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Abstract 
 

The popular approach to modeling time series data is to apply the Box-Jenkins approach of ARMA or ARMA 

depending on whether the series is stationary or non-stationary. This approach is based on the assumption that 

the sample is large. If such series display long memory property, then the forecast values based on ARMA model 
may not be reliable. In case of short time series data, one cannot rely on estimation techniques based on the 

asymptotic theory. This calls for use of appropriate estimation techniques in order to come up with models that 

can capture the short time series properties and thus be adequately used for prediction and forecasting without 
loosing the principle of parsimony. This study focuses on fitting appropriate ARMA and ARFIMA models for short 

time series and measuring the forecast performance of the fitted models. The percentage political popularity 

ratings series for three presidential candidates in Kenya’s General Elections for the year 2007 are used. A model-

selection strategy based on the corrected Akaike Information Criterion (AICc) is adopted to determine the correct 
model specification. Exact maximum likelihood estimation method is used to estimate the model parameters. 

RMSE is used to evaluate the forecast performance of the model. ARFIMA models are found to represent and 

forecast the short time series polls data better than the ARMA models. 
 

Keywords: Opinion polls, Short time series analysis, exact MLE, RMSE, ARFIMA, ARMA. 
 

1.0 Introduction 
 

The time series analysis of political support for Kenya‟s three main presidential contenders in the 2007 general 
elections is of some interest. This is because Kenya only regained democratic multiparty system in 1991 after 

many years of single party system. For this reason, the length of the available opinion polls data is much shorter 

than in other countries with a much longer and mature democratic tradition. This study seeks to find out whether 
the statistical properties of the opinion polls in Kenya conform to patterns found for those other countries, despite 

its younger democracy. The study further seeks to find out the most adequate models for these data and the 

forecasting performance of the fitted models. 
 

Over the last few years there has been growing interest among political scientists in applying time series 

techniques to analyze the statistical properties of aggregate political popularity data in various formats such as 
approval levels and partisanship measures.  
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For example, [1,2], [3,4], [5], [6], [7], [8] and various articles included in a special issue of Electoral Studies  in 
the year 2000 report evidence for the United States, United Kingdom, Spain, Sweden, Finland and several other 

OECD countries. These studies indicate that the time series of poll ratings in those countries are well modeled by 

fractionally-integrated processes which present high persistence but that eventually revert to their mean. 
 

A fractionally integrated process is one that exhibits long memory, with persistent local trends, but which 

nonetheless eventually reverts to the mean, [3]. The degree of persistence is measured by a real-valued parameter 

d , lying on the unit interval. At one extreme end, 0d  represents the short memory case. If 5.0d , the 

process is not wide-sense stationary, having infinite variance. And at the other extreme end, 1d  corresponds to 

the ordinary integrated process, familiarly known as a random walk, which is well known not to revert to the 
mean but to eventually wander arbitrarily far from the starting point. In [3] each derives variants of a model that 

explains the fractional property as consequence of aggregating heterogeneous poll responses. In these models, d  

measures the distribution in the voting population of a certain individual characteristic, which [2] call persistence 

of party identification, and [3] describe in terms of commitment versus pragmatism. These are attributes that 

might well be supposed to depend on the political culture, traditions, and attitudes of voters, and to vary from one 
party to another, and also from one country to another [3]. 
 

The rest of this paper is structured as follows. Section 2 summarizes the micro foundations of the model of voting 
intentions proposed by [3], using the model for partisanship proposed by [9. We emphasize the key assumptions 

which would give rise to an ARFIMA process as an appropriate model governing the time-series behavior of 

aggregate poll series. Section 3 explains both the estimation and testing approaches used in this paper. We report 
the results and the conclusion in sections 4 and 5 respectively. 
 

2.0 Microfoundations of the popularity model 
 

The [3] model is based on the idea that voters fall into two categories; the „committed‟ and the „floating‟ voters. 

Support of the „committed‟ voters is determined mainly by conviction or group solidarity, and so is relatively 
insensitive to the current performance of the party. The „floating‟ voters are more pragmatic, and their support is 

driven mainly by performance. It follows that the future voting behavior of the second group is typically less 

predictable from current behavior than the first group. The degree of persistence of aggregate support depends on 

the distribution of these attributes in the voter population. 
 

The [3]  model assumes that the log-odds in favor of voter i  supporting a given party is described, apart from a 

deterministic component, by an autoregressive process driven by news. In other words, if 
i

tp  represents the 

probability of voter i  supporting the party at time t  then                                     
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The term 
iC  is time-varying and it captures the effect of the election cycle. Equation (2) measures the degree of 

persistence of party support in the face of „news‟, whose effect on the individual is measured by 
i

t  

Assuming 
i

t  to be a serially uncorrelated  process, the case 1i  in (2) corresponds to a random walk process, 

which evolves with high probability towards   and  , so that the probability of support 
i

tp  tends to unity 

or zero under (1). Thereafter, it changes only rarely. This represents the behavior of committed voters. On the 

other hand 1i  implies a reversion to mean, and hence of 
i

tp  migrating (in the particular case 0iC ) to 1/2, 

in the absence of news. Because of the nonlinearity of the logistic transformation, support is also a lot more 

volatile in this case, in the face of the same news, than it is in the unit root case. This case represents the shorter 

„memory‟ of pragmatic voters. The 
i  are assumed to be distributed in the voting population over the interval [0, 

1] according to the beta( u , v ) density, where u  and v  are constant parameters, and 10  v .  
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For a suitable choice of v , this distribution can concentrate a significant part of the probability mass very close to 

1. Since the beta is a very flexible functional form, the distribution can assume a range of shapes on the rest of the 
interval, depending on the parameters. It can be approximately uniform. 
 

Let tX  represent the arithmetic average of N  independent binary (0-1) opinion poll responses, sampled from the 

population at time t , such that tX100  is the usual percentage support measure. Consider the time series 

properties of log[ tX /( tX1 )] when t  represents a succession of time periods (monthly or quarterly). [3] show 

that this variable converges in probability as N  to the same limit as tyC  , the mean of the right hand side 

of (1), where C  is converging to a constant and 
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i

tt yNy
1
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ty  is a random variable in the limit, being a function of news variable that all voters observe, although the 

individual effects are averaged out. The key result, due to [10], is that under a beta( u , v ) distribution for the 
i , 

the time  series representation of ty  approximates (large N ) to a process of the form  







0k

ktkty   

where )( v

k kO  , and t  is a shock process depending on news. This says that averaging a mixture of stable 

autoregressions and near-unit root processes yields in the limit a moving average process whose coefficients 
decline hyperbolically. This process has high persistence, or „long memory‟, but is nonetheless mean-reverting for 

0v . The hyperbolic-decline property is shared by the fractionally integrated or ARFIMA( p , d , q ) class of 

process, which take the form 

t

d

t uLx  )1(  

Where tu  is a stationary ARMA( p , q ) process, with vd 1 . The ARFIMA model, plus a possible 

deterministic component, is accordingly proposed as a plausible model to represent the time series of  

log[ tX /( tX1 )]. When d  is close to 1 the series is accordingly more persistent, as is expected since the 

parameter v  is close to 0 when the distribution of 
i  is concentrated near 1. The degree of persistence of the 

aggregate process therefore depends on the proportion of committed voters in the population. 
 

3.0 Theory and Methods 
 

3.1 The ARMA process 
 

Modelling of stochastic  time series generated by the ARMA or ARIMA  processes can be done with the Box-
Jenkins approach. The methods and procedures can be found in the literature [11]. 
 

3.1.1 Exact Maximum Likelihood Estimation of AR(1) 
 

The covariance stationary first-order Gaussian autoregressive process is ttt xx   1  such that ),0(~ 2 Nt  

where Tt ...,,1,1  . The likelihood may be factored into the product of 1T  conditional likelihoods and an 

initial marginal likelihood [12]. Specifically, 
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Where ),( 2    and }...,,{ 1yyt . The initial likelihood term );( 11 yl  is known in closed form; it is 
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The remaining likelihood terms are 
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Beach and MacKinnon [13] show that small-sample bias reduction and efficiency gains are achieved by 
maximising the exact likelihood, which includes the initial likelihood term, as opposed to the approximate 

likelihood, in which the initial likelihood term is either dropped or treated in an ad hoc manner. Moreover, they 

find that as   increases, the relative efficiency of exact maximum likelihood increases. 

At any numerical iteration, say 
thj ,  on the way to finding a maximum of the likelihood, a current “best guess” of 

the parameter vector exists; 
)( j .  

The Gaussian likelihood is then constructed as 
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and it is maximised with respect to   using standard numerical techniques 
 

3.2 The ARFIMA process 
 

The fractionally integrated ARMA model denoted ARFIMA  qdp ,,  has become increasingly popular to 

describe time series that exhibit long [14]. Granger and Joyeux [10] and Hosking [15] introduced fractional 

differencing and the general class of autoregressive fractionally integrated moving average (ARFIMA) models. 

Let B  denote the lag operator 1 tt XBX . Then the stationary and invertible ARFIMA  qdp ,,  model is 

written as 

       tt

d
LyLL   1 ,  2,0~ tt NID    (3) 

where d  is the fractional integration parameter,   p

p LLL   ...1 1  specifies the AR lag polynomial, 

and   q

q LLL   ...1 1  the MA polynomial. For stationarity and invertibility, the roots of  z  and 

 z  must lie outside the unit circle.  The integration parameter d can assume values based on two conditions 

([16]; [17]; [18]; [19]): A series exhibits a stationary and invertible ARMA process with geometrically bounded 

autocorrelations if 5.05.0  d  ([15], [19]). Secondly, it exhibits non-stationary process if 15.0  d . For 

5.00  d , tX  is a stationary long memory process in the sense that autocorrelations are not absolutely 

summable and decay exponentially to zero [19]. 
 

3.3 Estimating ARFIMA models 

Mills [20] generates autocorrelation recursively as 
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The autocovariance function of a stationary ARMA process with mean  , 
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defines the variance matrix of the joint distribution of   Tyyy ,...,1 : 
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which is a symmetric Toeplitz matrix, denoted by  10 ,..., T . Under normality: 

 ,~ TNy  

and combined with a procedure to compute the autocovariances in (4), the log likelihood (writing  yz ) is 

given by 

log     zz
T

dL 12

2

1
log

2

1
2log

2
,,,,    .    (5) 

Additional regression parameters in   are denoted by  , but can be ignored initially. The autocovariances of a 

stationary ARMA process scaled by the error variance, 
2

 iir   is  2

1

2

0 ,...,    TR . In order to 

allow maximum likelihood estimation, the autocovariance function must be evaluated in order to construct the 

autocovariances, R . An algorithm for the computation of autocovariances of the ARFIMA process (3) is derived 

in ([16]: 
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where   is the gamma function, j  are the roots of the AR polynomial and  ;;1, caF  is the hypergeometric 

function 
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where we use Pochhammer‟s symbol  
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Computation of  ;;1, caF  can be done recursively, 
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3.4 Data 
 

The political opinion polls data used were obtained from the Infotrak Harris Research, Consumer Insight 

Research and Strategic Research for the period between September and December 2007. Out of the 12 

observations, 10 are used for model building while the remaining two observations are used to evaluate the 
forecast performance of the fitted models. 
 

4.0 Results  
 

The preliminary analysis of the data was done by use of time plots which provided basic characteristics of the 

series. The examination of the time plots in figures 1 to 3 shows that there is stationarity in the observed data. 
However, the most exact information on the memory decay process is obtained by estimating the decay rate, d. 

0 2 4 6 8 10 12

10

15

20

25

30

35

40

45

P
E

R
C

E
N

T
A

G
E

 A
P

P
R

O
V

A
L

WEEK

 % approval for Kibaki

 % approval for Raila

 % approval for Kalonzo

 
Figure 1: Time series plot for the Consumer Insight series 
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Figure 2: Time series plot for Infotrak Harris series 
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Figure 3: Time series plot for Strategic Research series 

 

4.1 Unit root test 
 

To apply the ARFIMA and ARIMA tests the series are examined for unit root and stationarity. Among the widely 

applied stationarity tests which include an option for fractional unit roots are the variance ratio test, Rescaled 

range test, Schmidt-Phillips test and the KPSS test [21]. However these tests share the severely limiting weakness 

that a long time series ( 1000n ) is needed to distinguish long memory from short memory reliably. An 

adaptable stationarity test for a series with less than 200 observations is the ADF test. It does not directly indicate 

whether the series has a fractional unit root but this weakness can be covered if we can conclude that a series 

possibly has a fractional unit root when both alternatives are excluded. 
 

The most exact information on the memory decay process, however, is obtained by estimating the decay rate, d . 

Fractional integration estimates also simplify the analysis of time series data by ending debates over the best way 
to test for unit roots, where one needs to choose among many different tests, such as Dickey Fuller, ADF, 

variance ratio, or KPSS, and by assumption choose the null hypotheses of d = 1 or d = 0, that is, instead of 

running multiple tests and looking for patterns suggesting stationarity, one can instead rely upon the point 
estimates of d [2]. There are three methods of doing this: semiparametric estimation [22], the approximate 

maximum likelihood in the frequency domain ([23], [24]) and the exact maximum likelihood in the time domain 

([16]. The first two do not perform well in small samples ([16]. In this study the maximum likelihood method was 

used to estimate the decay rate d. 
 

4.2 ARFIMA modelling of the polls data 
 

Appropriate ARFIMA models are fitted to the polls data. The long memory parameter d is estimated using the 

maximum likelihood method. The estimated long memory parameter is used to fractionally difference the polls 
series which is then modelled as an ARFIMA process. 
 

The corrected AIC is used as the model identification tool. The optimal model for the fractionally differenced 
series is the one that has the least value of the corrected AIC.  
 

The exact maximum likelihood estimation technique is adopted to estimate the model parameters. The exact 

likelihood procedure appears more suitable than approximate procedures when working with small data sets and 
particularly when estimating models whose characteristic equations have roots close to the boundary of the unit 

circle[24]. Interest in the closed form of the likelihood function of the model stems from the need to make 

inferences in the following situations; when the sample is small, when the parameters are close to the invertibility 
boundary, and as an inference function for robust and missing observation problems. Sowell ([16] has also 

applied exact MLE technique to estimate the parameters of a univariate fractionally integrated time series. He also 

looked at the small sample properties of the estimators. 
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Optimal models for the fractionally differenced polls data together with the corrected AIC values and 95% 
confidence intervals for the parameter estimates are given in tables 1 – 3. Out of the nine series seven of them 

exhibit long memory characteristics with the value of the fractional differencing parameter ranging between 0.1 

and 0.4.  Six of models are pure fractional processes, ARFIMA(0, d, 0), while one is ARFIMA(0, d, 1) process. 
The estimates of the fractional differencing parameter d all fall within the 95% confidence interval. Of interest is 

the fact that for all ARFIMA models, d = 0 and d = 1 do not fall within the confidence intervals. Taking the first 

differences would therefore lead to overdifferencing. Therefore, in spite of the small sample sizes, we may 

conclude that the series are stationary and exhibit long-range dependence due to the fact that d < 0.5. 
 

Table 1: Optimal ARFIMA(p, d, q) models for the Consumer Insight data 
 

Series Fitted models 95% CI for d AICc 

Raila series ARFIMA(0, 0.3395859, 0) 0.3395855 - 0.3395863 42.66 

Kalonzo series ARFIMA(0, 0.09802818, 0) 0.09802783 - 0.09802854 38.96 
 

Table 2: Optimal ARFIMA(p, d, q) models for the Infotrak Harris data 
 

Series Fitted models 95% CI for d AICc 

Kibaki series ARFIMA(0, 0.2990022, 0) 0.2990017 - 0.2990027 49.71 

Raila series ARFIMA(0, 0.3528283, 0) 0.3528278 0.3528288 52.51 
 

Table 3: Optimal ARFIMA(p, d, q) models for the Strategic Research data 
 

Series Fitted models 95% CI for d Q AICc 

Kibaki series ARFIMA(0, 0.3062491, 0) 0.3062487 0.3062496 - 49.21 

Raila series ARFIMA(0, 0.368705, 0) 0.3687045 0.3687055 - 50.4 

Kalonzo series ARFIMA(0, 0.3342121, 1)  -0.8346534 42.77 
 

Standard diagnostic tests are done using the residual ACF and PACF of the models. The models pass these tests 

since their residual values lie within the 95% confidence interval band. Residual plots of the ARFIMA (p, d, q) 
models are also plotted to examine whether the models are white noise or not. The presence of residuals 

correlation is tested by use of the [26] test. The [27] test is used to test the normality of the residuals. These are 

tests for model adequacy and the results are reported in tables 4 - 6. The Ljung-Box test rejects the presence of 

serial correlation since all the p-values are greater than 0.05. The models are therefore adequate at the 5% level. 
The Jarque-Bera tests also show that the residuals are normally distributed since the p-values are all greater than 

the 0.05 level of significance. 
 

Table 4: Model checking of ARFIMA(p, d, q) models for the Consumer Insight data 
 

Series Fitted models Diagnostic test Test statistic p-value 

Raila series ARFIMA(0, 0.3395859, 0) Ljung-Box (lag 3) 

Jarque-Bera 

1.7221 

2.2411 

0.632 

0.3261 

Kalonzo series ARFIMA(0, 0.09802818, 0) Ljung-Box (lag 3) 

Jarque-Bera 

2.9545 

3.5051 

0.3987 

0.1733 
 

Table 5: Model checking of ARFIMA(p, d, q) models for the Infotrak Harris data 
 

Series Fitted models Diagnostic test Test statistic p-value 

Kibaki series ARFIMA(0, 0.2990022, 0) Ljung-Box (lag 3) 

Jarque-Bera 

2.4105 

0.6202 

0.4917 

0.7334 

Raila series ARFIMA(0, 0.3528283, 0) Ljung-Box (lag 3) 

Jarque-Bera 

4.6635 

0.5212 

0.1982 

0.7706 
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Table 6: Model checking of ARFIMA(p, d, q) models for the Strategic Research data 
 

Series Fitted models Diagnostic test Test statistic p-value 

Kibaki series ARFIMA(0, 0.3062491, 0) Ljung-Box (lag 3) 

Jarque-Bera 

4.7183 

0.847 

0.1936 

0.6548 

Raila series ARFIMA(0, 0.368705, 0) Ljung-Box (lag 3) 

Jarque-Bera 

3.4343 

0.5154 

0.3294 

0.7728 

Kalonzo series ARFIMA(0, 0.3342121, 1) Ljung-Box (lag 3) 
Jarque-Bera 

3.807 
0.6192 

0.2831 
0.7338 

 

4.3 Forecasting evaluation of the fitted ARFIMA models 
 

After model checking, the forecast values are studied. Both the in-sample and out-of-sample values are computed. 

The forecast performance of the models is evaluated by use of the Root Mean Square Error (RMSE). The model 
with the lowest value of these forecast evaluation tools is considered to have the best prediction power. The out-

of-sample forecast values together with RMSE values are shown in tables 7 – 13. 
 

Table 7: Out-of-sample forecasts for the ARFIMA(0, 0.3395859, 0) model fitted to Raila series from 

Consumer insight 
 

Week   Optimal forecast  Actual    Error 

11   41.19523   43    1.80477 

12   51.52955   42.5    0.97045   
RMSE   0.647994 
 

Table 8: Out-of-sample forecasts for the ARFIMA(0, 0.09802818, 0) model fitted to Kalonzo series from 

Consumer insight 
Week   Optimal forecast  Actual    Error 

11   14.31977   15    0.68023 

12   14.26231   15.1    0.83761   
RMSE   0.341219 
 

Table 9: Out-of-sample forecasts for the ARFIMA(0, 0.2990022, 0) model fitted to Kibaki series from 

Infotrak Harris 

Week   Optimal forecast  Actual    Error 
11   35.49741   39.2    3.70259 

12   34.98894   35.9    0.91106   

RMSE   1.205786 
 

Table 10: Out-of-sample forecasts for the ARFIMA(0, 0.3528283, 0) model fitted to Raila series from 

Infotrak Harris 
Week   Optimal forecast  Actual    Error 

11   46.36690   43.7    -2.6669 
12   46.91363   45.8    -1.11363   

RMSE   0.913922 
 

Table 11: Out-of-sample forecasts for the ARFIMA(0, 0.3062491, 0) model fitted to Kibaki series from 

Strategic Research 

Week   Optimal forecast  Actual    Error 

11   37.50152   39    1.49848 
12   37.31383   36    -1.31383   

RMSE   0.630206 
 

Table 12: Out-of-sample forecasts for the ARFIMA(0, 0.368705, 0) model fitted to Raila series from 

Strategic Research 
Week   Optimal forecast  Actual    Error 

11   46.42137   43    -3.42137 

12   47.12248   46    -1.12248  
RMSE   1.138672 
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Table 13: Out-of-sample forecasts for the ARFIMA(0, 0.3342121, 1) model fitted to Kalonzo series from 

Strategic Research 
Week   Optimal forecast  Actual    Error 

11   16.16380   17    0.8362 

12   14.70307   17    2.29693   

RMSE   0.772989 
 

4.4 ARMA modelling of the polls data 
 

Appropriate ARMA models are fitted to the Kenyan presidential approval polls data. Model selection is done by  

use of the corrected AIC. After the best models are chosen, the parameters of the models are examined next. The 
parameters are estimated by the exact maximum likelihood estimation method which is known to perform better 

in small samples. The results of the parameter estimates of the optimal models together with the values of the 

corrected AIC are shown in tables 14 – 16. 
 

Table 14: Optimal ARIMA(p, d, q) models for the Consumer Insight data 
 

Series Fitted models p q AICc 

Kibaki series ARMA(0, 1) - 0.2154 41.23 

Raila series ARMA(1, 0) 0.5775598 - 46.12 

Kalonzo series ARMA(0, 1) - 0.9819 39.46 
 

Table 15: Optimal ARIMA(p, d, q) models for the Infotrak Harris data 
 

Series Fitted models p q AICc 

Kibaki series ARMA(1, 0) 0.5552499 - 52.7 

Raila series ARMA(0, 1) - 0.7345 53.24 

Kalonzo series ARMA(1, 0) -0.084131 - 44.86 
 

Table 16: Optimal ARIMA(p, d, q) models for the Strategic Research data 
 

Series Fitted models p q AICc 

Kibaki series ARMA(1,0) 0.6202688 - 50.25 

Raila series ARMA(0, 1) - 0.9930 51.19 

Kalonzo series ARMA(0, 1) - 1.0000 44.06 
 

After the optimal models have been fitted, we next check for the adequacy of the models. The model adequacy is 

tested using two diagnostic tests, Ljung-Box test and Jarque-Bera test. Ljung-Box test is used to check for serial 

correlation in the residuals while the Jarque-Bera test is used to check for normality. As shown in tables 17 – 19, 
the residuals appear to be white noise and the data are normal since the p-values for the two diagnostic tests are all 

greater than 0.05 level of significance. 
 

Table 17: Model checking of ARMA(p, q) models for the Consumer Insight data 
 

Series Fitted models Diagnostic test Test statistic p-value 

Kibaki series ARMA(0, 1) Ljung-Box (lag 3) 

Jarque-Bera 

4.2491 

0.9109 

0.2358 

0.6342 

Raila series ARMA(1, 0) Ljung-Box (lag 3) 

Jarque-Bera 

0.7100 

0.5109 

0.7010 

0.7746 

Kalonzo series ARMA(0, 1) Ljung-Box (lag 3) 

Jarque-Bera 

0.6298 

3.3988 

0.8896 

0.1828 
 

Table 18: Model checking of ARMA(p, q) models for the Infotrak Harris data 
 

Series Fitted models Diagnostic test Test statistic p-value 

Kibaki series ARMA(1, 0) Ljung-Box (lag 3) 

Jarque-Bera 

0.9000 

0.7514 

0.6373 

0.6868 

Raila series ARMA(0, 1) Ljung-Box (lag 3) 

Jarque-Bera 

2.198 

0.7986 

0.5323 

0.6708 

Kalonzo series ARMA(1, 0) Ljung-Box (lag 3) 

Jarque-Bera 

0.5100 

0.3434 

0.7747 

0.8422 



International Journal of Applied Science and Technology                                            Vol. 2 No. 9; November 2012 

121 

 

Table 19: Model checking of ARMA(p, q) models for the Strategic Research data 
 

Series Fitted models Diagnostic test Test statistic p-value 

Kibaki series ARMA(1, 0) Ljung-Box (lag 3) 
Jarque-Bera 

1.6800 
0.6758 

0.4324 
0.7133 

Raila series ARMA(0, 1) Ljung-Box (lag 3) 

Jarque-Bera 

1.1723 

1.0311 

0.7597 

0.5972 

Kalonzo series ARMA(0, 1) Ljung-Box (lag 3) 

Jarque-Bera 

3.3816 

1.0428 

0.3364 

0.5937 
 

4.5 Forecasting evaluation of the fitted ARMA models 
 

The out-of-sample forecast values of the fitted models are shown in tables 20 – 28 below. The Root Mean Square 

Error values are also displayed in the tables. RMSE values are used to evaluate the forecast performance of the 

fitted models. 
 

Table 20: Out-of-sample forecasts for the ARMA(0, 1) model fitted to Kibaki series from Consumer Insight 
 

Week   Optimal forecast  Actual    Error 

11   40.46827   39    -1.46827 
12   40.39893   40.8    0.40107  

RMSE   0.481318 
 

Table 21: Out-of-sample forecasts for the ARMA(1, 0) model fitted to Raila series from Consumer Insight 

Week   Optimal forecast  Actual    Error 

11   40.67438   43    2.32562 
12   41.35266   42.5    1.14734   

RMSE   0.820055 
 

Table 22: Out-of-sample forecasts for the ARMA(0, 1) model fitted to Kalonzo series from Consumer 

Insight 

Week   Optimal forecast  Actual    Error 
11   14.29901   15    0.70099 

12   14.18340   15.1    0.9166   

RMSE   0.364903 
 

Table 23: Out-of-sample forecasts for the ARMA(1, 0) model fitted to Kibaki series from Infotrak Harris 

Week   Optimal forecast  Actual    Error 

11   36.47423   39.2    2.72577 
12   35.40495   35.9    0.49505   

RMSE   0.876065 
 

Table 24: Out-of-sample forecasts for the ARMA(0, 1) model fitted to Raila series from Infotrak Harris 

Week   Optimal forecast  Actual    Error 

11   46.72746   43.7    -3.02746 

12   47.81429   45.8    -2.01429  
RMSE   1.149908 
 

Table 25: Out-of-sample forecasts for the ARMA(1, 0) model fitted to Kalonzo series from Infotrak Harris 

Week   Optimal forecast  Actual    Error 
11   14.92428   15.2    0.27572 

12   15.00637   16.4    1.39363   

RMSE   0.449247 
 

Table 26: Out-of-sample forecasts for the ARMA(1, 0) model fitted to Kibaki series from Strategic 

Research 

Week   Optimal forecast  Actual    Error 

11   37.86078   39    1.13922 
12   37.52632   36    -1.52632   

RMSE   0.602285 



© Centre for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

122 

 

Table 27: Out-of-sample forecasts for the ARMA(0, 1) model fitted to Raila series from Strategic Research 
Week   Optimal forecast  Actual    Error 

11   46.95964   43    -3.95964 

12   48.42653   46    -2.42653   
RMSE   1.468564 
 

Table 28: Out-of-sample forecasts for the ARMA(0, 1) model fitted to Kalonzo series from Strategic 

Research 

Week   Optimal forecast  Actual    Error 

11   15.34    17    1.66 
12   13.44    17    3.56      

RMSE   1.242143 
 

The observed and forecasted values are closer for the ARFIMA models than for the ARMA models. This shows 

that ARFIMA models forecast better the given data than the ARMA models. Besides, the RMSE values for the 
ARFIMA models are found to be lower than those of the ARMA models in five of the seven compared models. 

ARMA(1, 0) models seem to be forecasting better than ARFIMA(0, d, 0) models for the Kibaki series obtained 

from Infotrak Harris and Strategic Research. Therefore, ARFIMA models are generally found to be the better 
models for the Kenyan presidential approval data than the ARMA models. 
 

5.0 Conclusion 
 

Long memory ARFIMA(p, d, q)  models are used to fit the Kenyan presidential approval data. Seven out of the 

nine series are found to exhibit stationary long-range dependence with the estimates of the memory decay 
parameter d ranging between 0.1 and 0.4. Six of these models are pure fractional models while one has the short-

memory Moving Average component. AR(1) and MA(1) models are also fitted to the same data. Even though all 

the models fit the data well, the forecasts obtained using the long memory models resemble the actual values 
better than the forecasts using the short memory models in five of the seven models compared. 
 

In popularity series the assumption of stationarity means very stable popularity shares because of mean reversion 

[6]. Gelman and King [28] make an argument about campaigns activating people‟s „enlightened preferences‟. 

They argue that campaigns matter because they inform potential voters, and as potential voters become more 
informed, their preferences begin to change. They argue that if the series is Nonstationary it indicates that the 

public‟s presidential preferences during the general election campaign did not simply bounce around a constant 

mean but rather trended somewhere.  
 

It is not, as the election forecasting perspective might suggest, that voters knew the final answer right from the 

start, but instead voters underwent a process whereby they eventually reached the final answer in the end. If the 

series was stationary, it would suggest that voter‟s preferences really did not move much during the general 
election. ARFIMA models for Kenya‟s polls data fall within the stationary regime which suggests that Kenyan 

voters seem to have a prior choice of their preferred presidential candidate and even the campaigns do not change 

very much their opinions. These fractional differencing parameter values are less than those found in mature 
democracies but close to those found in smaller regional parties in Spain [6]. The lower values of long memory 

parameter imply the existence of some significant differences in the behaviour of Kenyan voters and those voters 

in more mature democracies. The implication is that the candidates had a small share on „non-militant‟ supporters 
with the „militant‟ or die-hard supporters taking the most prominence. 
 

To our knowledge, ARFIMA and ARMA models have not been used to model opinion poll data in Kenya. This is 
therefore one of the contributions of this research. The second contribution of the research is to be able to predict 

the outcome of the elections. 
 

We suggest further research on the Kenya‟s polls data for the influence of such factors as election cycle, structural 

break and the regional support influence. Kenyan opinion polls have not been tested before for fractional 

integration. Therefore, there is no comparable evidence for these results. This leaves the possibility of confusion 
between long/perfect memory and structural break still open. 
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