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Abstract 
 

A concave spherical mirror, composed of a large number of infinitesimally small reflective elements and 

illuminated by a source located at its center of curvature, is considered. The maximum angle through which an 
arbitrary element may pivot about a meridian before its reflected ray grazes the periphery of the mirror’s 

aperture is derived geometrically; this angle is found to be independent of the mirror’s radius of curvature. 

Corrections are derived for the maximum pivot angle and maximum angular displacement from the principal axis 
for small but finite-size elements. These results may be applicable to propulsive mirrors (solar sails) in space. 
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1. Introduction 
 

Consider a concave spherical mirror, idealized as an infinitesimally thin spherical cap with radius of curvature R 

and aperture angle Ψ, illuminated by a point-source of monochromatic light located at its center of curvature. 
Suppose that this mirror is not monolithic but is composed of a large number of reflective elements, each in the 

form of a regular polygon and so small that it may be treated as an optically flat circular disk of arbitrarily small 

diameter.  
 

Next, suppose that a randomly selected element is bisected by a meridian, and that the element may pivot about 

this meridian. Then, the question addressed in this paper is as follows: As a function of its angular distance θ from 

the principal axis (the polar axis of the mirror), what is the maximum angle through which an arbitrary element 
may pivot (in either direction) before its reflected ray grazes the periphery (rim) of the mirror’s aperture? 
 

2. Pivot angle derivation 
 

Figure 1 shows the mirror aperture of radius a, along with the light source S and the mirror element E; in the 

interests of clarity, the body of the mirror is not shown. The incident ray crosses the aperture plane at a radial 

distance r from the source and at an elevation angle θ relative to the principal axis. Depending on the angle 
through which the element has pivoted, the reflected ray will exit the aperture somewhere along the locus of 

points P – P′ comprising a chord of half-length z. On Figure 1, note that the points P and P′ are where a reflected 

ray grazes the mirror’s rim; since for a planar reflector the angles of incidence and reflection are equal, this 
defines an element’s maximum pivot angle αmax as half the angle whose tangent is z/(R – r) so that 
 

tan 2αmax = z/(R – r).       (1) 

 

Then, from Pythagoras’ theorem, 

 
z

2
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2
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2
        (2) 

 

and, from Figure 1, we read off the relations y = x tan θ, x = R cos Ψ and a = R sin Ψ. Using these to eliminate a 
and y from (2) gives 
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where we have used the identity sec
2
 θ ≡ 1 + tan

2
 θ. Also, from Figure 1 we see that 
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r cos θ = R cos Ψ       (4) 

 

Upon using (3) and (4) to eliminate z and r, respectively, from relation (1), straightforward algebra yields the 

result 
 

αmax = ½ arctan [(cos θ + cos Ψ)/(cos θ – cos Ψ)]
½
   (5) 

 
While one would intuitively expect an element’s maximum pivot angle to depend on the element’s location on the 

mirror and on the mirror’s aperture angle, the above result shows that αmax does not depend on the mirror’s chief 

optical parameter—its radius of curvature. 
 

3. Corrections for finite element size 
 

So far, we have idealized the mirror elements as infinitesimally small, reflecting infinitesimally narrow beams of 
incident light. To extend our analysis to elements of finite (but still very small) size, we define a ―smallness 

parameter‖ ε as the ratio of an element’s radius, b, to that of the aperture: 

 
ε ≡ b/a         (6) 

 

(For polygonal elements, a useful approximation for b could be obtained by averaging the radii of their inscribed 

and escribed circles.) Since a = R sin Ψ, we now have the useful relation 
 

b = εR sin Ψ        (7) 
 

It is clear that an element’s finite size limits both its maximum pivot angle and its maximum angular distance 

from the principal axis. Regarding the second issue, it is obvious that an element can only be displaced from the 
principal axis until its edge reaches the rim of the mirror; the element’s maximum angular displacement is thus 

reduced by its own angular half-width Δθ ≈ b/R. From (7), the limits on an element’s location on its meridian are 

therefore 

 
0 ≤ θ ≤ (Ψ – ε sin Ψ)       (8) 
 

To address the limitation on the maximum pivot angle, we begin with a small element of radius b reflecting a 

beam of finite width. Assuming the beam remains sufficiently collimated when it reaches the mirror’s rim, its 

half-width will remain b so that αmax will be reduced by the amount Δα ≈ b/l (where l is the distance from the 

element to the mirror’s rim). From Figure 1, we see that l
2
 = (R – r)

2
 + z

2
. Using relations (3), (4) and (7), this 

gives the final result as 

 

Δα = (ε/√2)(sin Ψ)[(cos θ)/(cos θ – cos Ψ)]
½
    (9) 

 

where, of course, θ is subject to the restriction (8). 
 

4. Conclusion 
 

We conclude by noting that, while no practical application of the above results to imaging mirrors is immediately 

obvious, there exists a class of mirrors where the redirection of incident light by pivoting elements could prove 
both practical and important: propulsive mirrors, i.e., solar sails. We are currently researching the use of small 

built-in pivoting reflective elements for maneuvering the ultimate version of such a device—the Shkadov Thruster 

[1]. In this scheme, a megastructure spherical concave mirror (i.e., a gigantic solar sail) would use the Sun as a 
point-source at the center of curvature, reflecting the Sun’s light back onto it while sunlight diametrically opposite 

the mirror escapes freely. The mirror-Sun system would then constitute a Class A stellar engine, capable of 

moving the entire solar system through space. 
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Figure 1: The mirror aperture, an arbitrary reflective element, and their associated geometric variables. 

(Mirror body omitted for clarity.) 
 

 
Figure 2: Incident and reflected rays at maximum pivot angle (mirror and aperture omitted); the labeled 

angle is 2αmax. 

 


