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Abstract 
 

The vertical deflection of a simply supported and clamped beam is considered under a uniform load using the 
finite element method. The problem is solved using homogenous and non-homogenous boundary conditions with 

various numbers of elements. The governing differential equation is that pre-described by the Bernoulli beam 

which is a fourth order differential equation. Cubic elements are used as required for continuity. Graphs are 
presented and discussed for different loads in each case. 
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1. Introduction 
 

Beam equations have historical importance, as they have been the focus of attention for prominent scientists such 

as Leonardo da Vinci (14th Century) and Daniel Bernoulli (18thCentury). Practical applications of the beam 

equations are evident in mechanical structures built under the premise of beam theory. The importance of beam 

theory has been outlined in the literature over the years(see for example [3], [4], [5]). Examples include the 
construction of high-rise buildings, bridges across the rivers, air craft and heavy motor vehicles. In these 

structures, beams are used as the basis of supporting structures or as the main-frame foundation inaxles. Without a 

proper knowledge of beam theory, the successful manufacture of such structures would be unfeasible and unsafe. 
The Euler-Bernoulli beam theory, sometimes called the classical beam theory, is the most commonly used. It is 

simple and provides reasonable engineering approximations for many problems.In the paper, we shall illustrate 

the use of the Galerkin Finite Element Method to solve the beam equation with aid of Matlab. 
 

The Finite Element Method (FEM) is one of the most powerful tools used in structural analysis. Finite Element 

Analysis is based on the premise that an approximate solution to any complex engineering problem can be 
reached by subdividing a larger complex structure into smaller non-overlapping components of simple geometry 

called finite elementsor elements.Complex  partial  differential  equations  that  describe  these  structures  can  be  

reduced  to  a  set  of  linear  equations  that  can  easily  be  solved  using  this  method.  
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Elements are interconnected by points called nodes. Nodes will have nodal (vector) displacements or degrees of 
freedom which may include translations, rotations, and for special applications, higher order derivatives of 

displacements. In the Galerkin finite element method a trial  function  is substituted  into  the  governing  

equations  and  the  unknown  node  values  are  determined. 
 

2. Governing Equation 
 

In the Euler-Bernoulli beam theory, the transverse deflection  𝑢 of the beam is governed by the fourth order 
differential equation  

    
𝑑2

 𝑑𝑥 2
 𝑟 𝑥 

𝑑2𝑢

𝑑𝑥 2
 = 𝑓 𝑥, 𝑢 , 0 ≤ 𝑥 ≤ 𝐿                               (1) 

subject to the free end boundary conditions  

𝑢 0 = 𝑎0 ,      
𝑑2𝑢 0 

𝑑𝑥2
=  𝑏0, 

    𝑢 𝐿 = 𝑎𝐿 ,      
𝑑2𝑢 𝐿 

𝑑𝑥 2 =  𝑏𝐿 .            (2)  
 

The function 𝑟 𝑥 = 𝐸 ∗ 𝐼 is the product of Young’s modulus of elasticity E and moment of inertia I of the beam. 

It is referred to as the flexural rigidity, and is a measure of strength. The transversely distributed load is 𝑓 𝑥, 𝑢 , 

while 𝑢(𝑥) is the transverse deflection the beam. In the linear case, 𝑓 𝑥, 𝑢 = 𝑞 𝑥 𝑢 + 𝑝 𝑥 , and the beam 

equation (1) becomes 

    
𝑑2

𝑑𝑥 2
 𝐸𝐼

𝑑2𝑢

𝑑𝑥 2
 = 𝑞 𝑥 𝑢 + 𝑝 𝑥 ,   0 ≤ 𝑥 ≤ 𝐿,             (3) 

 

where 𝑞 𝑥  is the coefficient of ground elasticity and 𝑝 𝑥  is a load force normal to the beam at the point x. 

For the linear case 𝑓 𝑥, 𝑢 = 𝑞 𝑥 𝑢 + 𝑝 𝑥 , where 𝑢(𝑥) is the deflection of the beam, 𝑞 𝑥 is the coefficient of 

ground elasticity, and 𝑝(𝑥) is the uniform load applied normal to the beam. 
 

When the beam is supported by free ends and𝑞 𝑥 = 0, the solution 𝑢 𝑥 describes the deflection of the beam 

under the load 𝑝 𝑥 . In this case, the governing equations are 
 

  
𝑑2

𝑑𝑥 2
 𝐸𝐼

𝑑2𝑢

𝑑𝑥 2
 = 𝑝 𝑥   , 0 ≤ 𝑥 ≤ 𝐿,    (4) 

𝑢 0 = 𝑎0 ,      
𝑑2𝑢 0 

𝑑𝑥2
=  𝑏0, 

  𝑢 𝐿 = 𝑎𝐿 ,      
𝑑2𝑢 𝐿 

𝑑𝑥 2 =  𝑏𝐿 .                        (5) 
 

For simple data functions 𝑓 𝑥, 𝑢 and 𝑟 𝑥 , the exact solution of beam equation with boundary condition can be 
found by standard methods that are well known in literature of ordinary differential equations and their 

applications . For more developed data functions, when exact methods fail, numerical methods can be 

successfully applied to find an approximate solution for a broad class of boundary value problems. In the next 
section, we shall utilize the Galerkin Finite Element Method (FEM) to solve the boundary value problem (4)-(5) 

when the flexural rigidity function 𝑟 𝑥 = 𝐸 ∗ 𝐼 is constant. In this case, equation (4) can be written as  

   𝐸𝐼
𝑑4𝑢

𝑑𝑥 4 = 𝑝 𝑥   , 0 ≤ 𝑥 ≤ 𝐿.                                (6) 

 

3. Galerkin Finite Element Method  
 

The first step in the Galerkin FEM is the discretization of the domain. Here, the domain of the problem (length of 

the beam) is divided into a finite set of line elements, each of which has at least two end nodes. Geometrically the 

element is the same as that used for bars. The second step is to obtain the weak form of the differential equation. 

For this purpose, we multiply the residual of differential equation (4) by a weight function 𝑤(𝑥) and integrate it 

by parts so as to evenly distribute the order of differentiation on 𝑢 and 𝑤. The result is the equation 
 

  𝐸𝐼
𝑑4𝑢

𝑑𝑥 4 − 𝑝 𝑥  
𝐿

0
𝑤 𝑑𝑥 = 𝐸𝐼

𝑑3𝑢

𝑑𝑥 3
 𝑤 0

𝐿 − 𝐸𝐼
𝑑2𝑢

𝑑𝑥 2
 𝑑𝑤

𝑑𝑥
 

0

𝐿
+   𝐸𝐼

𝑑2𝑤

𝑑𝑥 2

𝑑2𝑢

𝑑𝑥 2 − 𝑝𝑤 𝑑𝑥 = 0.
𝐿

0
  (7) 

 
 

http://en.wikipedia.org/wiki/Displacement_(vector)
http://en.wikipedia.org/wiki/Derivative
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After obtaining the weak form, we proceed to choose the suitable approximating functions for the elements. It can 

be seen that the highest order of the derivative on   𝑢(𝑥) in the weak form (7) is three; therefore we choose an 

approximating function that is thrice differentiable. A cubic interpolation polynomial satisfies this requirement 

[1].Using the Galerkin FEM, we equate the weight function to the approximating function, 𝑤𝑖 = 𝑁𝑖  where these 
cubic interpolation functions  are known as Hermite cubic interpolation ( or cubic spline) functions which  are 

defined as 

𝑁1 = 1 − 3  
𝑥

ℎ
 

2

+ 2  
𝑥

ℎ
 

3

, 𝑁2 = 𝑥  1 −
𝑥

ℎ
 

2

, 𝑁3 = 3  
𝑥

ℎ
 

2

− 2  
𝑥

ℎ
 

3

, 𝑁4 = 𝑥   
𝑥

ℎ
 

2

−
𝑥

ℎ
 . 

On substituting these shape functions into the weak form of the equation  (7) and assuming 𝑢 =  𝑢𝑗𝑁𝑗
4
𝑗 =1 , we get 

  𝐸𝐼
𝑑4𝑢

𝑑𝑥 4 − 𝑝 𝑥  
𝐿

0
𝑤 𝑑𝑥 = 𝐸𝐼𝑢,𝑥𝑥𝑥 𝑁𝑖]0

𝐿 − 𝐸𝐼𝑢,𝑥𝑥 𝑁𝑖,𝑥 ]0
𝐿 +  𝐸𝐼

𝐿

0
𝑁𝑖,𝑥𝑥 𝑢,𝑥𝑥  𝑑𝑥 −  𝑝𝑁𝑖 𝑑𝑥 = 0

𝐿

0
. 

The stiffness matrix is given by 

𝐾𝑖𝑗 =  
𝑑2𝑁𝑖

𝑑𝑥2

𝐿

0

𝑑2𝑁𝑗

𝑑𝑥2   𝑑𝑥. 

The force vector is 

𝑓𝑖 =  𝑝𝑁𝑖 𝑑𝑥.
𝐿

0

 

For the first element      

𝐾11  =    
𝑑2𝑁1

𝑑𝑥2

𝐿

0

𝑑2𝑁1

𝑑𝑥2
  𝑑𝑥 =   

1

𝐿3

𝐿

0

 12𝑥 − 6𝐿 
1

𝐿3
 12𝑥 − 6𝐿  𝑑𝑥 

=
1

𝐿6  144𝑥2 − 144𝑥𝐿 + 36𝐿2   𝑑𝑥
𝐿

0
 

=
1

𝐿6 [48𝑥3 − 72𝑥𝐿 + 36𝑥𝐿]0
𝐿        =

1

𝐿6
 12𝐿3 =   

12

𝐿3 . 

 The remaining elements are found in a similar manner. The stiffness matrix becomes 

𝐸𝐼

𝐿3
 

12       6𝐿   − 12     6𝐿
   6𝐿     4𝐿2   − 6𝐿   2𝐿2

−12 − 6𝐿   12  − 6𝐿
   6𝐿    2𝐿2  − 6𝐿      4𝐿2

 . 

Similarly, we can obtain the force vector matrix. The first value in the force vector is evaluated below. 

 𝑝
𝐿

0
 1 −

3𝑥2

ℎ2 +
2𝑥 3

ℎ3
  𝑑𝑥= 𝑝  [𝑥 −

𝑥3

ℎ2 +
𝑥4

2ℎ3
 

0

𝐿

= 𝑝  𝐿 −
𝐿3

𝐿2 +
𝐿4

2𝐿3
 = 𝑝  

𝐿

2
 . 

The remaining values are obtained in a similar manner using their corresponding shape functions. The resulting 

force vector is given as 

𝑓 =
𝐿𝑝

2
 

1
6𝐿
1

−6𝐿

 . 

The corresponding system can represented as  

𝐸𝐼

𝐿3
 

12       6𝐿   − 12     6𝐿
   6𝐿     4𝐿2   − 6𝐿   2𝐿2

−12 − 6𝐿   12  − 6𝐿
   6𝐿    2𝐿2  − 6𝐿      4𝐿2

  

𝑢1

𝑢2

𝑢3

𝑢4

 =
𝐿𝑝

2
 

1
6𝐿
1

−6𝐿

  

[Stiffness matrix][Displacement matrix] = force vector. 

The system of equations is solved using MATLAB. The displacement for each element is solved under different 

conditions prescribed. Results were found for various numbers of elements under different loads. 
 

4. Non-homogenous case 
 

We consider the beam equation  

𝐸𝐼
𝑑4𝑢

𝑑𝑥 4 = 𝑝 𝜋4𝑥𝑠𝑖𝑛𝜋𝑥 − 4𝜋3𝑐𝑜𝑠𝜋𝑥 ,         0 ≤ 𝑥 ≤ 𝐿,                       (5a) 

with corresponding non-homogenous boundary conditions 

𝑢 0 = 0,            𝑢′′ 0 = 2𝜋 

    𝑢 𝐿 = 0,            𝑢′′ 𝐿 = −2𝜋. 
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It must be noted that 𝑢 𝑥 = 𝑥 𝑠𝑖𝑛 𝜋𝑥 is the exact solution of the boundary value problem. In order to transform 

the non-homogenous boundary conditions into homogenous conditions, we introduce a new unknown                             

𝑢 𝑥 = 𝑢0 𝑥 + 𝑤 𝑥 ,              0 ≤ 𝑥 ≤ 𝐿, 
where the interpolating polynomial w(x) is obtained by [6]: 

𝑤 𝑥 = −𝜋 𝑥 − 1 2𝑥2 2𝑥 − 1 . 
 Our problem becomes  

𝐸𝐼
𝑑4𝑢0

𝑑𝑥4
= 𝑝 𝜋4𝑥𝑠𝑖𝑛𝜋𝑥 − 4𝜋3𝑐𝑜𝑠𝜋𝑥 + 240𝜋𝑥 − 120𝜋 , 0 ≤ 𝑥 ≤ 𝐿, 

𝑢0 0 = 0,       
𝑑2𝑢0(0)

𝑑𝑥4
= 0 

𝑢0 𝐿 = 0,            
𝑑2𝑢0(𝐿)

𝑑𝑥4
= 0. 

The left hand side of the equation yields the same stiffness matrix as previously obtained. The right hand side can 
be represented as 

 𝑝(𝜋4𝑥𝑠𝑖𝑛𝜋𝑥 − 4𝜋3𝑐𝑜𝑠𝜋𝑥 + 240𝜋𝑥 − 120𝜋)𝑁𝑖  𝑑𝑥
𝐿

0
. 

 We obtain for  𝑁1   

  𝑝  (𝜋4𝑥𝑠𝑖𝑛𝜋𝑥 − 4𝜋3𝑐𝑜𝑠𝜋𝑥 + 240𝜋𝑥 − 120𝜋)𝑁1  𝑑𝑥
𝐿

0

 

   = 𝑝 (𝜋4𝑥𝑠𝑖𝑛𝜋𝑥 − 4𝜋3𝑐𝑜𝑠𝜋𝑥 + 240𝜋𝑥 − 120𝜋)
𝐿

0
 1 −

3𝑥 2

ℎ2 +
2𝑥3

ℎ3
  𝑑𝑥 

+ 𝑝 
−3𝜋4

ℎ2
𝑥3𝑠𝑖𝑛𝜋𝑥 +

12𝜋3

ℎ2
𝑥2𝑐𝑜𝑠𝜋𝑥 −

720𝜋

ℎ2
𝑥3 +

360𝜋

ℎ2
𝑥2

𝐿

0

 𝑑𝑥 

+ 𝑝 
2𝜋4

ℎ3
𝑥4𝑠𝑖𝑛𝜋𝑥 −

8𝜋3

ℎ3
𝑥3𝑐𝑜𝑠𝜋𝑥 +

480𝜋

ℎ3
𝑥4 −

240𝜋

ℎ3
𝑥3

𝐿

0

 𝑑𝑥 

=  25𝜋2 − 9𝜋 +
18

𝜋𝐿2
−

48

𝐿2
 𝑠𝑖𝑛𝜋𝐿 +  3𝜋2𝐿 − 3𝜋3𝐿 −

18

𝐿
+

288𝜋

𝐿
 𝑐𝑜𝑠𝜋𝐿 − 156𝜋𝐿2 − 60𝜋𝐿 

The remaining values are obtained in a similar manner using their corresponding shape functions. The resulting 
force vector is given as 

𝑓 = 𝑝

 
 
 
 
 
 
 
 
  25𝜋2 − 9𝜋 +

18

𝜋𝐿2
−

48

𝐿2
 𝑠𝑖𝑛𝜋𝐿 +  3𝜋2𝐿 − 3𝜋3𝐿 −

18

𝐿
+

288𝜋

𝐿
 𝑐𝑜𝑠𝜋𝐿 − 156𝜋𝐿2 − 60𝜋𝐿

44

𝐿
𝑠𝑖𝑛𝜋𝐿 +  2𝜋 +

48

𝜋𝐿2
 𝑐𝑜𝑠𝜋𝐿 − 98𝜋𝐿3 − 10𝜋𝐿2

 
6

𝐿2
− 3𝜋2 𝑠𝑖𝑛𝜋𝐿 −  𝜋3𝐿 +

6𝜋

𝐿
+

48

𝜋𝐿2
+

48

𝜋𝐿3
 𝑐𝑜𝑠𝜋𝐿 + 84𝜋𝐿2 − 60𝜋𝐿

 48𝐿 + 𝜋2𝐿2 − 2 𝑠𝑖𝑛𝜋𝐿 +  𝜋3𝐿3 − 𝜋3𝐿4 + 2𝜋𝐿 +
48

𝜋
 𝑐𝑜𝑠𝜋𝐿 − 120𝜋𝐿4 + 80𝜋𝐿3

 
 
 
 
 
 
 
 
 

 

 

5. Results 
 

The results were first obtained for a beam clamped at both ends. The first graph represents a beam under the same 
load for various numbers of elements. The second graph displays the clamped beam under various loads. The 

code used to generate these results is given in Appendix A.  
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Graphs for the beam equation using homogenous boundary conditions 

 

 
The boundary conditions were then changed to obtain results for a simply-supported beam. The graphical results 

were obtained for the same parameters as described for a clamped beam. The code used to obtain these results is 
given in Appendix B. 
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Graphs for the beam equation using non-homogenous boundary conditions 
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6. Discussion 
 

The graphs display the results obtained for homogenous and non-homogenous boundary conditions. When the 

number of elements was increased for both clamped and simply-supported beams, the graphs yielded greater 

continuity which resulted from greater accuracy. That is to say the approximate solution was closer to the exact 
solution or there was less error as the number of elements increased. This is consistent with the theory of the 

FEM, as increasing the number of elements reduces the error, which in turn improves the accuracy of the solution. 

In addition, increasing the load also increases the displacement at each point on the beam. It should also be noted 
that the displacement for the simply-supported beam is greater than that of the clamped beam. Furthermore, the 

deflection for the non-homogenous boundary conditions was much more significant than that for the homogenous 

case. 
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6. Appendix  
 

Appendix A:  Finite Element Code for Clamped Beam 

function [stiffness force displacements U reactions]= formstiffness(m,P) 

 nodeCoordinates=linspace(0,1,m+1)'; 

xx=nodeCoordinates; 

L=max(nodeCoordinates); 

numberNodes=size(nodeCoordinates,1); 

xx=nodeCoordinates(:,1); 

E=1; I=1; EI=E*I; 

GDof=2*numberNodes; 

U=zeros(GDof,1); 

force=zeros(GDof,1); 

stiffness=zeros(GDof); 

displacements=zeros(GDof,1); 

for i=1:m; 

    elementNodes(i,1)=i; 

    elementNodes(i,2)=i+1; 

end 

 for e=1:m; 

      indice=elementNodes(e,:); 

    elementDof=[ 2*(indice(1)-1)+1  2*(indice(2)-1)  2*(indice(2)-1)+1  2*(indice(2)-1)+2]; 

    LElem=xx(indice(2))-xx(indice(1)); 

     f1=4*[P*LElem/2  P*LElem*LElem/12  P*LElem/2  -P*LElem*LElem/12]';     

    force(elementDof)=force(elementDof)+f1; 

    k1=EI/(LElem)^3*[12 6*LElem -12 6*LElem ; 

                6*LElem 4*LElem^2  -6*LElem  2*LElem^2; 

                -12 -6*LElem 12 -6*LElem; 

               6*LElem 2*LElem^2 -6*LElem 4*LElem^2]; 
 

stiffness(elementDof,elementDof)=stiffness(elementDof,elementDof)+k1; 

end 

fixedNodeU=[1 2*m+1]';fixedNodeV=[2 2*m+1]'; 

prescribedDof=[fixedNodeU;fixedNodeV]; 

activeDof=setdiff([1:GDof]',[prescribedDof]); 

 U=stiffness(activeDof,activeDof)\force(activeDof); 

displacements=zeros(GDof,1); 

displacements(activeDof)=U; 

http://en.wikipedia/Euler-Bernoulli-beam
http://csxe.rutgers.edu/research/vibration/51.pdf
http://csxe.rutgers.edu/research/vibration/51.pdf
http://csxe.rutgers.edu/research/vibration/51.pdf
http://csxe.rutgers.edu/research/vibration/51.pdf.%20Retrieved%202007-04-15
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 disp('Displacements') 

 plot(U) 
 

jj=1:GDof; format 

 [jj'  displacements]; 

F=stiffness*displacements; 

reactions=F(prescribedDof); 

disp('reactions') 

[prescribedDof  reactions]; 
 

U=displacements(1:2:2*numberNodes); 

plot(nodeCoordinates,U,'.') 

Appendix B: Finite Element Code for SimplySupported Beam 

function [stiffness force displacements U reactions]= formstiffness(m,P) 
 

nodeCoordinates=linspace(0,1,m+1)'; 

xx=nodeCoordinates; 

L=max(nodeCoordinates); 

numberNodes=size(nodeCoordinates,1); 

xx=nodeCoordinates(:,1); 
 

 E=1; I=1; EI=E*I; 

GDof=2*numberNodes; 

U=zeros(GDof,1); 

force=zeros(GDof,1); 

stiffness=zeros(GDof); 

displacements=zeros(GDof,1); 
 

for i=1:m; 

    elementNodes(i,1)=i; 

    elementNodes(i,2)=i+1; 

end 
 

for e=1:m; 
 

    indice=elementNodes(e,:); 

    elementDof=[ 2*(indice(1)-1)+1  2*(indice(2)-1)  2*(indice(2)-1)+1  2*(indice(2)-1)+2]; 
 

    LElem=xx(indice(2))-xx(indice(1)); 
 

    f1=4*[P*LElem/2  P*LElem*LElem/12  P*LElem/2  -P*LElem*LElem/12]';     
 

    force(elementDof)=force(elementDof)+f1; 
 

    k1=EI/(LElem)^3*[12 6*LElem -12 6*LElem ; 

                6*LElem 4*LElem^2  -6*LElem  2*LElem^2; 

                -12 -6*LElem 12 -6*LElem; 

               6*LElem 2*LElem^2 -6*LElem 4*LElem^2]; 
 

      stiffness(elementDof,elementDof)=stiffness(elementDof,elementDof)+k1; 
 

end 
 

fixedNodeU=[1 2*m+1]';fixedNodeV=[]'; 

prescribedDof=[fixedNodeU;fixedNodeV]; 

activeDof=setdiff([1:GDof]',[prescribedDof]); 
 

U=stiffness(activeDof,activeDof)\force(activeDof); 

displacements=zeros(GDof,1); 

displacements(activeDof)=U; 
 

disp('Displacements') 
 

plot(U) 


