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Abstract 
 

The purpose of this paper is to provide a pedagogical approach on how to make an n-holed torus in Maple and 
Mathematica for undergraduate students. It shows how to 3D-print out an N-holed torus from only a mathematical 

equation. This eliminates the hassle of fudging with parameters or drilling the holes yourself. An algorithm to 

generate N-Holed tori is provided with all parameters for reasonable bounds and parameters given. A specific 
application of this algorithm in Mathematica shows the print out of a seven-holed torus in figure 9. Furthermore, 

this method automatically adds in a discrete symmetry determining where the tori’s holes occur. Human beings like 
symmetry and the discrete symmetry in the algorithm makes the surface aesthetically pleasing. Hopefully the 

examples generated from this method will allow for: fun 3D printing, and provide simple examples useful for 

teaching 2D implicit geometry and topology. An explicit construction of a 64-holed torus is given. 
 

1 Introduction, what is a torus? 
 

There are several things already known about tori and how to plot them. Implicit surfaces in Maple and 

Mathematica have numerous tools to support their generation such as “implicitplot3d” in Maple, and 

“ContourPlot3D” in Mathematica. A reference for implicit surfaces can be found in [1]. Many references from 

across the web provide an implicit equation for a single holed torus, such as equation (1) from Weisstein [9]. 

However, it is much more difficult to find references providing equations for 2 or 3 holed tori. Werewolfram 

provides an explicit implicit equation for a 3-holed torus [10]. Grimm and Hughes [4] provide an algorithm for 

parameterizing N-holed tori, however this method requires more work than “copying and pasting text into 

Mathematica/Maple; their method is also parametric and not implicit. Although there is a way to generate implicit 

N-holed tori on the Math Stack Exchange [8], this method does not give any information on how to determine the 

plotting bounds or how to determine their r parameter; a similar algorithm was referenced in [7] but yet again lacks 

plotting bounds for a given genus. Alternatively, the algorithm referenced in [7] could be utilized using a polar plot 

of the cosine function, however that is not what we have studied here; a brief overview of this thought is in section 

2.1. The lack of plotting bounds for a given genus becomes problematic when trying to construct tori with a number 

of holes greater than 2. 
 

The method I used to quickly generate implicit N-holed tori utilizes complex analysis, specifically complex roots of 

the equation: z
N
= 1, z∈ C, n∈ N and equations like it. N is the set of natural numbers, and C is the set of complex 

numbers. A reference to complex roots can be found in Brown and Churchill [2]. To my knowledge using complex 

roots to generate N-holed tori through symbolic software tools is new in the literature. I will now proceed to give an 

exposition on some of the geometric/topological terminology used in the paper. 
 

A torus is the mathematical word for a doughnut. Topologically we can characterize two dimensional tori by the 

number of holes that they have. This number is called the genus g. The genus is related to the Euler characteristic χ 
as follows: 
 

Definition 1 The Euler Characteristic of a compact 2-dimensional manifold is defined in terms of its genus g by: 

 χ = 2 − 2g (1) 

Usually when we refer to a torus, we mean two-dimensional manifold of genus 1, see Figure 1. 

 
Figure 1: A 1-Holed Torus, g = 1 

 

Figure 1 is the usual shape students have in mind when discussing a torus. However, we can also have tori with 

more than one hole; a two holed torus is shown in Figure 2. 
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Figure 2: A 2-Holed Torus, g = 2 

I developed an algorithm that easily generates N-holed tori using symbolic software tools to calculate complex 

roots of the equation z
g
= g

g
. The idea that we can make a torus of any genus comes from Werewolfram [10]. The 

idea on how to generate this equation quickly using software to solve, I believe, comes newly from this paper. 
 

The idea on how to generate N–holed tori 
 

Building off of the geometrical Idea in [10], all we needed was a way to quickly generate the holes. I decided to use 

complex roots of the equation: 

Definition 2 Here we define a complex valued equation with variable z and parameter g the genus. 
 

 z
g
= g

g 
(2) 

 

Originally, I began with the equation: z
g
= 1, but then found that this equation did not space the holes of the torus far 

enough apart when plotting. From complex analysis, I knew that the roots plotted in the complex plane would have 

a discrete point symmetry, and thus look aesthetically pleasing. The construction of the implicit equation for N-

holed tori is next. 
 

First, by the fundamental theorem of algebra, we are guaranteed to have g roots (1 ≤ g <∞) over C to the above 

equation: {z1,z2,...,zg},z ∈ C. We solve the equation given in definition (2) using a solver in either Maple or 

Mathematica. Next, we break each of these zi’s (i∈ N, some natural number) into corresponding real points by 

taking the real and imaginary parts: 

{(ℜ(z1),ℑ (z1)),(ℜ(z2),ℑ (z2)),...,(ℜ(zg),ℑ (zg))} 
 

For ease and intuition, we define each of decomposed complex numbers by the following ordered pairs: 

{(x1,y1),(x2,y2),...,(xg,yg)}, such that ℜ(zi) = xi, ℑ (zi) = yi, etc. Then by using the idea from Werewolfram [10] we 

build an equation using these roots: 

Definition 3 Here we define the implicit equation which determines the 2D surface (our N-holed tori) in Euclidean 

space. 

  (3) 
 

Where the power p ∈ R
+
, is some positive real number. This equation will then create a torus with g holes for an 

appropriate choice of p; finding a viable choice for p initially seemed like guess work. However, after some testing 

I produced a graph that cleanly describes what value p should be for a given g in Figure 3. A value of R
2 

is given 

reflecting how good of a fit this equation is to the data I collected by experimenting with what values produced a 

compact g-holed tori. 
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n 

i=1 

Figure 3: A plot describing the relationship between the genus g, and the power p. The values on the line should 

give a good plot. The line is the equation p ≈ 1.599 + 0.986g, the dots are the data points, and the error bars are 

small here, so they are not visible. 
 

The bounds, b, of the plot are also important to know when plotting these tori in Maple and Mathematica; b is 

described just below. I also made a plot of what the bounds should be for a given genus g. In Mathematica, the 

bounds b would be reflected as the numbers that go into the three sets in the command ContourPlot3D as: 

{x,−b,b},{y,−b,b},{z,−b,b} , and the view range as: 

PlotRange→ {{−b,b},{−b,b},{−b,b}} 

 

In Maple, the bounds b are given by: x = −b..b,y= −b..b,z= −b..b, and the view range as: view = [−b..b,−b..b,−b..b]. 

Figure 4 is like that of Figure 3, but is for the bounds. 
 

Last, it is important to mention that by solving the equation z
g
= g

g 
we have in a sense made a g-gon in the complex 

plane. Connecting the neighboring points defined by the roots to equation 2 will define a g-gon in the plane; this is 

a result from Brown & Churchill [2]. Because the roots define a g-gon, we instantly have a discrete rotational 

symmetry that leaves the g-gon invariant. 
 

An example given by z
3 

= 27, (g = 3). This equation has a discrete rotational symmetry. When the triangle defined 

by connecting the roots is rotated by the roots defining the triangle are invariant. The roots written as 

x+iy≡ (x,y), for the triangle are: . 

Performing a rotation given by:  we get 

 
 

Figure 4: A plot describing the relationship between the genus g, and the bounds for the plot b in the equation 

above to give a good plot. The line is the equation b = ..., the dots are the data points, and the error bars are vertical 

from the points. the points:  which permuted the list, but the set of elements is still 

the same. From an aesthetic perspective the author believes this symmetry makes the resulting plot more beautiful. 
 

Using polar coordinates to generate tori and other algorithms 
 

In this section we will give a brief overview on how to use the algorithm presented by [7] and [8] to make tori 

albeit without the bounds given. To make a N-holed tori following reference [8]’s approach, we go through the 

following steps. 

 

Definition 4: Here is the algorithm presented by [8] which defines an n-holed torus in 3D space. It has 4 steps. 
 

1. Step 1, Reference [8] presents function 4. Construct this function. 

 

 f(x) = П (x − (i− 1))(x − i) = 0 (4) 

2. Step 2, Construct function 5 

 g(x,y) = f(x) + y
2 

(5) 

3. Step 3, Construct function 6 
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 h(x,y,z) = g(x,y)
2 
+ z

2 
− r

2 
(6) 

4. Step 4, Determine r for a given f, and plot. 
 

Step 4 is left out of the algorithm, but could hopefully be implemented with information similar to that given 

by 4 and 3. In several ways the r parameter is similar to our p parameter. 
 

Similarly, to reference [8], reference [7] takes a similar approach, although it includes more pedagogical 

variables. We will follow that algorithm here. It should be noted that most of the following algorithm was 

presented by [7], with whom I do not have a contact for. 

 

Definition 5 Here we explain the algorithm of [7]. 

 

1. Step 1, Let: f(x,y) = 0 be an implicit curve in R
2 
with g holes. 

 

2. Step 2, Then: f(x,y)
2 

+z
2 

−eps
2 

= 0, ϵ ∈ R−0 is an implicit surface of genus g; epsilon is any sufficiently small 

number. The idea in step 2 is, that the implicit curve is expanded to a tubular shape. E.g. 
 

f(x,y) = x
2 
+ y

2 
− 1 (7) 

g(x,y) = ((x − 1)
2 
+ y

2
)((x + 1)

2 
+ y

2
) − 1 (8) 

 

Next, we give an example of this algorithm. In 7 f(x,y) Gives a circle, and the tube would be f(x,y)
2
+z

2
−ϵ

2 
= 0, a 

torus. Additionally, in 7 g(x,y) gives the Cassini ovals, thus g(x,y)
2
+z

2
−ϵ

2 
= 0, a double torus, respectively a surface 

of genus 2. However again, this algorithm would have trouble with a higher count of holes similar to [8] because of 

the bounds. 

We can however utilize both of these if we were to have the bounds. Take for instance the polar equation with 

variables (r, θ) given in 9. 
 

r
2 
= cos(gθ) (9) 

(r
2 
− cos(gθ))

2 
+ z

2 
− ϵ = 0 (10) 

 

However, experimenting with equation 9 with several epsilon values, the best picture the author was able to create 

with ϵ = 0.1 was still not aesthetically pleasing. Figure 5 shows the output below in cylindrical coordinates with 

10000 points. As the genus got larger this algorithm also broke down and the picture was unplottable with the 

computational power available. Note the jagged edges. 

 
Figure 5: A 3-Holed Cosine Torus in Maple 

 

Generating N–holed tori in Maple 
 

In this section we will illustrate how to plot N-holed tori in Maple [5] through the use of two examples: a five holed 

torus, and a 64 holed torus. In the code, to name some variables again for clarity, we have the: genus g, bounds b, 

power p, and others which will be talked about as we go through the code. There are a few modifications that you 

could make to have more control over the torus as well. If you make g
g 

in the right hand side of equation 12 larger 

then the holes will be spaced further apart; likewise if the right hand side of equation 12 smaller the holes will be 

closer together. The g
g 

piece you can think of as the “radius” where the center of each of the holes in the tori are 

located; You can also think of it as controlling how far the holes are from the center of the torus. The code is given 

below, and each of the equations in this section, unless otherwise notes, can be directly copied and pasted into 

Maple to run the code. An algorithm is given below. 

 

1. Step 1, We begin by defining the genus g in Maple. 
 

g := 5 :            (11) 
 

Then the next step is to set up and solve equation 2 for complex roots. In Maple we can use the command solve 

to find the complex roots of the equation; this is seen in equation 12 2.  

 

2. Step 2, Solve equation 2 for z. 
 

 sol5 := [solve(z
g
= g

g
,z)] : (12) 
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The next part of the tori generation algorithm is to break the complex roots into their real and imaginary parts 

through Re and Im. Then we make a sequence of the roots using seq which we will evaluate equation 3 on. This 

is done in equations 13 and 14. 

 

3. Step 3, Get the real and imaginary parts of z. 
 

myseq5Re := {seq (x||i= Re(sol5[i]),i= 1..g)} : (13) 

myseq5Im := {seq (y||i= Im(sol5[i]),i= 1..g)} : 
 

(14) 

Next we union these sets together to make a whole set to evaluate equation 3 on. This is done in equation 15. 

 

4. Step 4, Union the sets of solutions together. 
 

 myseq5_1 := myseq5Re union myseq5Im : (15) 
 

In the next step the Maple command evalf converts the symbolic values solved for in equation 12 to numerical 

values. I have found that this makes the plotting slightly faster. For large g, ex. g ⪆ 70 the plotting becomes 

time expensive on my computer. 

 

5. Step 5, Convert from symbolic values to computer double values (Recall: float, int, double, string, etc. are 

examples of values a computer can have) 
 

 myseq5 := evalf(myseq5_1) : (16) 
 

Here is the polynomial we had previously in equation 3 represented in Maple by equation 17. 

6. Step 6, Create the equation in our second algorithm. See equation 3. 
 

  : (17) 
 

To get the full equation we need to evaluate equation 17 on the set given by equation 16. This is done with the 

eval command in equation 18. 

 

7. Step 7, Evaluate the Π equation on the set. 
 

 myexpression5 := eval(mymul5,myseq5) : (18) 
 

Here we define the bounds b, and power p to make the torus picture that we want. 

 

8. Step 8, Define the proper bounds and power determined by 4 and 3. 
 

b := 11 :             (19)   p := 6.45 :   

                        (20) 
 

In Maple you can change the number of points to make the plot prettier. I set the number of points to 400000 

for these computations in Maple. This is shown in equation 21 9.  

 

9. Step 9, Define the number of points that you want. 
 

 numpts:= 400000 : (21) 
 

Last, all we need to do is plot the resulting implicit equation which is done with implicitplot3d. This is equation 

22. 

 

 

10. Step 10, Last, we plot the torus. 

 

      implicitplot3d myexpression5 − 0.001 ∗ (x
2 

+ y
2 

+ 7 ∗ z
2
)

p
, (22) x = −b..b,y= −b..b,z= −b..b,numpoints= numpts, 

style = surface,axes= none,view= [−b..b,−b..b,−b..b]) 
 

The result is shown in Figure 6. 
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Figure 6: A 5-Holed Torus in Maple 

 

To show the full extent of the algorithm, we can even make Tori with many holes. To illustrate the power of the 

algorithm, Figure 7 is a 64-hole torus. To get the 64-Holed Torus in Figure 7, all you need to do is repeat the above 

code with the following swaps: g := 64 :, bounds := 72 :, power := 64.79 :, numpts:= 400000 :. 
 

These computations were performed in Maple 2016. There is 3D printing capability in Maple 2016, but the author 

was unable to find any command to change the extrusion thickness in Maple; changing the extrusion thickness may 

be an option in future releases of Maple, but likewise the author is unaware of these. Next, we will move onto how 

to do the same procedure in Mathematica. 

 
Figure 7: A 64-Holed Torus in Maple 

 

Generating N–holed tori in Mathematica 
 

We can also illustrate the N-holed tori generation algorithm in Mathematica [6]. I decided to illustrate the algorithm 

with the construction of a 7-holed torus. We first begin by defining the genus g, the power p, and the bounds b 
similar to what we did in Maple. The code follows the same as it did in Maple other than syntactical differences. 

Explicitly the code is given below in 23-34 with the output picture provided in Figure 7. A good reference on how 

to work with differential geometry in Mathematica is Gray et. all [3]; this reference was quite helpful for 

understanding the inner workings of Mathematica. We will begin by defining the genus g, power p, and bounds b. 

 

 

1. Step 1, define the genus, power, and bounds. 
 

g := 7 (23) 

p := 8.34 (24) 

b := 13.5 (25) 

Next, we solve equation 2 for the roots using Mathematica in equation 26. 

 

2. Step 2, Solve the complex genus equation 2. 

                                      sol7 := Solve[z
g
== g

g
,z] (26) 

 

Similar to in Maple, we now break apart these complex roots to form a list of the real and imaginary parts of the 

roots. These parts are generated by the operations Re and Im; this is done in equations 27-30. 

 

3. Step 3, Get the real and imaginary parts of the solution. 

 

myseq7Re1 := Re[z/.sol7] (27) 

myseq7Re := Table[x[i]− > myseq7Re1[[i]],{i,1,g}] (28) 

myseq7Im1 := Im[z/.sol7] (29) 

myseq7Im := Table[y [i]− > myseq7Re1[[i]],{i,1,g}] (30) 

  

Now we union these lists together to form a list of ordered pairs which will serve "make the holes" of the torus. 

We do this in equation 31. 

 

4. Step 4, Union the solution sets together. 

 



International Journal of Applied Science and Technology          Vol. 13, No. 2, June 2023       doi:10.30845/ijast.v13n2p2 

 

39 

 myseq7 := Union[myseq7Re,myseq7Im] (31) 

 

Taking the product as in equation 3 using the ordered pairs in equation 31 gives us equation 32. Taking it one 

step further, in equation 33 we evaluate the symbolic values generated by the Mathematica solver as floating-

point values; this helps to speed up the computation for larger hole tori. 

 

5. Step 5, plug the values into the Π equation 3. 

 

          A0=(x+x[i])
2
+(y+y[i])

2
 – 1                                                              (32)    

mymul7 := Product[A0,{i,1,g}]/.myseq7 (33) 

myGenusSeq= mymul7//N (34) 
  

Lastly, we run the command ContourPlot3D as in 34 to actually plot the torus. This finishes the algorithm and 

we have our torus! A picture is provided of the result in Figure 8. 

 

6. Step 6, Plot the n-holed torus. 

 

  (34) 

 
Figure 8: A 7-Holed Torus in Mathematica 

 

3D Printing the torus using Mathematica 
 

We can also export this torus to a .stl file and print it in Mathematica by calling the above code with the addition of 

Extrusion− >0.3. The extrusion command is added so that the thickness of the 3D printed object helps hold it 

together structurally; this is also important for open surfaces, or surfaces that are not closed/compact. Then to get 

the .stl file for the 3D printing, call Export[”7Torus.stl”,%], and the output will be the 7Torus.stl file in a directory 

on your computer; for my computer the file showed up in Documents. Alternatively, you can also call the 

command Printout3D[myPlot,”7Torus.stl”] when you set myPlot= ContourPlot3D[...]. Printout3D may take 

longer, but it also cleans up the plot more than Export[....stl] will. With Printout3D the resulting .stl file will be 

more “clean.” Either option is viable for 3D printing, and I have given an example in 9 of a 7-Holed Torus I printed 

out. 
 

Summary 

 

Altogether, we have constructed a symbolic algorithm to generate implicit N-Holed tori in Maple and Mathematica 

through the use of equation 3, discussed the geometrical background of the torus, 

 

 
Figure 9: A 3D Printing of a 7-Holed Torus 
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gave an example of 3D printing and given estimation plots of good values for plotting these tori in each of the 2 

softwares. The author hopes that this will be helpful to students who are learning symbolic software, entrepreneurs 

of 3D printing, to artists for the symmetry in 3D modeling, to math students who would like to test topological 

algorithms on implicit equations, and to anyone interested in general. 
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