௨̇ܬ′
ିଵቃ ܷ̇

+ ሚܣൣ − ݔ)ܿߩ + 1)߬ଵߜி൧ܷ̈ቁ,                                                                                                                (61) 
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where ܣሚ and ℬ்  are assembled using the submatrices [Ⅎ] and ωி respectively. 
Substituting from Eq. (61) into Eq. (44), we obtain 
 

ܷ̈ܯ + Γܷ̇ + ܷܭ = ℚ,                                                                                                                                                              (62) 
 

in which ܯ,Γ,ܭ and  are independent of time and are defined by 
 

ܸ = ൫ߟ℘ − ߞ ෙܷ൯ିܬଵ, ⏞ܯ = ሚܣൣܸ  − ݔ)ߩܿ + 1)߬ଵߜி൧,          
Γ = ܸ ቂݔ)ܿߩ + 1)ߜி − ܶߚߝℬ௨̇ܬ′

ିଵቃ, 
ܭ = +ሚߞ ܸൣℬ்ܬ′ିଵ + ൫ܦ + Λܦଵ൯℧൧,   ℚ = ܶߟ + ܸ ሙܵ,                                                                                             (63)     
 

where ܸ, ܯ,Γ and ܭ represent the volume, mass, damping and stiffness matrices, respectively; ܷ̈,ܷ,̇ ܷ and  
represent the acceleration, velocity, displacement and external force vectors, respectively. The initial value 
problem consists of finding the function ܷ = ܷ(߬) satisfying equation (62) and the initial conditions ܷ(0) =
ܷ, ܷ̇(0) = ܸ where ܷ, ܸ are given vectors of initial data. Then, from Eq. (62), we can compute the initial 
acceleration vector ܹ as follows  
 

ܯ ܹ = ℚ − Γ ܸ  .                                                                                                                                                       (64)ܷܭ−
 

An implicit-explicit time integration algorithm of Hughes et al. [45, 46], was developed and implemented for use 
with the DRBEM. This algorithm consists of satisfying the following equations 
 

ାଵܷ̈ܯ + Γூܷ̇ାଵ + Γாܷ̇෩ାଵ + ூܷାଵܭ + ாܭ ෩ܷାଵ = ℚାଵ,                                                                                        (65) 
ܷାଵ = ෩ܷାଵ +  ଶܷ̈ାଵ,                                                                                                                                                    (66)߬∆ߛ
ܷ̇ାଵ = ܷ̇෩ାଵ +  ାଵ,                                                                                                                                                      (67)ܷ̈߬∆ߙ
 

Where 
 

෩ܷାଵ = ܷାଵ + ∆ܷ߬̇ + (1 − (ߛ2
∆߬ଶ

2
ܷ̈,                                                                                                                         (68) 

ܷ̇෩ାଵ = ܷ̇ + (1 −  ,                                                                                                                                                   (69)ܷ̈߬∆(ߙ
 

in which the implicit and explicit parts are respectively denoted by the superscripts ܫ and ܧ. Also, we used the 
quantities ෩ܷାଵ and ܷ̇෩ାଵ to denote the predictor values, and ܷାଵ and ܷ̇ାଵ to denote the corrector values [45, 
46]. It is easy to recognize that the equations (66)-(69) correspond to the Newmark formulas [47]. 
At each time-step, equations (65)-(69), constitute an algebraic problem in terms of the unknown ܷ̈ାଵ. The first 
step in the code starts by forming and factoring the effective mass 
 

∗ܯ = ܯ + ூܥ߬∆ߛ + ூܭଶ߬∆ߛ .                                                                                                                                                 (70) 
 

The time step ∆߬ must be constant to run this step. As the time-step ∆߬ is changed, the first step should be 
repeated at each new step. The second step is to form residual force 
 

ℚାଵ
∗ = ℚାଵ − ூܷ̇෩ାଵܥ − ாܷ̇෩ାଵܥ ூܭ− ෩ܷାଵ − ாܭ ෩ܷାଵ.                                                                                           (71) 

 

Note that in the implicit part, ܯ∗ is always nonsymmetric. However, ܯ∗ still possesses the usual "band-profile" 
structure associated with the connectivity of the DRBEM mesh, and has a symmetric profile. So the third step is 
to solve ܯ∗ܷ̈ାଵ = ℚାଵ

∗  using a Crout elimination algorithm [48] which fully exploits that structure in that 
zeroes outside the profile are neither stored nor operated upon. The fourth step is to use predictor-corrector 
equations (66) and (67) to obtain the corrector displacement and velocity vectors, respectively. 
The stability analysis of the algorithm under consideration has been discussed in detail in Hughes and Liu [45] 
and the stability conditions have also been derived in the same reference, therefore does not strictly apply to the 
considered problem.  
 

4. Numerical Results And Discussion 
 

Following Rasolofosaon and Zinszner [49] monoclinic North Sea sandstone reservoir rock was chosen as an 
anisotropic material and physical data are as follows: 
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Elasticity tensor 
 

ܥ =

⎣
⎢
⎢
⎢
⎢
⎡
17.77 3.78 3.76
3.78 19.45 4.13
3.76 4.13 21.79

0.24      −0.28   0.03
0     0   1.13
0     0  0.38

0     0       0
0     0       0

0.03  1.13 0.38

8.30      0.66     0   
0.66    7.62   0  
 0        0    7.77⎦

⎥
⎥
⎥
⎥
⎤

GPa                                                                              (72)  

 

Mechanical temperature coefficient 
 

ߚ = 
0.001 0.02 0
0.02 0.006 0

0 0 0.05
൩ ∙ 10N/Kmଶ                                                                                                                       (73) 

 
Tensor of thermal conductivity is 
 

݇ = 
1 0.1 0.2

0.1 1.1 0.15
0.2 0.15 0.9

൩W/(mK)                                                                                                                                     (74) 
 

Mass density ߩ = 2216 kg/mଷ and heat capacity ܿ = 0.1 J/(kg K), Oersted,  
Gauss/Oersted, ,  . The numerical values of the temperature and displacement are 
obtained by discretizing the boundary into 120 elements  and choosing 60 well spaced out 
collocation points  in the interior of the solution domain, refer to the recent work of Fahmy [50-52]. 
The initial and boundary conditions considered in the calculations are 
 

at ߬ = ଵݑ             0 = ଶݑ = ଵݑ̇ = ଶݑ̇ = 0,  ܶ = 0                                                                                                              (75) 
at ݔ = 0             డ௨భ

డ௫
= డ௨భ

డ௫
= 0, డ்

డ௫
= 0                                                                                                                                (76) 

at ݔ = డ௨భ             ߛ
డ௫

= డ௨భ
డ௫

= 0, డ்
డ௫

= 0                                                                                                                                (77) 

at ݕ = 0             డ௨భ
డ௬

= డ௨భ
డ௬

= 0, డ்
డ௬

= 0                                                                                                                               (78) 

at ݕ = డ௨భ            ߚ
డ௬

= డ௨భ
డ௬

= 0, డ்
డ௬

= 0                                                                                                                                (79) 
 

The present work should be applicable to any dynamic coupled thermo-elastic deformation problem.  
Table 1 shows the variation of the temperature T, the displacements ݑଵ and ݑଶ and thermal stresses σଵଵ, σଵଶ and 
σଶଶ with time τ. We can conclude from this table that the displacements and thermal stresses increase with 
increasing τ but the temperature T decreases with increasing τ. In the special case under consideration. These 
results obtained with the DRBEM have been written in the table 1, the validity of the proposed method was 
examined and confirmed by comparing the obtained results with those obtained in table 2 using the Meshless 
Local Petrov-Galerkin (MLPG) method of Hosseini et al. [53]. It can be seen from these tables that the DRBEM 
results are in excellent agreement with the results obtained by MLPG method. 
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Table 1. Variation of the temperature, displacements and thermal stresses with time for DRBEM method  

 
 

 
 
 
 
 
 
 
 
 
 

 
Table 2. Variation of the temperature, displacements and thermal stresses with time for MLPG method 
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