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Abstract

Mixture models constitute a finite and infinite number of components that explain different datasets. However
there are many situations where mixture models comprise an interesting sketch of different aspects. In this study
we explore the idea of mixture density under Type | censoring scheme. We model a heterogeneous population by
means of two components mixture of the Maxwell distribution. The parameters of the Maxwell mixture are
estimated and compared using the Bayes estimates under the square error loss function and precautionary loss
function. A censored mixture data is simulated by probabilistic mixing for the computational purpose. Closed
form expressions for the Bayes estimators and posterior risk are derived for the censored sample as well as for
the complete sample. Some interesting comparison and properties of the estimates are observed and presented. A
real life data application has also been discussed.

Keywords: Finite mixture of Maxwell distribution; Censored sampling; Fixed termination time; Limiting
expression; Elicitation of Hyperparameters; Squared error loss function; Precautionary loss function.

1. Introduction

The Maxwell distribution is a probability distribution with application in physics and chemistry. The most
frequent application is in the field of statistical mechanics. The temperature of any (massive) physical system is
the result of the motions of the molecules and atoms which make up the system. These particles have a range of
different velocities, and the velocity of any single particle constantly changes due to collisions with other
particles. However, the fraction of a large number of particles within a particular velocity range is nearly constant.
Then Maxwell distribution of velocities specifies this fraction, for any velocity range as a function of the
temperature of the system. Tyagi and Bhattacharya (1989a, b) considered Maxwell distribution as a lifetime
model for the first time. They obtained Bayes estimates and minimum variance unbiased estimators of the
parameter and reliability function for the Maxwell distribution. Chaturvedi and Rani (1998) generalized Maxwell
distribution and they obtained Classical and Bayesian estimators for generalized distribution. Bekker and Roux
(2005) studied Empirical Bayes estimation for Maxwell distribution. These studies give mathematical handling to
Maxwell distribution but ignore the application aspect of the Maxwell distribution.

The motivation of using mixture model is that in current scenario, analysts are able to describe estimates, predict
and infer about the complex system of interest using more powerful and complex computational methods. But
mixture model comprises an interesting sketch of all these aspects. Mixture models constitute a finite and infinite
number of components that explain different datasets. The Bayesian approach to analyze mixture models has
developed great interest between analysts. Posterior distribution is the workbench of Bayesian statisticians. It is
obtained when prior information is combined with likelihood. Therefore prior information is necessary for
Bayesian approach.
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The prior information is purely subjective assessment of an expert before any data have been observed. Also
Berger (1985) argue that when information is not in compact form the Bayesian analysis using non-informative
priors or single most suitable consideration. So in this study we consider two non-informative priors and two
informative priors for comparison purpose.

A finite mixture of some suitable probability distributions are recommended to study a population that is
supposed to comprise a humber of subpopulation mixed in an unknown proportion. A population of lifetimes of
certain electrical elements may be divided into a number of subpopulations depending upon the possible case.
Mixture model have been used in physical chemical, social science, biological and other fields. For example
Sinha (1998) considered the Bayesian counterpart of the maximum likelihood estimates of the Mendenhall and
Hader (1958) mixture. Saleem and Aslam (2008) use the Bayesian Analysis for the two components Mixture of
the Rayleigh distribution assuming the uniform and Jeffery priors. A type—l mixture is stated as the mixture of
probability density function from the same family, while a mixture of density functions from several families is
called a type—Il mixture. Now if we talk about the practical situations, a mixture population may have the known
component densities and we need to infer only about the mixing weights. On the other hand, in many real life
applications, there are known functional forms of component densities with unknown parameters but mixing
weights are known and vice versa. In this paper, type—I mixture models with unknown parameters of the known
number of component densities belonging to the same parametric family and with unknown mixing weights are
considered.

Censoring is an unavoidable feature of the lifetime applications and is a form of missing data problem. An
account of censoring can be seen in Leemis (1955), Deitz et al (1973), Klein (2009), Kalbfleisch et al (2002) and
Smith (2002) that are valuable contribution to survival analysis technique for censored and truncated data. Jiang
(1992) deals with maximum likelihood estimates using censored data for mixed Weibull distribution while Wang
et al (1958) considers the estimators for survival function when censoring times are known. Censoring is divided
into three types, i.e., left, right, and interval censoring is said to be employed if lifetime of an object is greater than
an independent random number. In type—I (type-Il) right censoring, the life-test termination time (the number of
dead objects) is pre-specified. In ordinary type-I right censoring; the life-test termination time is the same for all
the objects. The life-time of an object is called interval censored if it is known to fall in a known time-interval. In
our study, an ordinary type—I right censoring is considered with a fixed-test termination time.

Now to answers the questions that why we use inverted gamma and inverted Chi square priors for mixture
analysis and why we use censoring on data why not on parameter, As we know that the Maxwell model is skewed
so we should have a prior which reflect expert knowledge in a better form so there should be a skewed prior for
this model. Since Inverted Gamma is a natural conjugate prior for the Maxwell model therefore we use it. Then
we chi square prior which is another form of the inverted gamma distribution in order to check that may be it
perform better than inverted Gamma prior. If we talk about censoring then censoring is a data property and we
cannot apply on parameters.

In this paper, random observations taken from this population are supposed to be characterized by one of the two
distinct unknown members of a Maxwell distribution. So the two component mixture of the Maxwell distribution
is recommended to model this population. Right censoring is considered and the observations greater than the
fixed cut off censor value, T are taken as censored ones. The Inverse Transform method of simulation, and the
computations involved are conducted using the packages Minitab, Mathematica, SAS and Excel. We may break
this study in to following sections. The Maxwell mixture model is defined in Section 2 and its likelihood is
developed in Section 3. Section 4,5 and 6, evaluate the Bayes estimators and their posterior risk under square
error loss function and precautionary loss function using uniform, Jeffreys, Inverted Gamma and Inverted Chi-
Squared prior. Elicitation of hyperparameters method is discussed in Section 7. Limiting expressions are derived
in Section 8. In Section 9, the simulation study is performed. Section 10 presents the real life data which are used
for the evaluation of Bayes estimates. Some concluding remarks are given in last Section 11.

2. The Mixture Model

A finite mixture density function with the two component densities of specified parametric form with unknown
mixing weights (p,1— p) is defined as follows

g(x)= pf,(x)+ (@- p)f,(x),0<p<1 1)
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The following Maxwell distribution is assumed for both components of the mixture.
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Krishna and Malik (2009) use the following form of distribution function:
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where I'(x,a)= Ie’”ua’ldu , is the incomplete gamma function.
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So the corresponding distribution function is given by
F(X) = pG,(x)+(@1-p)G,(X)

F()= {%F[z 2}}41 p){j; [‘X’gj}

3. Likelihood Function

Suppose n units from the above mixture model are used to life testing experiment. Let the test be conducted and it
is observe that out of n test is terminated as soon as the rth failure occurs and the remaining n—r units are still
working. As in Mendenhall and Hader (1958) enlighten that in many real life situations only the failed objects can
easily be identified as member of either subpopulation 1 or subpopulation 2 . So, depending upon the cause of
failure it may be observed that r, and r, are identified as members of the first and second subpopulation

respectively. It is apparent that r=r, +r, and remaining n—r objects provide no information about the
subpopulation to which they belong. We define, x; as the failure time of the jth  subpopulation, where

j=123,....... ; 1=12; 0<x,%;<o. S0 the likelihood function for the given condition is:

L(6,,6,, p1X) = {pr( )Hqu( )}{(”(t))“}
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) is the observed failure times for the non-censored observations
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4. Bayesian Estimation using Uninformative Priors

Since Bayesian estimation can be applied even when no prior information is available, so we can say that
uninformative prior is a prior which contain no information about parameter . Among the techniques that have
been proposed for determining uninformative priors, Jeffreys (1961) suggests the most widely use method. Box
and Taio (1973), define an uninformative prior as prior which provides little information relative to the
experiment. Bernardo and Smith (1994) use a similar definition; they say that uninformative priors have minimal
effect relative to the data, on the final inference. They regard the uninformative prior as a mathematical tool; it is
no a uniquely uninformative prior. Bernardo (1979b) argue that an uninformative prior should be regarded as
reference prior, i.e. a prior which is convenient to use as a standard in analyzing statistical data. Geisser (1984)
also proposed some techniques for uninformative priors. The most common examples of uninformative priors are
Uniform and Jeffreys. Both priors are used only when no formal prior information is available.

4.1. The Uniform (Uninformative) Prior

Bayes (1763), Laplace (1812) and Geisser (1984) suggest that one may take uniform distribution for the unknown
parameter @ in the absence of sufficient reason for assigning unequal probabilities to the values in the parameter
space had created a lot of discomforts for the users of Bayes theorem for inferential purposes. Uniform priors are
particularly easy to specify in the case of a parameter with bounded support. The simplest situation to consider is
when @ is finite.

Let g, ~Uniform V 6, € (0,%), €, ~Uniform V 6, € (0,0) and p~U(0,1) .Assuming independence , we have
improper joint prior that is proportion to a constant which is incorporated with the above likelihood (4) and we
have joint posterior and marginal distributions. The joint posterior distribution using uniform prior as follows

k h P
P(&,,6,, p|X) ZZ( D" ( ](mj pkq(j;j ( ] HXJHXZ,

k=0 m=0

1 All A, M~ m
eqexp[ ejgczexp[ @]le D,",0<6, <x,0<6, <o0,0< p<1 (4)

4.2 Bayes Estimators using Uniform Prior

Bayes estimator is an estimator or decision rule that maximizes the posterior expected value of utility function or
minimizes the posterior expected value of the loss function. The loss function is the real valued function that
clearly provides a loss for decision a given parameterg. The square error loss function (SELF)

L(e. a")=((9—a")2 was proposed by Legendre (1805) and Gauss (1810) to develop least square theory. Later it
was used in estimation problem when unbiased estimators of ¢ were evaluated in terms of the risk function
R(6,9) which become nothing but the variance of the estimators. Norstrom (1996) introduced an alternative
asymmetric precautionary loss function (PLF), and also presented a general class of precautionary loss functions

. . . (A—d)?
as a special case which is defined as L, =L(4,d)= r

, Bayes estimator using this loss function is

d’ =«/E(}L2 |x) and EﬂleL(}t,d)zz(«/E(/l2 | X) —E(/1|x)) is posterior risk. The respective marginal distribution

yield the following Bayes estimators of &,,6, and of p under the squared error loss function.
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where |=1,2.a1:r1+k—m+1,a2=r2+m+1,a3_r1+k m+2 and «,=r,+k—-m+3. Similarly Bayes
estimators using precautionary loss function can also be derived accordingly.
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4.3. Posterior Risks assuming Uniform Prior

The posterior risks of 4,6, and p using the uniform prlor are given as
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where {E (A x)} , {E (6, x)} and {E (pl x)} are given is equations (5),(6) and (7) respectively.
Note that here all integrals are evaluated numerically using Mathematica 6.0. The posterior risks under
precautionary loss function can also be derived in similar manner.

5. The Jeffreys (Uninformative) Prior

Jeffreys prior is another form of uninformative prior which is also called reference prior, it is based on Fisher
information matrix habitually lead to a family of improper priors. Under some regularity conditions specially in
case of one parameter it does not reveal lack of knowledge, Jeffreys’ prior illustrate the sort of prior knowledge
which would make the data as posterior dominant as possible. The posterior distribution based on Jeffreys’ prior
may then be used as a benchmark or a reference for the class of posterior distribution which may be obtained from

other priors. For the Maxwell model, given in Section 2, let the Jeffrey priors Q(Q)OC«fI'(Hi)%

2
|(6¢)=_E{—a fé(elea)} where i=12are g(491)oc030<91<oo g(HZ)meiO<92<w and g,(p) =1 0<p<l.By
i 1 2

assuming independence we obtain a joint prior g(é,,6,, p) « iWhich is incorporated with the likelihood (4) to
172
yield the joint posterior and marginal distributions. So the Joint posterior distribution is given as

k n P
P(B 0, P10 3.3 (- 1)[ J(mqu(%j[ JHXJHXZJ

k=0 m=0

1 'Ai 1 AZ -m m
Qq*le p( QJQC”eXp(_H_ZJle D,", 0<§ <0,0<6, <o0,0<p<l (11)
5.1 Bayes Estimators using the Jeffrey Prior

The respective marginal distribution yield the following Bayes estimators of 4,6, and of p under the squared error
loss function.
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5.2. Posterior Risk assuming Jeffrey Prior

Under SELF the posterior risks of 4,6, and p using Jeffreys’ prior are provided as
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where { 0, |x)} { (6’2|X)} and { (plx)} are given is equations (12),(13) and (14) respectively. The
posterior risk under precautionary loss function using Jeffrey prior can also be derived as SELF.

6. Informative Priors

An informative prior expresses specific, definite information about a variable. The terms "prior" and "posterior"
are generally relative to a specific datum or observation. In case of an informative prior, the use of prior
information is equivalent to adding a number of observations to a given sample size, and therefore leads to a
reduction of the variance or posterior risk of the Bayes estimates.

6.1. The Conjugate Prior

In probability theory and statistics, the Conjugate prior (Inverted Gamma distribution) is a two-parameter family
of continuous probability distribution on the positive real line, which is the distribution of the reciprocal of a
variable distributed according to the gamma distribution.

Let g [ Inverted Gamma(a,,b,), 8, [ Inverted Gamma(a,,b,) and P [1 U (0,1) ,assuming independence, we have a joint

b* 1 2 b% 1 : . o
—e . —e “ which is incorporated with the likelihood given in (4).
I'(a) 6™ () 6,

prior g(6,,6,,p) o«
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The marginal distributions with respect to parameters q,,q, and p are elaborated as
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6.1.1. Bayes Estimators using the Conjugate Prior

Bayes estimator is an estimator or decision rule that maximizes the posterior expected value of utility function or
minimizes the posterior expected value of the loss function. The respective marginal distribution yield the

following Bayes estimators of q;,0, and p under the squared error loss function.

ii(—l)k{n;r]{kjﬂ(al,az)F(Cﬁai ) L(, +2,) TTHD”D d6,de,
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Where D,, A, and defined above, while a,i=1.,4are defined as
o =r+k-m+l,a,=r,+m+l,a,=r,+k—-m+2and o, =r,+k—m+3.
6.1.2. Posterior Risk using the Conjugate Prior

When presenting a Statistical estimate, it is necessary to indicate the accuracy of the estimates. The Bayesian
measure of the accuracy of an estimate is the posterior risk of the estimate. The expressions of the Bayes posterior
risks under square error loss function are
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where E(q, |x), E(6,|x) and E(p|x)are specified in equations (22), (23) and (24) respectively. Here we use
numerical integration in order to evaluate integrals given in variances equations. Similarly we can estimate the
Bayes estimators and Bayes posterior risks under precautionary loss function using Conjugate prior.
6.2. The Inverted Chi-square Prior

The inverted chi-square distribution is the distribution of a random variable whose multiplicative (reciprocal) has
a chi-square distribution. It is also often defined as the distribution of a random variable whose reciprocal divided
by its degrees of freedom s a chi-square distribution. Let & [ Inverted Chi—squre(a,b),

g, : Inverted Chi- squrga,b)and PJU(0,1) assuming independence, we have a joint priors,

_b

3 b H
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So the joint posterior distribution gets the following form
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Now the marginal distributions of the corresponding parameters q,,q, and p are mentioned as
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6.2.1. Bayes Estimators using the Inverted Chi-square Prior

The under the squared error loss function, respective marginal distribution yield the following Bayes estimators of
6,0, and of p
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Where D,, A, and a,i=1.4are defined above.

6.2.2. Posterior Risk using the Inverted Chi-square Prior

The expressions for the variances of the Bayes estimators under square error loss function are
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)

(37)
where E(6,|x), E(6,|x) and E(p|x) are mentioned in equations (32), (33) and (34) respectively. Here we use

numerical integration in order to evaluate integrals given in variance expressions. The Bayes estimator and
posterior risk can also be derived under precautionary loss function using Chi-Squared priors.
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7. Elicitation of Hyperparameters

According to Garthwaite et al. (2004) elicitation is the process of formulating a person’s knowledge and beliefs
about one or more uncertain quantities into a (joint) probability distribution for those quantities. In the context of
Bayesian statistical analysis, it arises most usually as a method for specifying the prior distribution for one or
more unknown parameters of a statistical model. Aslam (2003) purposed four methods for elicitation, three
methods for two treatments and one method for general treatments. Parameters involve in the Bayes estimates and
variances by using both inverted gamma prior and inverted chi-square prior are elicited according to method of
elicitation via prior predictive approach which is also one of them, where prior predictive distributions using
inverted gamma prior and inverted chi-square prior are derived by using following formula

ww 1

p(y)=[[]p(6.6, p)P(y16,6, p)d6db,dp.

000
According to the expert probabilities we consider four intervals for the elicitation, and the set of hyperparameters
with minimum values are chosen to be the elicited values of the hyperparameters. The resultant prior predictive
distributions for the mixture of Maxwell model are as follows

7.1 Elicitation using Conjugate prior

The prior predictive distribution equation using Conjugate prior is

b (4 F(a1+§j b (4 F(a2+§j
=1 = ly’B(2)——=5+ 2| — |y’ B(L2)———==, 0 38
Py) Faa[«MJyﬂ( )(b1+y2)al+3+raz(x/ﬂjyﬂ( ) v (%)

2 (b, +y*)"?
Since we have to elicit four parameters therefore we considered four intervals. The set of hyperparameters with
minimum values are considered to be the elicited values of the hyperparameters. Using the prior predictive
distribution given in (38), the experts’ probabilities are assumed to be 0.12, 0.12, 0.12 and 0.12 which are
associated with the intervals 0 <y <10 and 10.1<y <20 20.1<y <30 and 30.1<y <40 respectively as
a4l g 1“(a1 +2j b (4 F(a2+2j
3 (—j “B(21) +— ( jyzﬂ(1,2)4d3 y=0.12, (39)

1

o

0.1ra1 \/; (b1+y2)al+§ I'a, J; (b2+y2)a2+5
|l e S N W i)
2| |y?B(21 + 2 ( jyzﬂ 1,2 -dy=0.12.  (40)
RN by % G (b, +y?) " ?
3Jg bla1( 4 j F(a“ng b (4 F(a2+2j
- |v'A(21) 7 [ jyzﬂ(1,2)4sdy=0-12 (41)
20.1ra1 \/; (b1+ 2)a1§ Faz \/; (b2+ 2) 2‘*‘5
40 blal( 4 ) F(a1+2j b (4 F(a2+2j
NLIGY) 5T ( jyzﬂ(1,2)43dy=o.12 (42)
aila (b+y)™2 1% Vx (b, +y*)"?

For eliciting the hyperparameters a, ,a, , b1 and bz, the equations (39) to (42) are simultaneously solved through

the computer program developed in SAS package using the ‘PROC SYSLIN’ command and the values of the
hyperparameters a,, a,, b1 and b2 are found to be 0.234861, 0.816093, 0.000059701 and 10.999744

respectively.
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7.2 Elicitation using Inverted Chi-Square prior
The prior predictive distribution equation using inverted chi-squared prior is

bl—z( . Jyzﬂ(&l) F@sz + v ( . jyzﬂ(l,z)—r(azz+2j

a 3 a, a,
= a —£
= C+y)?

y>0

‘\fﬂ' 2?+2 2 T
-1 22T
(2+y) )

p(y) = a; W3 !
Z?Fﬁ 2
2
(43)
Using similar criteria as defined for inverted gamma prior, the values of the hyperparametersa, , a,, bl and b2

are 1.217054, 0.332481, 0.00006621 and 14.814588 respectively.

8. Limiting expressions
SupposeT — oo, all observations which are slot in our analysis become uncensored, and consequently r tends to
n, r, tends to the unknown n, and r, to the unknownn,. Accordingly, the sum of information enclosed in the

sample become increasing, as a result variances of the estimates become diminish. The expressions for the
complete sample Bayes estimates and their variances are simplified as

Table 1: The Limiting Expression for the Bayes Estimators using Uniform and Jeffreys Priors

Parameters Bayes estimates (Uniform) Bayes estimates(Jeffreys)
203 %) 203 %)
0, limé, |x=—2 limé, |x=—2
T 3n, -4 T 3n, -2
2(ZX212) Z(ZXZjZ)
0, limo, | x=—"—— limé, | x = —=
Ton 3n, -4 o 3n, -2
. n +1 n +1
limp|x=—2—- limp|x=—2—
P T~>oop| n+2 T»oopl n+2

Table 2: The Limiting Expression for the Bayes Posterior Risks using Uniform and Jeffreys Priors

Parameters Uniform Prior Jeffreys priors
83 %, B0,
0 im0 = e im0~ o
B> x,,)’ 8 %7’
0, lim (6, 1%) =m im0 = o ran
p Tliggp(pm:% T”L‘lp(plx):%
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Table 3: Bayes Estimators using informative priors and ML estimatoras T ® ¥

Parameters Bayes estimates (IG)” Bayes estimates(1C)
25,7 +) (23 5,7 +b)
6, E(4|x)=2—— E(4|x)=—22—
(3n,+2a,-2) Bn+a,-2)
2(ix212+b2) (2ix212+b2)
__ it __ it
% B (6 1) = (3n, +2a, -2) E(61%) (3n,+a,-2)
_n+l _n+l
P E(plx)—n+2 E(p|x)_n+2

f we use these estimators, our posterior risk will be small because we are using complete information of data as
compared to censored one.

Table 4: Limiting Expression for the Posterior risks of informative priorsas T ® ¥

Parameters Conjugate Prior Chi Square prior

) S(Z;X“z+b1)2 2(2Zn:x“2+bl)2

! p(€1|x):(3n1+2a1—2)2(3n1+2a1—4) p(gllx):(3n1+a1—2)2(3n1+a1—4)
8> %, +b,)’ 223 %, +b,)?

9 — j=1 _ j=1

2 A1) (3n, +2a,-2)*(3n, + 28, - 4) A1) (3n, +a,—2)*(3n, +a, — 4)

_(n,+D(n, +1) _(n,+D(n, +1)

P PP = 3 PP = 3

*Where I1G & IC represents Inverted Gamma distribution and Inverted Chi-square distribution respectively.

9. Simulation Study

A thorough simulation study was conceded in order to investigate the performance of the Bayes estimators,
impact of sample size and censoring rate in the fit of model. Sample sizes n=50,100, 200,300,500 were generated
according to the criteria suggested by Krishna and Malik (2009) (for simple Maxwell distribution) from the two

component mixture of Maxwell distribution with parameter €,, 6, and p such that (91,92)e{(0.5,0.8),(0.8,l.5)}
and pe{(0.25,0.4)} Probabilistic mixing was used to generate the mixture data. For each observation a random
number k was generated from the uniform on (0,1) distribution. Ifk < p, the observation was taken randomly from
f,(x) (the Maxwell distribution with parameter 6,) and ifk > p, the observation was taken randomly from f,(x)
(the Maxwell distribution with parameter 6, ).

Right censoring is carried out using a fixed censoring time t. All observations which are greater than T are stated
as censored ones. Different fixed censoring times t are chosen to evaluate the impact of censoring rate on the
estimates. The choice of the censoring time is made in such a way that the censoring rate in the resulting sample
to be approximately 10% or 20%. For each of the different combination of parameters, sample size and censoring
rate, different size of samples were generated using routine in Excel. In each case only failures are identified to be
a member of either Subpopulation 1 or Subpopulation 2 of the mixture. For each of the 1000 samples, the Bayes
estimates were computed using a routine in Mathematica and the results are presented in Table 5-12 given in
appendix.The simulation study (appendix) provides us some interesting properties of the Bayes estimates. The
properties of the estimates are highlighted in term of sample sizes, size of mixing proportion parameters, size of
the component densities parameters, different loss functions and censoring rates. It is observed that due to
censoring, the posterior risks of all three mixture parameters are reduced with an increase in sample size.
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One can easily observe that the parameters of the component densities are generally over-estimated with a few
exceptions in case of the second component. The extent of over-estimation is higher in case of the first component
density parameter. On the other hand the estimates of the mixing proportion parameter are observed to be under-
estimated with few values with increase in sample size. Another important point concerning about choice of loss
function, SELF has less posterior risk than PLF, however underestimation some extent is prevented in PLF. If we
make comparison between both uninformative (Uniform and Jeffreys) priors then due to less posterior risk the
Jeffreys prior is more preferable than the uniform prior. Also comparison between informative priors, the I1C
(Inverted Chi-square) provides us less Bayes posterior risk than 1G (Inverted Gamma) prior so IC prior is more
suitable for this case. In over all comparison of informative priors on the behalf of less posterior risk are more
preferable than noninformative priors and especially the IC informative prior is more preferable in present study.

10. Real Life Application

The burning velocity is the velocity of a laminar flame under stated conditions of composition, temperature, and
pressure. The burning velocity is an important parameter which characterizes the inhibition efficiency of halogen-
containing additive employed as flame retardants. The burning velocity decreases with increasing inhibitor
concentration. It can be determined by analyzing the pressure-time profiles in the spherical vessel and were
checked by direct observation of flame propagation. The data related to the burning velocity of different chemical
materials available at the website (http://www.cheresources com/mists.pdf.). Data partition for mixture

distribution is given in Appendix.
Table 13: BEs and PRs using UP and JP under SELF for real data.

Prior upP JP
E(6) | E(6M | E(pX) | E(K) | E@K | E(pK
p Censoring time= 65
0.25 1991.86 1562.85 0.266268 | 1863.35 1529.60 0.266268
(293894) (54269.9) | (0.00424) | (239477) | (51853.8) | (0.00424)
0.45 1564.82 1752.55 0.466416 | 1669.22 1559.68 0.400023
(90698.4) (97518.5) | (0.00541) | (118585) | (65758.3) | (0.00522)
0.50 1663.48 1680.98 0.511004 | 1510.86 1700.24 0.466116
(92254.3) (99156.2) | (0.00543) | (81532.1) | (88943.9) | (0.00541)
0.60 1596.67 1800.29 0.644541 | 1611.50 1625.87 0.511004
(65384.9) (166216) (0.00498) | (83767.8) | (89606.7) | (0.00543)
Censoring time=70
P E(4.1x) E(6,1x) E(plx) E(4.1x) E(o,1¥) E(p¥)
0.25 2094.13 1790.12 0.26501 1970.94 1755.36 0.26501
(292340) (64730.4) | (0.00389) | (242796) | (61011.3) | (0.00389)
0.45 1707.35 1857.41 0.46920 1654.00 1806.52 0.46920
(97186) (99998.1) | (0.00498) | (88244.0) | (91935.5) | (0.00498)
0.50 1839.58 1740.16 0.530533 | 1789.18 1685.78 0.530533
(98075.4) (100943) (0.00498) | (90164.9) | (91675.8) | (0.00498)
0.60 1694.12 1958.26 0.632726 | 1655.61 1878.33 0.632726
(68317.4) (170418) (0.00465) | (63755.5) | (150116) | (0.00464)
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Table 14: BEs and PRs using UP and JP under PLF for real data.

Prior UP JP
E(eb) | E(6,) [ E(pl | E(6W [ E6 | E(pK
p Censoring time= 65
0.25 2064.3159 | 1580.1171 | 0.274114 | 1926.5384 | 1561.4572 | 0.274114
' (144.9119) | (34.5342) | (0.015692) | (126.3768) | (33.7144) | (0.015692)
0.45 1539.5369 | 1780.1545 | 0.472180 | 1730.8227 | 1580.6201 | 0.406495
' (57.4339) | (55.2090) | (0.011528) | (123.2054) | (41.8803) | (0.012944)
0.50 1690.9820 | 1710.2193 | 0.516290 | 1537.6053 | 1726.1981 | 0.471883
' (55.0039) | (58.4785) | (0.010571) | (53.4906) | (51.9162) | (0.011535)
0.60 1617.0158 | 1845.8765 | 0.648393 | 1637.2843 | 1653.1969 | 0.516290
' (40.6915) | (90.1730) | (0.007703) | (51.5687) | (54.6538) | (0.010571)
Censoring time= 70
p E(8,1x) E(8,[X) E(pIX) E(8,1x) E(8,[x) E(pIX)
0.25 2162.8038 | 1808.1095 | 0.272250 | 2031.6005 | 1772.6534 | 0.272250
' (137.3477) | (35.9790) | (0.014481) | (121.3209) | (34.5868) | (0.014481)
0.45 1735.5777 | 1884.1364 | 0.474477 | 1680.4642 | 1831.7887 | 0.474477
' (56.4554) | (53.4528) | (0.010554) | (52.9284) | (50.5375) | (0.010554)
0.50 1866.0466 | 1768.9262 | 0.535206 | 1814.2023 | 1712.7551 | 0.535206
' (52.9332) | (57.5323) | (0.009346) | (50.0446) | (53.9502) | (0.009346)
0.60 1714.1645 | 2001.2996 | 0.636390 | 1674.7537 | 1917.8737 | 0.636390
' (40.0890) | (86.0793) | (0.007328) | (38.2874) | (79.0874) | (0.007328)

Table 15: BEs and PRs using Conjugate and IC Priors under SELF for real data.

Prior Cojugate Prior Inverted Chi-square Prior
6.6, | E(6) | E(6,1x) | E(pX) | E(O | E(6,) | E(pX
p Censoring time = 65
0.25 1725.29 | 152254 | 0.266268 | 1722.54 | 1510.43 | 0.266268
' (223854) | (50263.3) | (0.00424) | (199456) | (47835.4) | (0.00424)
0.45 1601.53 | 1552.55 | 0.400023 | 1612.21 | 1559.68 | 0.400023
' (100698) | (45547.1) | (0.00522) | (100458) | (42753.5) | (0.00522)
0.50 1502.43 | 1680.98 | 0.466116 | 1494.83 | 1700.24 | 0.466116
' (73251.7) | (76156.2) | (0.00541) | (70534.6) | (56973.9) | (0.00541)
0.60 1521.33 | 1698.34 | 0.644541 | 1511.33 | 1702.87 | 0.644541
' (55367.2) | (136254) | (0.00498) | (53757.8) | (11674.3) | (0.00498)
Censoring time =70
P E(6x) | E(6,1x) | E(pPX) | E(6X) | E(6,]x) | E(pX
0.25 1734.28 | 1785.56 | 0.26501 | 1732.36 | 1767.94 0.26501
' (192670) | (53767.1) | (0.00389) | (172706) | (51491.7) | (0.00389)
0.45 1621.61 | 1801.89 | 0.46920 | 1615.37 | 1838.12 0.46920
' (88140) | (89964.2) | (0.00498) | (88041.1) | (81922.1) | (0.00498)
0.50 1685.21 | 1670.43 | 0.530533 | 1659.67 | 1599.71 | 0.530533
' (78257.8) | (85971) | (0.00498) | (78101.6) | (61609.1) | (0.00498)
0.60 1647.87 | 1856.63 | 0.632726 | 1700.82 | 1834.62 | 0.632726
' (45519.1) | (140456) | (0.00467) | (39993.7) | (140036) | (0.004647)
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Table 16: BEs and PRs using conjugate and IC priors under PLF for real data.

Prior Conjugate Prior Inverted Chi-square Prior
6.6, | E6 | E@6,) | E(pN | E@GK | E@G,K | E(pK
p Censoring time = 65
0.25 1788.9884 | 1538.9579 | 0.274114 | 1779.4943 | 1526.1829 | 0.274114
' (127.3968) | (32.8357) | (0.015692) | (113.9086) | (31.5058) | (0.015692)
0.45 1632.6654 | 1567.1498 | 0.406495 | 1643.0700 | 1573.3261 | 0.406495
' (62.2708) | (29.1997) | (0.012944) | (61.7200) | (27.2923) | (0.012944)
0.50 1526.6100 | 1703.4817 | 0.471883 | 1518.2395 | 1716.9129 | 0.471883
' (48.3662) | (45.0034) | (0.011535) | (46.8191) | (33.3458) | (0.011535)
0.60 1539.4194 | 1737.9910 | 0.648393 | 1529.0115 | 1706.2944 | 0.648393
' (36.1788) | (79.3020) | (0.007703) | (35.3630) | (6.8488) | (0.004980)
Censoring time = 70
P E(6¥ | E(6,1x) | E(pK) E(6X) | E(6,x) | E(pIX)
0.25 1788.9654 | 1800.5531 | 0.339130 | 1781.5098 | 1782.4431 | 0.339130
' (109.3707) | (29.9863) | (0.148241) | (98.2996) | (29.0063) | (0.148241)
0.45 1648.5627 | 1826.6833 | 0.474477 | 1642.3950 | 1860.2707 | 0.474477
' (53.9054) | (49.5865) | (0.010554) | (54.0500) | (44.3015) | (0.10554)
0.50 1708.2712 | 1695.9680 | 0.535206 | 1683.0348 | 1618.8518 | 0.535206
' (46.1224) | (51.0759) | (0.009346) | (46.7296) | (38.2836) | (0.009346)
0.60 1661.6241 | 1894.0779 | 0.636406 | 1712.5368 | 1872.3959 | 0.636406
' (27.5082) | (74.8957) | (0.007359) | (23.4336) | (75.5519) | (0.007359)

From Tables. 13-16, one can easily made comparison between results of uniform prior and Jeffery prior with their
respective posterior risk which are given in parenthesis and can concludes that Jeffery prior has less variance
(posterior risk) as compare to the uniform prior. Particularly when we use censoring time = 65 and censoring time
= 70 our results are more precise. If we compare both informative priors, the IC prior has less posterior risk than
the 1G. In the same way the comparison between uninformative and informative priors, the IC provides less
posterior risk so IC prior is more suitable prior.

10.2. Graphical presentation of Marginal posterior Densities

The graphs of the marginal posterior distributions for the parameters using Uniform and Jeffrey priors for real

data set.
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All graphs show similar pattern i.e. positive skewed, with miner difference.

11. Conclusion

The simulation study has displayed some fascinating properties of the Bayes estimates. The posterior risk of the
parameter estimates seems to be fairly large in cases when the values of the parameters are large and fairly small
for relatively smaller values of parameters. On the other hand in any case the posterior risk of estimates of both
parameter ¢, and 6, are reduced as the sample size increases. A further interesting observation about censoring the

posterior risk of the estimates of 6, and 6, is that increasing or decreasing the proportion of a component in the
mixture reduces (increasing) the analogous @ parameter’s estimate.

The consequence of censoring on ¢, is in the form of overestimation (underestimation) if 6, is less than 6, or 6, is
greater thané,. To be more precise, larger degree of censoring time results in bigger sizes of over or
underestimation. On the other hand the parameter pis either underestimated or overestimated depending upon the
values of g,andé,. To be more precise, pis over estimated or underestimated whenever ¢ >6,0r 6 <6,.The

level of this over or under estimation is directly proportional to amount of censoring rates and inversely
proportional to the sample size. Also the level of over or under estimation is more intensive for larger parameter
values of p. Further, the increase in sample size reduces the posterior risk of estimate of p.The increase in

proportion of a component in the mixture does not guaranty the reduction in posterior risk of p. As the cut off

sensor value gets infinity, the complete sample estimators and posterior risks are greatly simplified. Also posterior
risks of the complete sample estimates are expected to be reduced further as these are clear from the effect of
censoring time. All the Bayes estimates get more precise with the increase in sample size such that posterior risk
using Jeffreys prior is less than the posterior risk of Uniform prior. In real life example, the estimates ¢, and

6,are under estimated but much greater than the respective sample mean lifetime hours what is expected in
censored samples.
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The estimate of the mixing proportion parameter p is the same as that of the corresponding Mendenhall and
Hader (1958) estimate. In case of informative priors, posterior risks using Inverted Chi-Square Prior are less than
the posterior risks of Conjugate (Inverted Gamma) Prior. So on based on simulation study, we suggest at least 100
sample size for this type study. The posterior risks under SELF are less than the posterior risks under PLF;
however underestimation is prevented in PLF. In future this work can be extended using mixture of truncated
Maxwell distribution and taking beta prior for mixing component.
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Appendix

Following tables represents the Bayes estimates (BEs) and Posterior Risk (PRs) using different informative and
noninformative priors under different loss functions.

Table 5: BEs and PRs using UP and JP under SELF when p=0.25.

214

Prior upP JP
E(o) | E(6,)) | E(pk) | E(6K) | E(6,K) | E(pk)
n Censoring time=0.6, ,=0.5, 4,=0.8
50 0.587884 0.857126 0.264686 | 0.584119 | 0.882172 0.263437
(0.05963) (0.12243) | (0.07263) | (0.05204) | (0.04864) (0.06641)
100 0.558953 0.833803 0.260129 | 0.546332 | 0.876655 0.254718
(0.03237) (0.02504) | (0.05242) | (0.01505) | (0.02164) (0.04512)
300 0.526199 0.816405 0.252168 | 0.524204 | 0.850066 0.252085
(0.01334) (0.01435) | (0.03032) | (0.00311) | (0.01304) (0.01561)
500 0.508690 0.812348 0.250275 | 0.517223 | 0.831584 0.250416
(0.00819) (0.01247) | (0.02951) | (0.00309) | (0.01025) (0.01193)
Censoring time=1,6,=0.8,6,=1.5
n E(6.x) E(6,x) E(pX) E(6.) | E(6,% E(p[x)
50 0.878715 1.571415 0.258421 | 0.889619 | 1.598889 0.262068
(0.51476) (0.33957) | (0.09998) | (0.24782) | (0.25253) (0.04831)
100 0.836967 1.556432 0.254329 | 0.865673 | 1.572284 0.258753
(0.12406) (0.20691) | (0.04495) | (0.09242) | (0.16195) (0.04139)
300 0.817587 1.529194 0.252198 | 0.857527 | 1.538463 0.254169
(0.01393) (0.02165) | (0.02922) | (0.01301) | (0.02142) (0.01024)
500 0.812845 1.525878 0.251636 | 0.802448 | 1.519759 0.254169
(0.01056) (0.01912) | (0.02042) | (0.01036) | (0.01129) (0.01724)
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Table 6: BEs and PRs using UP and JP under SELF when p=0.40.

Prior UP JP
E(6)) | E(@) [ E(pK E(6)) | E(e,x) | E(p
n Censoring time=0.6,6,=0.5,4,=0.8
50 0.578384 0.890851 0.501444 0.581269 | 0.877593 0.477827
(0.05741) (0.09948) (0.08239) (0.03271) | (0.06695) | (0.06221)
100 0.564472 0.851046 0.498969 0.577689 | 0.869241 0.467886
(0.03753) (0.04549) (0.04448) (0.03063) | (0.03667) | (0.01602)
300 0.520625 0.826405 0.422819 0.535761 | 0.824159 0.415815
(0.01896) (0.03058) (0.02749) (0.01098) | (0.01493) | (0.00946)
500 0.517922 0.790192 0.413487 0.526332 | 0.813655 0.251718
(0.01092) (0.02634) (0.01857) (0.00505) | (0.01164) | (0.00451)
Censoring time=1,4,=0.8,4,=1.5
n E(6.1¥) E(6,1x) E(p X) E(6.x) E(6,1¥) E(px)
50 0.893738 1.597621 0.468588 0.889622 | 1.582941 0.476363
(0.10650) (1.56718) (0.01607) (0.10033) | (1.36955) | (0.01468)
100 0.851472 1.576987 0.462904 0.854244 1.557769 0.444597
(0.08415) (0.54255) (0.00627) (0.05346) | (0.43705) | (0.00546)
300 0.835168 1532214 0.429741 0.812847 1.521742 0.417220
(0.02719) (0.04125) (0.00179) (0.02528) | (0.02027) | (0.00131)
500 0.812389 1.515883 0.426108 0.811745 | 1.515453 0.413003
(0.01548) (0.01003) (0.00158) (0.01014) | (0.00883) | (0.00124)
Table 7: BEs and PRs using UP and JP under PLF when p=0.25.
Prior Uniform Prior (UP) Jeffreys Prior (JP)
6.6, | E(6) | E(6,¥ | E(pX | E6X | E6,X | E(pPKX
n Censoring time=0.6, 8, =0.5,60, =0.8
50 0.636583 | 0.925794 | 0.377741 | 0.627084 | 0.909322 | 0.368523
(0.097397) | (0.137336) | (0.113055) | (0.085931) | (0.054301) | (0.210171)
100 0.587195 | 0.848686 | 0.346536 | 0.559936 | 0.888912 | 0.331664
(0.056485) | (0.029765) | (0.172814) | (0.027208) | (0.024513) | (0.153893)
300 0.538726 | 0.825147 | 0.306445 | 0.527162 | 0.857702 | 0.281348
(0.025053) | (0.017483) | (0.108554) | (0.005916) | (0.015271) | (0.058526)
500 0.516677 | 0.819987 | 0.303558 | 0.520201 | 0.837724 | 0.273199
(0.015975) | (0.015279) | (0.106566) | (0.005957) | (0.012280) | (0.045568)
0,0, Censoring time =1,6,=0.8,8,=1.5
n E(6x) | E(6,1x) | E(PK) E(6) | E(6,1x) | E(PX)
50 1.134416 | 1.675982 | 0.408364 | 1.019432 | 1.676000 | 0.342037
(0.255701) | (0.209133) | (0.299887) | (0.259626) | (0.154222) | (0.159939)
100 0.908060 | 1.621539 | 0.331109 | 0.917502 | 1.622668 | 0.329155
(0.142187) | (0.130215) | (0.153560) | (0.103658) | (0.101369) | (0.140804)
300 0.908879 | 1.536256 | 0.304670 | 0.865079 | 1.545409 | 0.273572
(0.182585) | (0.014125) | (0.104944) | (0.01515) | (0.013891) | (0.038806)
500 0.819315 | 1532130 | 0.289380 | 0.808877 | 1.523469 | 0.286080
(0.012939) | (0.012505) | (0.075488) | (0.012859) | (0.007419) | (0.063822)
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Table 8: BEs and PRs using UP and JP under PLF when p=0.40.

Prior Uniform Prior (UP) Jeffreys Prior (JP)
6.6, | E(6x | EG,x | E(PX) | EGx | E(6,KX | E(pK
n Censoring time=0.6, 8, =0.5,8, =0.8
50 0.626049 | 0.945037 | 0.577785 | 0.608756 | 0.914942 | 0.539007
(0.095331) | (0.108373) | (0.152683) | (0.054974) | (0.074699) | (0.122360)
100 0.596790 | 0.877365 | 0.541710 | 0.603618 | 0.890084 | 0.484703
(0.064636) | (0.052638) | (0.085483) | (0.051858) | (0.041686) | (0.033635)
300 0.538526 | 0.844704 | 0.454165 | 0.545912 | 0.833167 | 0.427039
(0.035802) | (0.036598) | (0.062692) | (0.020302) | (0.018017) | (0.022447)
500 0.528359 | 0.806687 | 0.435364 | 0.531108 | 0.820777 | 0.260522
(0.020874) | (0.032989) | (0.043753) | (0.009551) | (0.014243) | (0.017608)
6.6, Censoring time =1,6,=0.8,6, =1.5
n E(6) | E6,0 | E(PKX) E(6x) | E(6,1x) | E(PX)
50 0.951455 | 2.029673 | 0.485432 | 0.944329 | 1.968566 | 0.491530
(0.115435) | (0.864104) | (0.033689) | (0.109414) | (0.771250) | (0.030334)
100 0.899530 | 1.740528 | 0.469628 | 0.884982 | 1.692245 | 0.450695
(0.096116) | (0.327082) | (0.013447) | (0.061476) | (0.268953) | (0.012197)
300 0.851290 | 1.545616 | 0.431819 | 0.828251 | 1.528388 | 0.418787
(0.032245) | (0.02804) | (0.004155) | (0.030809) | (0.013291) | (0.003134)
500 0.821861 | 1.519188 | 0.427958 | 0.817967 | 1.518381 | 0.414501
(0.018944) | (0.006609) | (0.003699) | (0.012444) | (0.005856) | (0.002997)

Table 9: BEs and PRs using Conjugate and 1C under SELF when p=0.25.

Prior Conjugate Prior Inverted Chi-square Prior
6.0, | E0 | B, | E(PX | E6K | EG,X | E(PK
n Censoring time=0.6, 8, =0.5,8, =0.8
50 0.528732 | 0.857452 | 0.262496 | 0.588339 | 0.860826 | 0.262496
(0.01067) | (0.01679) | (0.02214) | (0.01036) | (0.01635) | (0.02128)
100 0.520666 | 0.841602 | 0.258923 | 0.580629 | 0.843672 | 0.257231
(0.00792) | (0.01185) | (0.01384) | (0.00771) | (0.01161) | (0.01297)
200 0.516292 | 0.823471 | 0.254391 | 0.539769 | 0.847651 | 0.254982
(0.00586) | (0.01008) | (0.01141) | (0.00579) | (0.00982) | (0.01098)
300 0.509098 | 0.810703 | 0.252018 | 0.528035 | 0.835989 | 0.252436
(0.00419) | (0.00346) | (0.01050) | (0.00416) | (0.00325) | (0.01012)
500 0.501227 | 0.810351 | 0.250188 | 0.50122 | 0.810324 | 0.250416
(0.00224) | (0.00117) | (0.01011) | (0.00209) | (0.00112) | (0.01007)
0.0, Censoring time =1,6,=0.8,6, =1.5
n E(O,1x) | E(6,[x) | E(PIX) | E(G,x) | EE,x) | E(PIX
50 0.859031 | 1.576730 | 0.262068 | 0.890943 | 1.584711 | 0.261448
(0.17425) | (0.20185) | (0.01080) | (0.17224) | (0.15532) | (0.01038)
100 0.858067 | 1.547017 | 0.256172 | 0.861523 | 1.581807 | 0.253861
(0.06837) | (0.10168) | (0.00992) | (0.06781) | (0.10112) | (0.00734)
200 0.830624 | 1.546761 | 0.255859 | 0.855035 | 1.538813 | 0.253272
(0.01339) | (0.01987) | (0.00819) | (0.01275) | (0.01614) | (0.00717)
300 0.814601 | 1.519947 | 0.252989 | 0.824569 | 1.513550 | 0.250734
(0.00864) | (0.01633) | (0.00414) | (0.00702) | (0.01578) | (0.00411)
500 0.801692 | 1.502326 | 0.250106 | 0.801638 | 1.502016 | 0.252859
(0.00105) | (0.01267) | (0.00204) | (0.00101) | (0.01027) | (0.01724)
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Table 10: BEs and PRs using Conjugate and I1C under SELF when p=0.40.

Prior

Conjugate Prior

Inverted Chi-square Prior

0.0,

E(6}) | E(6,0 | E(pI)

E(6X) | E(6,0 | E(pK)

Censoring time=0.6, 8, =0.5, 6, =0.8

0.582698
(0.02868)

0.874514
(0.06402)

0.474856
(0.04159)

0.588339
(0.01036)

0.860826
(0.01635)

0.462496
(0.01128)

100

0.547051
(0.02363)

0.840387
(0.03342)

0.453181
(0.01267)

0.580629
(0.00771)

0.843672
(0.01161)

0.457231
(0.01097)

200

0.529334
(0.01057)

0.829302
(0.01358)

0.442489
(0.01098)

0.539769
(0.00579)

0.847651
(0.00982)

0.445982
(0.01032)

300

0.524493
(0.00856)

0.818559
(0.01183)

0.407992
(0.01012)

0.528035
(0.00416)

0.835989
(0.00325)

0.425243
(0.01007)

500

0.511454
(0.00276)

0.800339
(0.01071)

0.416376
(0.00857)

0.507132
(0.00505)

0.803645
(0.01164)

0.415171
(0.00217)

Cens

oring time =1,6,=0.8,60,=15

E(6;1x)

E(6, ¥)

E(p )

E(6;1x)

E(6, ¥)

E(p )

0.855675
(0.06239)

1582241
(0.17269)

0.469661
(0.01208)

0.876131
(0.05658)

1571380
(0.12164)

0.466735
(0.01107)

100

0.848314
(0.04133)

1.537606
(0.15608)

0.458176
(0.00528)

0.844649
(0.02628)

1547638
(0.11701)

0.457405
(0.00501)

200

0.826327
(0.02187)

1.519541
(0.04234)

0.422854
(0.00159)

0.829453
(0.02085)

1.535807
(0.03611)

0.448474
(0.00321)

300

0.819506
(0.02016)

1503132
(0.01428)

0.418382
(0.00122)

0.807223
(0.01965)

1516132
(0.01383)

0.427825
(0.00116)

500

0.804383
(0.01011)

1501827
(0.00765)

0.426108
(0.00119)

0.811745
(0.01008)

1.501745
(0.00694)

0.419403
(0.00116)

Table 11: BEs and PRs using Conjugate and IC under PLF when p=0.25.

Prior Conjugate Prior Inverted Chi-square Prior
6.0, | E0) | E6,x | E(PW | E@BK | E@, | E(PK
n Censoring time=0.6, 8, =0.5, 60, =0.8
50 0.538728 | 0.867187 0.301735 | 0.597078 0.870271 | 0.3000307
(0.019991) | (0.019471) | (0.078478) | (0.017479) | (0.018889) | (0.075621)
100 0.528217 | 0.848613 | 0.0284396 | 0.587231 0.850525 0.281314
(0.015102) | (0.014022) | (0.050946) | (0.013204) | (0.0130706) | (0.048167)
200 0.521936 | 0.829569 | 0.275907 | 0.545106 0.853424 0.275673
(0.011288) | (0.012196) | (0.043032) | (0.010674) | (0.011546) | (0.041383)
300 0.513197 | 0.812834 | 0.272053 | 0.531959 0.837930 0.271742
(0.008198) | (0.004262) | (0.040071) | (0.007849) | (0.003883) | (0.038613)
500 0.503456 | 0.811072 0.269637 | 0.503300 0.811015 0.269657
(0.004459) | (0.001443) | (0.038898) | (0.004161) | (0.001381) | (0.038483)
6.6, Censoring time =1,6,=0.8,6, =1.5
n E(6,1x) | E(6,1x) | E(PX | E(6,x E(6, x) E(p X
50 0.955083 | 1.639490 | 0.281921 | 0.982863 1.632982 0.280598
(0.192105) | (0.15520) | (0.039707) | (0.183840) | (0.096541) | (0.038299)
100 0.897022 1.579538 | 0.274853 | 0.900018 1.613454 0.267928
(0.077910) | (0.065043) | (0.037362) | (0.076989) | (0.063294) | (0.028134)
200 0.838645 | 1.553171 0.271392 | 0.862459 1.544048 0.267052
(0.016043) | (0.012819) | (0.031067) | (0.014847) | (0.010471) | (0.027560)
300 0.819887 1.525309 | 0.261043 | 0.828815 1.518754 0.258800
(0.010572) | (0.010725) | (0.016108) | (0.008492) | (0.010408) | (0.016132)
500 0.802346 1.506537 0.288050 0.802268 1.505431 0.284917
(0.001309) | (0.008422) | (0.075889) | (0.001259) | (0.006830) | (0.064116)
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Table 12: BEs and PRs using Conjugate and IC priors under PLF when p=0.40.

Prior Conjugate Prior Inverted Chi-square Prior
6.6, | E(6x | EG,x | E(PX) | EGx | E(6,KX | E(pK
n Censoring time=0.6, 8, =0.5, 60, =0.8

50 0.606808 | 0.910382 | 0.516796 | 0.597078 | 0.870271 | 0.474534
(0.048222) | (0.071735) | (0.083880) | (0.017479) | (0.018890) | (0.024076)

100 0.568238 | 0.860041 | 0.466951 | 0.587231 | 0.850525 | 0.469074
(0.042375) | (0.039308) | (0.027539) | (0.013204) | (0.013706) | (0.023685)

200 0.539226 | 0.837449 | 0.454727 | 0.545106 | 0.853424 | 0.457406
(0.019784) | (0.016295) | (0.024476) | (0.010674) | (0.011546) | (0.022847)

300 0.532591 | 0.825753 | 0.420211 | 0.531959 | 0.837930 | 0.436923
(0.016195) | (0.014389) | (0.024438) | (0.007849) | (0.003883) | (0.023359)

500 0.514145 | 0.807002 | 0.426543 | 0.512087 | 0.810855 | 0.417776
(0.005382) | (0.013326) | (0.020334) | (0.009909) | (0.014419) | (0.005210)

Censoring time =1,6,=0.8,6, =1.5

n E(6;1X) E(6, [x) E(pX) E(6;1¥) E(6, ) E(pX)
50 0.891386 | 1.635902 | 0.482350 | 0.907847 | 1.609619 | 0.478447
(0.071423) | (0.107323) | (0.025378) | (0.063431) | (0.076479) | (0.023424)

100 0.872334 | 1.587549 | 0.463902 | 0.860065 | 1.584990 | 0.462849
(0.048040) | (0.136016) | (0.011452) | (0.030832) | (0.074704) | (0.010888)

200 0.839456 | 1.533409 | 0.424730 | 0.841928 | 1.547518 | 0.452039
(0.026258) | (0.027737) | (0.003752) | (0.024949) | (0.023423) | (0.007129)

300 0.831715 | 1.507875 | 0.419837 | 0.819304 | 1.520686 | 0.429178
(0.024418) | (0.009485) | (0.002911) | (0.024162) | (0.009108) | (0.002707)

500 0.810643 | 1.504372 | 0.427502 | 0.817930 | 1.504054 | 0.420784
(0.012520) | (0.005089) | (0.002788) | (0.012370) | (0.004618) | (0.002761)

Real data set for mixture of Maxwell model as following:

Censoring time= 65.

p=0.25n =14,n, =42,
p=0.45n =25n, =31,
p=0.50,n, =28,n, =28,

p=0.60,n, =26,n, =14,
Censoring time= 70.

p=0.25n =14,n, =42,

p=0.45n =25n, =31,

p=0.50,n, =28,n, =28,

p=0.60,n, =26,n, =14,

218

n=11Lr,=32, > x,>=28882, ) X, =71891,D, =0.12070, D, =0.114325.

=

=

r,=20,r,=23 ) x,?=43815 Y x,’=56958D, =0.117697, D, =0.11454.

=1

=1

nL=22r,=21 ) x,>=51568, > x,?=49589,D, =0.116165,D, = 0.114826.

i1

=

=281, =15 x,?=63867, 3 x,’ =36906,D, =0.114834,D, = 0116153,

i1

=

r=12,r,=35 ) x,,* =33506, » X,,”=90401, D, =0.12202, D, =0.114561.
=1 j=1

L =22,r,=25 Y x,?=52928 Y x,?=65938,D, =0.118492,D, =0.114784.
j=1 j=1

L =25r,=22 Y x,?=65305 Y x,?=53945D, =0.116703, D, = 0.115143.

=

=

L =30,r,=17, > x,2 =72847, > x,;*> =46019,D, =0.115153 D, = 0.116689.

=

i1




