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Abstract 
 

This paper studies impulsive synchronization of two Lorenz systems. An impulsive control scheme which 

considers transmission delay in chaos-based secure communication is presented. Sufficient conditions for the 

globally exponential stabilization of impulsive synchronization of two Lorenz systems are established by 
employing the Lyapunov-Razumikhin method. Upper bounds of the length and strength of the impulsive control 

are presented. Simulation results are discussed to illustrate the theorems. 
 

Keywords: Impulsive synchronization; Lyapunov-Razumikhin technique; Lorenz system; Global exponential 
stability 
 

1. Introduction  
 

Recently the control and stabilization of chaotic systems have attracted lots of attention due to their applications 

in secure communications ([2] - [7], [17] - [23]). A variety of approaches including adaptive control, feedback 

control, OGY method, predictive Poincare control and impulsive control were presented in research articles ([23]). 
Compared to other methods, impulsive control has an advantage in dealing with systems which cannot endure 

continuous disturbance ([20]). The approach, which allows the stabilization of the impulsive synchronization 

using small impulses, is based on digital control devices to generate control impulses in discrete moments. 
 

Early development of this method has been focused on obtaining sufficient conditions to asymptotically stabilize 

the impulsive synchronization of the error dynamics between driving and response chaotic systems which was 

modeled by impulsive ordinary differential equations ([17] - [23]). Recently, transmission delay and sampling 
delay   have been considered in the models and sufficient conditions on achieving equi-attractivity properties of 

the impulsive synchronization were given in [6]. Theorems dealing with robustness and parameter mismatches in 

impulsive control schemes were presented in [2] and [7]. However, there are very few publications on the global 

exponential stability of the impulsive synchronization of chaotic systems. The global exponential stability of the 
error dynamics between the driving and response systems will guarantee a fast impulsive synchronization 

regardless of big differences between the initial values of the two chaotic systems. In this paper, we investigate an  

impulsive control scheme which considers transmission delay in secure communications. Based on the Lyapunov-
Razumikhin method, sufficient conditions for the global exponential stabilization of impulsive synchronization of 

two Lorenz systems are presented. Upper bounds of the length and strength of the impulsive control are given. 

Some simulation results are discussed to illustrate our results. 
 

2. Global Exponential Stability of Impulsive Synchronization 
 

In this section, we shall first present known results for the stability of a general impulsive delay differential 

system from [16, 18]. Then we study the impulsive control of Lorenz systems by applying the theory. 

Let 
n  denote the n-dimensional real space and ),,0[   and let   denote the set of positive integers, i.e. 

}.,2,1{   Let )(max Q  ( or )(min Q ) denote the maximum (or minimum) eigenvalue of a symmetric matrix 

Q, and A  the norm of matrix A induced by the Euclidean vector norm, i.e., .)(max AAA T  
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 Consider the general nonlinear impulsive system with time delay 
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Definition 2.1  A function   nV :  is said to belong to the class 0  if  

i)  V is continuous in each of the sets 
n
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 exists; and 

ii) V(t,x) is locally Lipschitzian in all 
nx   and 0)0,( tV  for all 0tt  . 

 

Definition 2.2 Given a function   nV : , the upper right-hand derivative of V with respect to system 

(2.1) is defined by 
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Definition 2.3 The trivial solution of system (2.1) is said to be globally exponentially stable, if there exist some 

constants 0  and 1M  such that for any initial data ,
0

tx  

,0
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0
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where   ),],0,([),( 0

nPCt    is called the convergence rate. 

 

Lemma 2.1
]16[
 Assume that there exist a function 0V , constants 0,,, 21 cccp  and c   , such that 

 (i)  ,),( 21

pp
xcxtVxc   for any t and 

nx  ; 

 (ii) )),0(,())0(,(  tcVtVD 
for all , ),,[ 1   kttt kk   

        whenever ))(,())0(,( sstVtqV    for ],0,[ s  where 
2eq   is a constant; 

 (iii) )),0(,()),()0(,(   kkkkk tVdtItV  where  kd k  ,0  are constants; 

 (iv)    1kk tt  and ).()ln( 1 kkk ttd   
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Then the trivial solution of the impulsive system (2.1) is globally exponentially stable and the convergence rate is 

p


. 

 

Lemma 2.2
]18[
 Given a positive definite matrix 

nnP  , any symmetric matrix 
nnQ   and 

nx  , then 

                       (2.2)                                         .)()( 1

max

1

min PxxQPQxxPxxQP TTT     
 

Next, we shall consider the stabilization of the error dynamical system of two Lorenz systems using impulsive 
control. 
 

A famous example of chaotic system, the Lorenz system [14], is given by 

                                    (2.3)                                                                       
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where r , , and b are real positive numbers. This system can be rewritten in the following vector form 

                      (2.4)                                                   )),(())(()()(' 21 tXtXtAXtX   
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In the cryptosystem proposed by Khadra et al. [5,6], the driving system at the transmitter end is represented by 

equation (2.4), while the response system U with 
TtwtvtutU ))(),(),(()(   at the receiver end is given by 
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where )()()()()(   kkkkk tUtUtUtUtU and )( kBk are 33  constant matrices describing the 

linear nature of the driving impulses, ),,(~
zyx

T   represents the transmission delay and 

},,max{ zyx   is a positive constant, and 
T

zyx tetetetUtXte ))(),(),(()()()(   denotes the error 

dynamics. 
 

The error system of the impulsive synchronization is obtained by subtracting (2.6) from (2.4): 
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 (2.7) 

 

where ))(())(())(),(( 111 tUtXtUtX   and ))(())(())(),(( 222 tUtXtUtX  . 

Since chaotic signals are bounded, there exist positive constants 1L and 2L such that  

UXLUX  11 ),( and UXLUX  22 ),(  ([6, 21]). For system (2.7), we have 

MLL
~

221  with |}||,||,max{|
~

zyxM  . 
 

We shall analyze the dynamics of system (2.7) and find the conditions under which the global exponential 

stability property may be achieved. 
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Theorem 2.1 Let PAPAQ T , where P  is an nn  symmetric and positive definite matrix. Let the impulses 

be equidistant from each other and separated by interval  . If there exists constants    and c with 
2eq  where  
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where I  is the identity matrix. Then the impulsive synchronization between two identical Lorenz systems is 

globally exponentially stable and the convergence rate is .
2

1
  

Proof. Construct a Lyapunov function . Then 

 

  , 
 

condition  of Lemma 2.1 is satisfied with and . We know that Q is symmetric 

since P is symmetric. 
 

For , calculate the upper right-hand derivative of V along system (2.7): 
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. Thus the condition (ii) of 

Lemma 2.1 holds. Furthermore, since  is symmetric, by Lemma 2.2, we have 

   

             

             
 

which implies that the condition (iii) of Lemma 2.1 holds. Notice that the assumption (2.8) yields the condition (iv) 

of Lemma 2.1, hence it follows from Lemma 2.1 that the trivial solution of (2.7) is globally exponentially stable.  

The following result can be obtained by substituting P = I in Theorem 2.1. 
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Corollary 2.1 Let and the impulses be equidistant from each other and separated by interval  If 

there exists constants  and  with  such that 

                     (2.9) 

where I is the identity matrix. Then the impulsive synchronization between two identical Lorenz systems is 

globally exponentially stable and the convergence rate is  . 
 

3. Numerical Simulation Results 

In this section, the parameters of the Lorenz system are chosen as  =10, r = 28, and 
3

8
b . The graph of this 

Lorenz system is shown in Figure 1 with initial condition 
TTzyx )005.0,25.0,12.0(),,( 000  . We notice 

that 50},,max{
~

 zyxM . 
 

  
Figure 1. Lorenz system. 

 

3.1 Achieved Impulsive Synchronization 
 

In this simulation, we discuss impulsive synchronization with strong couplings. Choose   = 742, q = 2.45, kt = 

0.0005k,   =   = 0.0005,   = 0.0006 and kB = -0.99I. Then the conditions of Corollary 2.1 are satisfied. The 

numerical simulation of e with initial conditions X(0)=(1.1, -1, 0.8)
T

and U(0)=(0.9, -1.2, 0.7)
T

 is given in Figure 
2. 
 

From Figure 2, we see that the impulsive synchronization of the driving and response systems was achieved in a 

short time regardless of the big mismatches between the initial conditions X(0) and U(0). 
 

The numerical simulations of the driving and response systems are given in Figures 3 and 4 with initial conditions 

X(0) = (1.1, -1, 0.8)
T

 and U(0) = (0.9, -1.2, 0.7)
T

, respectively. 
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Figure 2. Impulsively synchronized error dynamical system e. 

 

 
Figure 3: Driving system X. 

 

 
Figure 4: Response system U. 

 

3.2. Failed Impulsive Synchronization 
 

If we change the linear impulsive matrix to kB  = diag{-1.5,0.5,-0.8} and keep the values of other parameters the 

same as in simulation 3.1, then the synchronization cannot be achieved. The numerical simulations of the error 
dynamics, driving system, and response system are given in Figures 5, 6 and 7, respectively. From Figure 5, we 

notice that the trivial solution of the error dynamics became increasingly large in a short time because of the big 

mismatches between the initial conditions of the two chaotic systems, the presence of the transmission delay, and 
the not-strong-enough impulsive control. 
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Figure 5: Unstable error dynamical system e. 
 

 
Figure 6: Driving system X. 

 
Figure 7: Response system U. 
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4. Conclusions 
 

In this paper, we investigated an impulsive control scheme of two Lorenz systems. Transmission delay is 

considered in our model. Sufficient conditions on globally exponential stabilization of impulsive synchronization 

were presented, which would guarantee fast synchronization of two chaotic systems with large mismatches in 

initial values of the two systems. Upper bounds of the length and strength of impulsive control are also given. 
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