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Abstract 
 

In this paper, the weekly returns of the Nairobi Securities Market (NSE) are modelled using bilinear models and 
the bilinear-GARCH models so as to determine the most efficient and adequate model for forecasting of the 

Nairobi Equity market. The data used was obtained from the Nairobi Stock Exchange (NSE) for the period 

between 3
rd

 June 1996 to 31
st
 30

th
 October 2011for the company share prices while for the NSE 20-share index 

was for period between 2
nd

 March 1998 to 30
th
 October 2011.The share prices for three companies; Bamburi 

Cement, National Bank of Kenya and Kenya Airways which were selected at random from each of the three main 

sectors as categorized in the Nairobi Stock Exchange were used. The results indicate that the combination of 

bilinear-GARCH model is more adequate and efficient in modelling the weekly returns of the Nairobi Securities 
Exchange. 
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1.0 Introduction 
 

Stock market volatility is one of the widely studied aspect of the equity markets world over mainly by use of the 
Autoregressive Moving Average (ARMA) models with Autoregressive Heteroscedasticy (ARCH) errors. The 

focus has been on the ARCH family of models thereby ignoring the other suitable non linear models like the 

bilinear model proposed by Granger and Anderson (1978). In the bilinear model, the unconditional moment 
structure is similar to that of ARCH that it can be mistaken for ARCH (Bera and Higgins, 1997 Weiss, 1986). The 

bilinear model captures the nonlinear dynamics in the conditional mean while the ARCH models captures the 

nonlinear dynamics in the conditional variance. As such, the two models can be treated as „competitors‟ since 

they have similar statistical properties or as „complementary‟ models since the bilinear model captures the 
nonlinear dependence in the conditional mean while the ARCH model captures the nonlinearity due to the 

variance.  The outline of this paper is as follows. In section 2, a review of the bilinear models are given. Section 3. 

presents the Autoregressive Conditional Heteroscedasticity (ARCH) Models while the Methodology is given in 
section 4.  The Results and Discussions are presented in section 5 while section 6 is a list of References. 
 

2.0 Bilinear Models (B.L.) 
 

Following Granger and Anderson (1978) , Subba (1981), Subba and Gabr (1984), a  time series }{ tX  is said to 

follow a bilinear time series denoted by BL(p,q,m,k) if it satisfies the equation 
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where }{ t  is a sequence of i.i.d random variable, usually but not always with zero mean and variance 
2

  and 

c0=1, ai ,bij and cj are model parameters. It is easy to see that bilinear model is a special case of ARMA (p,q) 

model. 
 

Using lag (Backshift) operator, equation 1 can be specified as 

 tttt BwBBwB  )()())(()( 11        2 

where 

t

d

t XBw 1)1(  , ),0(~
2

 WNt
     3 

In equation 2, 
1

21 ...)(  p

pBBB  and
1

1 ...1)(  r

r BBB  .This is equivalent to the Subba 

(1981) BL(p,q,m,k) class of models (Davidson, 2008). 
 

Bilinear models have been applied in geophysics data (Subba, 1988), Spanish economic data (Maravall, 1983) 
and in solar physics data by (Subba and Gabr, 1984 ). These models are particularly attractive in modelling 

processes with sample paths of occasional sharp spikes (Subba and Gabr, 1984). In the bilinear model although 

the conditional variance is constant, the conditional mean is augmented with the interaction terms between the 
past observations and the innovations. This may increase the predictability of the dependent variable ( Bera and 

Higgins, 1997). 
 

2.1 Estimation of parameters in bilinear models 
 

Consider the BL(p,0,m,k) model of the form  
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where }{ t ~ ),0( 2

 . (Here the, MA terms have been dropped and a constant   has been added to the R.H.S to 

facilitate the fitting of such models to non mean corrected data). 
 

The likelihood function of the unknown parameters is constructed, given N observations NXXX ,...,, 21 . Since 

the model involves lagged values of the }{ tX , one can not evaluate the residuals for the initial stretch of data. The 

conditional likelihood based on NXXX ,...,, 21   , given NXXX ,...,, 21  where ),,max( kmp  is thus 

considered. 
 

Let  = ),...,,( 21 n denote the complete set of parameters {ai}, {bij},  i.e. set piaii ,...,2,1,  , 

111 bp  ,    1122 ,,..., mkpmkmkpp bb  and write n=p+mk+1 to denote the total number of 

parameters.  

The joint probability density function of N  ,...,,, 21   is given by  

 }
2

1
exp{)

2
1(

1

2

2

2/)(
2 




N

t

t

N










     5 

and since the Jacobian of the transformation from }{ tX  to }{ t  is unity, equation 5 also represents the likelihood 

function of θ, given },...,1;{ NtX t   . The (conditional) maximum likelihood estimates of n ,...,, 21  are 

thus given by maximizing equation 5 or equivalently by minimizing  

 Q (θ) = 


N

t
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         6 

The minimization is performed numerically: for a given set of values ),...,,( 21 n  then }{ t  is evaluated 

recursively from equation 1 and then the Newton-Raphson method is used to minimize Q(θ) ( Subba, 1981). The 

Newton-Raphson iterative equations for minimization of Q (θ) are given by, 
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where θ
(i)

 is the vector of parameter estimates obtained at the i
th

 iteration, and gradient vector G and Hessian 

matrix H are given respectively as,  
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Subba and Gabr (1984) developed a neat set of recursive equations for those derivatives as follows. 
Differentiating equation 1 with respect to each of the parameters the following are obtained 

iti

i

t Xa
a





)(


,  i=1,2,…,p 

ititij

i

t Xb
a








)(  , i=1,2,…,m j=1,2,…,k 

1)( 







i

t

a
 ,where 

i

it
it

m

i

k

j

ij Xb








 



 


1 1

1)(  

Assuming the initial conditions  
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For a given set of parameter values ,{ai}, {bij} the first and the second derivatives  of Q can be evaluated from 

the above equations and hence the vector G and matrix H evaluated. The iteration equation 7 is now 
implemented.  
 

When the final parameter estimate ̂  have been obtained, 
2

e  is obtained as, 
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2.2 Least squares estimation of model parameters for bilinear models 
 

Following the approach of Tong (1990), consider the bilinear model (equation 1). Rewriting it in a Markovian 
representation with monor changes in notation. Set p=max(p,q,m,k). 

ξt=(A+Bεt)ξt-1+cεt+d(
22  t ) 

Xt=Hξt-1+εt        10 
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where ξt is a p-vector and  
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By convention, cj=0 if j>q, bjk=0 if j>m.  Diagonality of the model implies the relation 

B=dH. The converse is not true.  
 

Following Guegan and Pham (1989), take θ=(a1,…,ap, c1,…,cp, b1,…,bp) as the fundamental parameter vector and 

assume that the representation in equation 18 is quasiminimal in the sense that there is no other Markovian 
representation with the same noise structure but with a state vector which is a linear transformation of the original 

state vector and has a smaller dimension. Further, assume that the model is invertible and stationary. 
 

Let (X1,…,XN) denote the observations. It is plausible to estimate θ by minimizing 
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)/
~

( 0 t
 should diminish as t (see Tong,1990). Let there exist a stationary time series )}
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is then measurable w.r.t  -algebra generated by Xs, s≤t. Here, 

the model 18 is said to be invertible at 
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relative to the observation {Xt}. A sufficient condition for this is  
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A reasonable choice of N  is suggested by the above sufficient condition and given as 

})1(
~~~~~

:
~

{
1

0,

N

t

t

N XHdHcA 


  


    11 

where 0 is a given compact set and   is a small positive number. The set 0 is chosen large enough to include 

θ, the true parameter and the set of parameters satisfying the stationarity condition. 
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Let 
N̂  be the minimizer of )

~
(NQ  over the set ,N . This is the LSE of θ (Tong,1990). 

 

2.3 Order selection for Bilinear models 
 

Suitable values of p,m,k are determined by fitting a range of models covering various values of p,m,k and then 

selecting the model with the minimum value of the AIC defined as; 
 

2ˆlog)( 2  eNAIC  x number of fitted parameters (Akaike, 1977). 
 

Note that (N-γ) is the effective number of observations to which each model has been fitted. In using the AIC 

criterion, the goal is to strike a balance between reducing the magnitude of the residual variance and increasing 

the number of model parameters. This method requires that the upper bounds be set to p,m,k and then search for 
the various combinations within this bound.  
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This is clearly a nested search procedure. The Subba (1981) algorithm is used to accomplish this as follows; 
 

1. For a given value of p, fit a linear AR(p) model. 

2. Using the AR coefficients as initial values for the {ai}, {bij} and α, and setting initially b11=0, fit a 

BL(p,0,1,1) model using the Newton-Raphson technique. 
3. Fit BL(p,0,1,2) and BL(p,0,2,1) models using the parameters  of the BL(p,0,1,1) model as the initial 

values and setting initially the remaining bilinear coefficients as zero. 

4. Of the two models fitted in step 3, choose the one which has the smaller residual variance and use its 
parameters as starting values of fitting the BL (p, 0,2,2) model. 

5. The procedure is continued until m,k have reached a common upper bound Γ. At each stage, a bilinear 

term of order (m,k) is fitted by considering bilinear terms of orders (m-1,k) , (m,k-1) , and choosing 

whichever model has residual variance to provide the starting values, with initial values for the remaining 
coefficients set to zero. 

6. All previous steps are repeated for p=1,2,…,Γ. and the procedure terminates when the residual variance 
2ˆ
e starts to increase as m,k increases. As a working rule, Γ should be at least as large as the order of the 

best AR model selected by the AIC criterion. The final choice of model is then made by selecting the 

model for which the AIC value is smallest  (Priestly, 1980) 
 

3.0 The Autoregressive Conditional Heteroscedasticity (ARCH) Models 
 

The ARCH models were first introduced by Engle (1982) when modelling the United Kingdom inflation and 

provides a mechanism that includes past variances in the explanation of future variances (Engle, 2004). Following 
Wagala, Nassiuma, Ali and Mwangi (2012), an ARCH process can be defined in terms of the distribution of the 

errors of a dynamic linear regression model. The dependent variable ty  is assumed to be generated by 

ttt xy    t =1,…,T      13 

where tx   is a kx1 vector of exogenous variables, which may include lagged values of the dependent variable and 

  is a kx1 vector of regression parameters. The ARCH model characterizes the distribution of the stochastic error 

t  conditional on the realized values of the set of variables ,...},,,{ 22111   ttttt xyxy . The Engle‟s (1982) 

model assumes 

 1/ tt  ~ ),0( thN        14 

where 
22

110 ... qtqtth          15 

with 0 >0 and qii ,...,1,0   to ensure that the conditional variance is positive. 

An explicit generating equation for an ARCH process is  

 ttt h          16 

where t  ~i.i.d N (0,1) and th  is given by equation 29. Since th  is a function of 1t  and is therefore fixed when 

conditioning on 1t , it is clear that t  as given in equation 30 will be conditionally normal with 

0)/()/( 11   ttttt EhE   and ttt hVar  )/( 1 , ttt hVar  )/( 1 . Hence the process (4) is 

identical to the ARCH process equation 14. 
 

Despite the importance of the original ARCH model for many financial time series, a relatively long lag length in 
the variance equation with the problem of estimation of parameters subject to inequality restrictions is often called 

for to capture the long memory typical of financial data. To overcome problem of a relatively long lag, the 

Generalized ARCH (GARCH) model was developed by Bollerslev (1986) by proposing an extension of the 
conditional variance function which he termed as the generalized ARCH (GARCH) and suggested that 

conditional variance be specified as,  
 

 ptptqtqtt hhh    ...... 11

22

110    17 
 

with the inequality conditions 0 > 0 , 0i  for i=1,…,q, 0i  for i= 1,…,p to ensure that the conditional 

variance is strictly positive.  
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A GARCH process with orders p and q is denoted as GARCH (p, q) and this essentially generalizes the purely 

autoregressive ARCH to an autoregressive moving average model. The motivation for the GARCH process can 
be seen by expressing equation 17 as  

 ttt hBBh )()( 2

0         18 

where 
q

qBBB   ...)( 1
 and  

q

qBBB   ...)( 1
  are polynomials in the backshift operator B. 

Now, if the roots of )(1 Z  lie outside the unit circle, equation 18 be written as  
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  and the co-efficient i is the co-efficient of B

i 
in the expression of 
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The slope parameter   measures the combined marginal impacts of the lagged innovations while , on the other 

hand captures the marginal impact of the most recent innovation in the conditional variance. 

When 1
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i  , then the process is weakly stationary and the conditional variance (
2

t ) approaches the 

unconditional variance (
2 ) as time goes to infinity i.e 

22 )(  stE  as s . However, when 
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j
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i   then the process is non stationary. When the parameter estimates in GARCH (p,q) models are 

close to the unit root but not less than unit, i.e 1
11




q

j

j

p

i

i  , for the GARCH process,  the multi-step 

forecasts of the conditional variance do not approach the unconditional variance. These processes exhibit the 
persistence in variance/volatility whereby the current information remains important in forecasting the conditional 

variance. Engle and Bollerslev (1986) refer to these processes as the Integrated GARCH or IGARCH which does 

not possess a finite variance but are stationary in the strong sense (Nelson, 1990; Wagala et al, 2012).  
 

The GARCH (p,q) process is effectively an infinite order ARCH with a rational lag structure imposed on the co-

efficient. The GARCH process can parsimoniously represent a high-order ARCH-process (Bera and Higgins, 

1993; Engle, 2004; Degiannakis and Xekalaki, 2004). GARCH(1,1) is often found to be the benchmark of 
financial time series modelling because such simplicity does not significantly affect the preciseness of the 

outcome. 
 

Despite the empirical success, GARCH models have two major draw backs: First, they are unable to model 

asymmetry because in a GARCH model, positive and negative shocks of the same magnitude produce the same 

amount of volatility (i.e only the magnitude and not the sign of the lagged residuals determines the conditional 

variance). However, volatility tends to rise in response to “bad” news and fall in response to “good” news 
(Nelson, 1991). Also, in the GARCH models the non-negativity constraints imposed on the parameters are often 

violated by estimated parameters (Curto, 2002). 
 

4.0 Methodology 
 

4.1 The scope of the study 
 

This study was focused on modelling the weekly NSE 20-share index and share prices for the three chosen 

companies namely, National Bank of Kenya Limited (NBK), Bamburi Cement and Kenya Airways from Nairobi 

Stock Exchange using the Bilinear (BL) and BL-GARCH models. The companies selected have been consistent 
in the NSE and are representative of the three sectors namely, Finance & Investment, Industrial & Allied and 

Commercial & Services categorized in the NSE. The two models chosen are able to capture the properties of 

financial data commonly referred to as the “stylized facts”.  
 

4.2 Data collection  
 

Secondary data was collected from the Nairobi Securities Exchange (NSE).  
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The NSE 20-share index was used in addition to the individual company share prices because the behaviour of the 

volatility of individual stocks has received far less attention in the literature when compared with studies on 
market indices. Furthermore, individual investors are more interested in the specific risk of the securities they 

hold rather than the market index; this justifies the need to study stock level data. Moreover, it has also been 

identified in the literature that basing an analysis on index data can lead to false perceptions of price change 

dependence, even when price changes of individual shares represented by the index are independent, because 
stocks which are not traded frequently affect the market index (Baudouhat, 2004). The three companies were 

randomly selected from the three sectors. These are the major sectors which are consistent and contribute a lot to 

the Nairobi stock market. The average weekly share prices for the following companies were used: National Bank 
of Kenya Limited (NBK), Bamburi Cement and Kenya Airways (KQ) for the period between 3

rd 
June 1996 to 

30
Th

 October 2011. The NSE 20-share index was for period between 2
nd

 March 1998 to 30
th
 October 2011 was 

also modelled. 
 

4.3 Data analysis 
 

Time plots for the data were obtained in order to check its empirical characteristics of the data. The maximum 
likelihood estimation (MLE) assuming a normal distribution was utilized for modelling the data using the bilinear 

and bilinear-GARCH models. The models were diagnosed using the Log likelihood ratio test, AIC and the BIC. 

Model adequacy was carried out for all cases by examining the standardized residuals and squared residual 
correlations through Ljung-Pierce Q-statistics. The MSE was used to check on the efficiency of various models in 

addition to the residual plots.  
 

5.0 Results and Discussions 
 

5.1 Basic Analysis 
 

In this study, four sets of data were used for modelling. They include the weekly average share prices for Bamburi 

Cement Ltd, National Bank of Kenya Limited (NBK), Kenya Airways (KQ) Ltd as well as the weekly average 

NSE 20 share index. The NSE 20-share index is a weighted mean with 1966 as the base year at 100. It was 

originally based on 17 companies and was calculated on a weekly basis. Bamburi Cement, Ltd. was founded in 
1951 and manufactures cement in sub-Saharan Africa and Kenya. The Kenya airways‟ principal activities include 

passengers and cargo carriage. It was incorporated in 1977 as the East African Airways Corporation (EAA). The 

company was listed in the NSE in 1996 and has been a major player in the Nairobi stock market. The National 
Bank of Kenya Limited (NBK) was incorporated on 19

th
, June 1968 and officially opened on Thursday 14

th
, 

November 1968.  
 

The series were transformed by taking the first differences of the natural logarithms of the values in each the 

series so as to attain stationarity in the first moment equation using the equation )ln()ln( 1 ttt PPX ,where tP  

represents the weekly average value for each series.  The basic statistical properties of the data are presented in 

Table 1. The mean returns are all positive and close to zero a characteristic common in the financial return series. 

All the four series have very heavy tails showing a strong departure from the Gaussian assumption. The Jarque-

Bera test also clearly rejects the null hypothesis of normality. Notable is the fact that all the four series exhibit 
positive Skewness estimate. This means that there are more observations on the right hand side.  
 

Table 1: Basic statistical properties of returns 
 

 NSE INDEX NBK BAMBURI 

KENYA 

AIRWAYS 

 Mean  0.000919  0.001650  0.003070  0.002587 

 Median -0.000116  0.000000  0.000395  0.000536 

 Maximum  0.609314  0.601761  0.604465  2.244758 
 Minimum -0.602485 -0.440545 -0.608999 -2.240928 

 Std. Dev.  0.044259  0.086715  0.058789  0.139903 

 Skewness  0.208853  1.287552  0.165014  0.046429 

 Kurtosis  139.1245  15.20180  42.97123  220.4956 

 Jarque-Bera 

 Probability 

 393763.8 

 0.000000 

 3900.838 

 0.000000 

 40078.36 

 0.000000 

 1186550 

 0.000000 

 Observations  510  602  602  602 
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The series having exhibited heteroscedasticity as shown by the time plots were tested for the ARCH disturbances 

using Engle‟s (1982) Langrage Multiplier (LM) while the Portmanteau Q test (McLeod and Li, 1983) based on 
the squared residuals was used to test for the independence of the series. Since both the Q statistic and the LM are 

calculated from the squared residuals, they were used to identify the order of the ARCH process. For all the return 

series, the Q statistics and the Langrage Multiplier (LM) tests indicated strong heteroscedasticity for all the lags 

from 1 to 12.This suggested an ARCH model of order q=8 or a GARCH(1,1). 
 

5.2 Empirical Results and Discussions 
 

5.2.1 Bilinear models 
 

The MLE method assuming a Gaussian distribution was used for parameter estimation for the data studied. Order 
selection was done using the ACF and PACF.  
 

The model adequacy was checked via Ljung-Box Q statistics as well as checking the residual and squared 

residuals, ACF and PACF which all showed that all the residuals for bilinear models were not significantly 
correlated to lag 12 except the squared residual for NBK which was significantly correlated at lag 12. This implies 

that the fitted bilinear models were adequate except the one for NBK.  
 

The Jarque-Bera (1980) statistics rejected the null hypothesis of normality in all the residuals i.e the residuals are 

not normally distributed. The fitted bilinear models and model diagnostics are presented in Appendix 1 and 2 

respectively. 
 

Table 2: Maximum Likelihood Estimates for the bilinear models 
 

 

NSE 20-SHARE INDEX 

tttttttttt XXXXXX    13
)0.811(

12
)313.0(

1
)0.324(

1-t3
)0.521(

2
(0.524))0.87(

1 0.10490.758197X 0.85108 0.046280.069120.1582 ,

),0(~
2

 WNt
 

NBK 

   13
)022.0(

12
)01056.0(

11
)0728.0()132.0(

1
)132.0(

32
)0.186 ()0.143 (

1 .3878.03607.05860.03499.00100.00.09070.3369- ttttttttttt XXXXXXX

),0(~
2

 WNt
 

BAMBURI CEMENT LTD 

   13
)818.0(

12
)625.0(

11
)006.0(

3
)449.0(

2
)904(().

1
)928.0(

495.02756.0154.10323.00115.000992.0 tttttttttt XXXXXXX ,

),0(~
2

 WNt
 

KENYA AIRWAYS (KQ) 

tttttttttt XXXXX    12
)349.0(

11
)196.0(

2
)695.0(

1
)056.0(

2
)626.0(

1
)057.0(

4657.03866.10769.05614.00862.04817.0

),0(~
2

 WNt
 

 
 

The p-values for the parameter estimates are given in the parenthesis. 

From Table 2, basing on a significance level of 0.05, it is clear that for the NBK, the observations are significant 
at the second lag and also the interaction between the observations and errors at lags (3,1), i.e. the bilinearity is 

significant at (3,1). 
 

In case of the Bamburi series, the interactions between the observations and the errors are significant at all the 

lags (1,1) for the fitted model. However, for the Kenya Airways series, all the estimated parameters are not 
statistically significant i.e the dependence on the observations and errors are not significant. This implies that the 

model for the Kenya Airways is not useful and hence should be discarded but it was kept for comparison purposes 

with the other models. 
 

It is worth noting that in the bilinear model, a lot of parameters have been estimated. This goes against the 

principle of parsimony where by models with fewer parameter estimates are preferred. The Goodness of fit 

statistics and the Diagnostics for the bilinear models are presented in Appendices 1 and 2 respectively.  
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All the fitted models had a significant correlation in the squared standardized residuals. This calls for fitting the 

Bilinear-GARCH (BL-GARCH) models were fitted to the respective series employing the MLE method with the 
Gaussian distribution assumption. The variance equation was aimed at capturing the second order correlation 

thereby improving the model adequacy and stability.  
 

5.2.2. Bilinear-GARCH models 
 

Table 3 presents the estimated BL-GARCH models for the stock under consideration.  
 

Table 3: Estimated Bilinear-GARCH models 

 

NSE 20-SHARE INDEX 

ttttttttttt XXXXXXX    23
)1699.0(

12
)388.0(

11
)215.0(

3
)004.0(

2
)484.0(

1
)00.0(

5115.03739.0700.00988.003573.040205.0 , 

),0(~
2

 WNt
 

1
(0.001)

2

1
(0.017)

0.34750.60410.01314   ttt hh   

NBK 

tttttttttttt XXXXXXX    13
)00.0(

12
)001.0(

11
)027.0(

1
)00.0(

3
)002.0(

2
)109.0(

1
)00.0(

1832.01859.01053.05957.00883.01760.04318.0 , 

),0(~
2

 WNt
 

1
(0.7)

2

1
(0.001)

0.04960.86130.0483   ttt hh   

BAMBURI 

ttttttttttt XXXXXXX    13
)103.0(

12
)2024.0(

11
)0.1633(

3
)843.0(

2
)0.201(

1
)0.001(

554.61.17731.07270246.00.071040.1921 , 

),0(~
2

 WNt
 

 

1
(0.179)

2

1
(0.213)

0.24030.76070.0208   ttt hh    

KENYA AIRWAYS (KQ) 

tttttttttt XXXXX    12
)0.445(

11
)213.0(

2
)966.0(

1
)657.0(

2
)0.967()0.831 (

1 1.27899225.00104.03496.00.006070.1729-   , ),0(~
2

 WNt
 

1
(0.382)

2

1
(0.004)

0.13520.63870.0341   ttt hh    

 
 

The probability values for the parameter estimates are given in the parenthesis 
 

The variance equation for the NSE index shows that the estimates for both β and α  are significant at 5% 

significance level. For NBK the , α is significant while β is not significant. The Bamburi series the, parameter 

estimates for the conditional variance equation were all non significant at 0.05 significance level. The KQ series, 
α in the variance equation was significant at 5% significance level. The variance equation in all cases gives the 

sum of 1  and 1  approximately equal to 1 confirming the stability of the fitted models. The sum of the 

parameters  and   gives the rate at which the response function decays (Frimpong and Oteng-Abayie, 2006). This 

implies that the volatility in the Nairobi Stock Market is highly persistent and all the information is important in 
forecasting a given stock.  
 

The fitted BL-GARCH models were diagnosed using AIC, SBC and the log likelihood ratio test. The Gaussian 

MLE criterion was used in parameter estimation for the BL-GARCH models. The BL-GARCH models fitted are 
adequate since the standardized residuals and squared residuals are not significantly correlated as shown by the 

Ljung-Box Q statistics. In addition, the J-B statistics strongly rejected the null hypothesis of normality in the 

residuals for all the series. The Goodness of fit statistics and the diagnostic checks for the bilinear models and the 
BL-GARCH models are presented in Appendices 1and 2 respectively. 
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5.2.3 Efficiency Evaluation in Bilinear and Bilinear-GARCH Models 
 
 

The model efficiencies were once more evaluated using the Mean Squared Errors. The models that had the 

minimal MSE were considered the most efficient. However, other statistical properties especially the diagnostics 
and goodness of fit tests were considered in choosing the most efficient models. The MSE for the bilinear and 

bilinear-GARCH models are presented in Table 4 
 

Table 4: MSE for bilinear and bilinear-GARCH models 
 

Series BILINEAR  BL-GARCH(1,1) 

NSE INDEX 0.0006592 0.00071760 

NBK 0.0064124 0.00725612 

BAMBURI 0.0025673 0.00324899 

KQ 0.002854 0.0028990 
 

Despite the bilinear models having a relatively smaller MSE, they are unstable as manifested by the residual time 

plots and hence could be unsuitable for modelling stocks data. However, this problem is easily solved by the 

inclusion of GARCH models. This is because the GARCH model captures the heteroscedasticity properties of the 

series. 
 

The Kurtosis for the BL-GARCH models are the lowest compared to the ones for bilinear models. This means 

that the BL-GARCH has successfully captured the heavy tail in the conditional variance of the stock market data. 
This could be due to interactions between past shocks and volatility in the data.  The BL-GARCH is a better 

alternative to the bilinear models. In conclusion, the BL-GARCH models are better than the bilinear models as far 

as the efficiency and statistical properties (diagnostics and goodness of fit) are concerned when applied to the 

Nairobi Stock data. 
 

5.2.4. Comparison between Bilinear and Bilinear-GARCH models 
 

A comparison between the three classes of models was done based on the diagnostic test, goodness of fit statistics 

in addition to the MSE which showed the efficiency for each model. The bilinear-GARCH models assuming 
Gaussian distribution emerged as the most efficient models for modelling stock market data while the pure 

bilinear models were the worst in terms of model adequacy and efficiency. This is an indication that the non-

linearity in the data sets are best modelled by the bilinear models while the non-stationarity are best captured by 

the GARCH. Thus a bilinear-GARCH model simultaneous captures the nonlinearity and heteroscedasticity. 
 

5.2.5 Conclusions 
 

Considering the bilinear model, the Gaussian assumption was more appropriate when employing the MLE 

criterion. In addition, the models seemed to have many cases of convergence problems when the MLE was 

implemented. The residual time plots for the bilinear models manifested sharp spikes outside the standard error 
band. This implies the instability of the bilinear models. Interestingly, the MSE for the bilinear emerged the 

lowest in all cases. This is quite challenging since the models seem very efficient but could not be considered due 

to their instability. 
 

To address the instability manifested by the residuals for bilinear models, a GARCH (1,1) was fitted to the 

residuals of the bilinear models. MLE assuming a Gaussian distribution was utilized. The results indicated an 
improvement as far as the residuals are concerned especially in the reduction of residual Kurtosis. The BL-

GARCH captured the asymmetry better than the bilinear.  
 

In summary, a comparison between the two classes of models was done based on the diagnostic test, goodness of 

fit statistics in addition to the MSE which revealed the efficiency for each model. The bilinear-GARCH models 

assuming Gaussian distribution emerged as the most efficient models for modelling stock market data while the 

pure bilinear models were the worst in terms of model adequacy and efficiency.  
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Appendices 
 

Appendix 1: Goodness of fit statistics for the bilinear models 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

Appendix 2: Diagnostic Tests for the bilinear models 

 

 
Series 

Statistics BILINEAR  BL-GARCH(1,1) 

NSE 

INDEX 

Skewness 0.22056 0.6527 

Kurtosis 8.9535 10.2272 

JB 962.986     (0.00) 1465.27 (0.000) 

Q(12) 18.3504 (0.59) 10.6459 (0.386) 

Q
2
(12) 112.201 (0.000) 6.7996 (0.912) 

NBK 

Skewness 1.1355 0.0883 

Kurtosis 15.2499 10.1113 

JB 4811.76 (0.00) 1568.64 (0.00) 

Q(12) 15.6521 (0.208) 14.7397 (0.256) 

Q
2
(12) 48.0631 (0.00) 3.1931 (1) 

BAMBURI 

Skewness -2.273 0.5185 

Kurtosis 38.0157 13.313 

JB 38649.7 (0.000) 3330.41 (0.00) 

Q(12) 19.5401 (0.107) 19.3608 (0.112) 

Q
2
(12) 17.6902 (0.342) 7.7882 (0.955) 

KQ 

Skewness 0.4617 0.4954 

Kurtosis 9.2534 8.4799 

JB 1240.35 (0.00) 962.624 (0.000) 

Q(12) 15.965 (0.193) 19.4339 (0.079) 

Q
2
(12) 154.448 (0.000) 7.741 (0.956) 

 

 

 
 BILINEAR BL-GARCH 

 (GAUSSIAN) (GAUSSIAN) 

NSE 

INDEX 

LR 1462.65 1647.89 

AIC -1454.65 -1636.89 

SBC -1436.73 -1612.25 

NBK 

LR 822.73 953.732 

AIC -813.73 -917.366 

SBC -792.976 -942.732 

BAMBUR

I 

LR 1163.24 1322.72 

AIC -1156.24 -1313.72 

SBC -1140.1 -1292.96 

KQ 

LR 1125.42 1237.34 

AIC -1118.42 -1228.34 

SBC -1102.27 -1207.58 


