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Abstract 
 

Right tail risk is very important in risk management theory, since it represent the small probability and severity 
losses event. There are many researches on this topic. This paper focuses on how to estimate and evaluate the 
right tail risk. The different distributions will be considered. Some numerical examples to illustrate the results will 
be given.  
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1. Introduction 
 

The right tail of a distribution is the part of the distribution corresponding to large values of a random variable. In 
real life, it means the small probability that have the greatest loss. So it has the great impact on the total loss. Any 
random variables have the higher probabilities to larger values are said to be heavier-tailed. 
 

One of classification methods of the random variable which only take positive weather to be heavy-tailed 
distribution or not is determined by the kth raw moment  





0

)()( dxxfkxkXE  

In general agree, if all positive moments exist, the distribution has a light tail, otherwise have heavier tail. 
 

Tail distribution may have great impact on the total loss, therefore many researchers have been done excellent job 
in this field. See Ahn and Shyamalkumar (2011), Zhu and Li (2012), McNeil, Frey, and Embrechts, (2005), 
Resnick (2007), and Klugman (2008). 
 

In this paper we are going to discuss risk measurements and tail distributions. We are going to consider mixtures 
of uniform distribution and also other mixture of the important distribution. In fact, determine the risk 
measurement of Mixture distribution is really challenging and the numerical evaluation is very hard. Therefore we 
are going to consider some special cases.   
 

2. Basic Risk Measurements and Background 
 

Many risk measurements have been introduced. Value-at-Risk (VaR) is one of them. VaR used to evaluate 
exposure to risk, it can be treat as the amount of capital required to ensure with a give degree of certainty, that 
enterprise doesn’t become insolvent. Mathematical definition as follows, 
 

Let X be a loss random variable with a cumulative distribution )(xFX . Then the VaR of a random variable  X  is 
100pth percentile of the distribution of X .  Use pX denote the 100pth percentile of distribution of X , we have 

pp XVaR   or 
pXFxVaRF pXpX  )())((  or 

pXSxVaRXP pXp  1)())((  
Where )(xSX is the survival function, in order to make sure uniqueness we may use more general definition, 

})(,inf{ pxFRxVaRp   
 

Another important risk measurement related to Value-at-Risk which is called Tail-Value-at Risk (TVaR, TCE) or 
Conditional Tail Expectation (CTE). It is the expected value of loss given that an event outside of a given 
probability level has occurred.  
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Mathematical definition as follows, 
 

Let X be a loss random variable, the Tail-Value-at-Risk of X at 100p% level, denoted by  )(xTVaRp , and defined 
by,  

)|()( pp VaRXXExTVaR   

)(1

)(

p

VaR

VaRF

dxxxf
p






 

If this quantity is finite, the by integral by parts and change variable, we can easily show that  

)(xTVaRp p

duxVaR
p

u





1

)(
1

 

Therefore, Tail-Value-at-Risk can be explained as average of all VaR  values above level p . In other words, 
TVaR tell us information about the tail of the distributions. 
 
We also can rewrite TVaR  as follows,  

)(xTVaRp p

dxxfVaRx

VaR pVaR
p

p 







1

)()(

 

Ahn and Shyamalkumar (2011) consider the larger sample behavior of the CTE and VaR, they introduce 
functions F  and *F satisfies vary complex assumptions, then pointed that for the quantile estimator,  

 dFqFFnQn ))(),,(( *
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They also had the result for CTE estimator, which as follows 

 dFcFFnCn ))(),,(( *
 












2
),(

)1(
))))(()((

,0 *




XXIXLVar
N F , as n  

 

Zhu and Li (2012) considered the Multivariate Tail Conditional Expectation (TVaR ), and introduced the a strictly 
increasing homogeneous function with )()( xccx   for 0c . Then they had the first results 
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They also gave another result under the certain condition, 
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3. Mixture Uniform Distribution and Other Mixture Distributions. 
 

At first, we consider the simple example. Let )(xF be probability distribution of the equal mixture of the uniform 
distributions of )1,0(U , )3,2(U , and )5,4(U . Then the probability density function is given as the following 
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It is not hard to find the probability cumulative distribution, 
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For 3/2p , then we can easily to find value-at-risk 

3
3
2)(,inf)( 






  xFRxxVaRp  

 

and the tail value-at-risk 
 

)(xTVaRp p
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Theorem 3.1 Let nxxx  21 , and )(xF is the probability distribution of the equal mixture of uniform 

distributions )1,( 11 xxU , )1,( 22 xxU , )1,(, nn xxU . For any ,
n
Jp  nJ 0 . Then the value-at-risk is 

given by 
1)(  Jp xxVaR  

and the tail value-at-risk is given by 
 

)(xTVaRp 
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Proof: Since the probability distribution is equal mixture of uniform distributions, so the probability density 
function is given by  
 

  



n

k
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n
xf

1
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where  EI denotes the indicator function of set E . Then we can find )(xF is the piecewise function and 
nontrivial pieces are given by   
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Therefore, for any ,
n
Jp  nJ 0 . 

1
3
2)(,inf)( 






  Jp xxFRxxVaR  



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

4 

 
and  

)(xTVaRp p

duxVaR
p

u





1

)(
1

 

 







1 /)1(

/
1)(

-1

1 n

JK

nK

nK
k duxknu

n
J  






















 


n

Jk
kx

nn
Jn

Jn
n

1

1
2

 

 

This finish the proof. 
 

Our simple example is the special case of the theorem 3.1 when 3n , 2J , 01 x , 22 x , and 43 x . 
According to theorem for 3/2p ,  

311)( 2  xxxVaR Jp  
and  

)(xTVaRp  
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The results exactly same as the simple example results. 
 

Theorem 3.2 Let nn yxyxyx  2211 , and )(xF is probability distribution of mixture of uniform 
distributions ),( 11 yxU , ),( 22 yxU , ),(, nn yxU . That is,   
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is given by 
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and the tail value-at-risk is given by 
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Proof: Based on the probability density function, the cumulative probability distribution )(xF  is the piecewise 
function and nontrivial pieces are given as follows 
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This finish the proof. 

One of the special cases of Theorem 3.2 is, when
n

kkk n
1

21   , 1 ii xy , where ni ,,2,1  , and Jh  . 
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This is the Theorem 3.2. 
 

Now we consider another simple example。 Let )(xF be the probability distribution of equal probability mixture 
of two triangular distribution )1;1(T and )1;3(T . The general triangular distribution );( byT is given by the 
following definition 
The probability density function is  
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Therefore the density function of equal probability mixture of two triangular distribution )1;1(T and )1;3(T is given 
by 
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and it is not hard to find the cumulative probability distribution is given by 
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Let 
2
1p , then we can easily to find value-at-risk 
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and the tail value-at-risk 
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Theorem 3.3 Let nyyy  21 , and )(xF is the probability distribution of the equal mixture of triangular 

distribution )1;( 1yT , )1;( 2yT , )1;(, nyT . For any ,
n
Jp  nJ 0 . Then the value-at-risk is given by 

1)(  Jp yxVaR  
and the tail value-at-risk is given by 
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Proof: The triangular probability density function of )1;( iyT is given by 
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Therefore the mixture density probability function if 
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This finish the proof. 
 

Our simple example is the special case of the theorem 3.3 when 2n , 1J , 11 y , and 32 y . According to 
theorem 3.3 for 2/1p ,  

411)( 2  yyxVaR Jp  
And 
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The results exactly same as the simple example results. 
 

Theorem 3.4 Let nyyy  21 ; ;,,2,1,0 nibi   ;1,,2,1,11   nibyby iiii  (this condition 
guarantees that triangular distribution are not overlap) and )(xF is the probability distribution of the mixture of 

triangular distribution );( 11 byT , );( 22 byT , );(, nn byT . That is 
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Proof: Based on the probability density function, the cumulative probability distribution )(xF  is the piecewise 
function and nontrivial pieces are given as follows 
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Therefore, for any 
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This finish the proof. 

One of the special cases of Theorem 3.4 is, when
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This is the result of Theorem 3.3. 
 

Example 1: Now let’s consider the Pareto distribution. Consider the equal probability mixture of two Pareto 
distributions with parameters 2,2;12   ， respectively. Then we can easily find the mixture 
cumulative function 
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Example 2: We may also consider more general case of the Pareto distribution. Consider the equal probability 
mixture of two Pareto distributions with parameters ;11   ，  2,1   respectively. Then we also can find 
the mixture cumulative function 
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The first example is the special case of the second example when 2 . We may get the result   
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Theorem 3.5 Let )(xF is the probability distribution of the equal mixture of n Pareto distribution with 
parameters ;11 1   ， ;21 2   ， ;1; nn   ，  respectively.  

For any 
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Proof: Based on the probability density function of the Pareto distribution, the cumulative probability distribution 
)(xF  is the piecewise function and nontrivial pieces are given as follows 
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Then solve the equation, we may have the value-at-risk is given by 
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This proved the theorem. 

Example 2 is the special case of the Theorem 3.5 when 2n , 1k , therefore for 12
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The results exactly same as the example 2 results. 
 

Theorem 3.6: Let )(xF is the probability distribution of the equal mixture of n Pareto distribution with 
parameters ;01 1   ， ;01 2   ， ;01;  n ，  respectively, and n  21 , then for 

any 













1

2121









kk nn
kp

nn
k

kk


; nk ,,2,1  , the value-at-risk is given by 

    /1/1 )()(
21

 npkxVaR
kp   and the tail value-at-risk is given by 

 

)(xTVaRp   


















 



n

kl
lnpk

np k
1

1/1/1 )(
)1(1

1
21



    

 
 



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

12 

 
Proof: Based on the probability density function of the Pareto distribution, the cumulative probability distribution 
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This proved the theorem. 
 

When we substitute kk  for nk ,,2,1  , we will get the result of Theorem 3.5. 
 

Theorem 3.7: Let )(xF is the probability distribution of the arbitrary mixture of n Pareto distribution with 
parameters ;01 1   ， ;01 2   ， ;01;  n ，  respectively, and n  21 .  
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Proof: By the similar method of Theorem 3.6, we can prove the results. The Theorem 3.6 is the special case of 

Theorem 3.7 when 
n

kkk n
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