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We seem to be left at present with the loose idea that 

                                                                                             whenever oscillations in space are coupled with     
                                                                                              oscillations in time through a dispersive relation, 

                                                                                             we expect the typical effects of dispersive waves. 
                                                                                                                                                G.B. Whitham 

(Linear and Nonlinear Waves, p:369) 
 

Abstract 
 

This paper considers a turbulence paradigm which helps to analyze some features of turbulence structure at a 

physically acceptable level. Highlighted features are dispersion relation, length, and time scales for the whole 
wave number range of turbulence including one-dimensional energy spectrum. The lowest wave number is 

restricted only by the dimensions of the domain in which turbulence is active. The highest wave number is limited 

by measurement capabilities. The physical paradigm conceived for turbulence suggests a combined “particle + 
dispersive-wave” character of turbulence”, shortly “Quantic Behavior of Turbulence (QBT)”. QBT studies 

turbulence starting from the molecular activity of fluid particles in a turbulent flow. Coagulations of molecules are 
demonstrated via numerical simulation of molecular activity for different mean velocities. These groupings of fluid 

particles can be considered as “infant eddies”. A possible physics for the formation of eddies that characterizes the 

“discrete nature” of turbulence at low frequencies and associated “dispersive-wave behavior” at high frequencies, 
is explained. This reasoning leading to define fluctuating velocity as group velocity is discussed.“Calculation of 

Wave Number” in view of QBT is performed with the help of two equations and an auxiliary relation. The first 
equation is a physical relation that uses the energy spectrum and the other one is the group-velocity formulation. 

Related mathematical developments are given in the “Appendix”. Results from different types of flows are 

illustrated. Salient features of numerical results are exposed. The dispersion relations of different flows are 
presented. The discrete + wave-like nature of turbulence is highlighted in view of an overall evaluation in 

“Discussion” at the end of the paper. 
 

Introduction                                                                   
 

The assertion that “Turbulence is a “continuum” phenomenon is generally accepted [Lelele S. K, 1994]. The word 

“phenomenon” of the assertion seems to be used in the sense of the “physical nature” of turbulence. It may also 

refer to “mathematical ease” provided by “continuous mathematics” to handle turbulence. Continuum consideration 

is handy from mathematical point of view. Yet, from physical point of view, the existence of eddies indicates 

“discrete character” to be a strong characteristic of the “nature” of turbulence. Indeed, the population of eddies is 

responsible for almost all kinetic energy and functions of turbulence. 
 

It is reasonable to consider an eddy as a grouping of fluid particles (molecules) which have chosen to move 

together for a while. The properties of an eddy can be accounted for as follows: 

1: Eddy formation is a random process. The translational movement of molecules in a common direction is the 

primary factor for the formation of coherent structures or eddies. 

2: The lifespan of an eddy is limited. The group or eddy forms and at the end of its lifespan it disperses.  

3: The size, shape, mass, and energy content of an eddy define its “identity” during its lifespan. 

4: During their existence, eddies perform random motion known as the “fluctuating” velocity of turbulent flow. 

5: Identity elements are randomly shared between eddies. 

6: The word “Particles” in the definition of “eddy” is a generic name for “molecules” and “sub-groups of particles” 

that form the eddy.  

7: An eddy is a package of energy and exhibits a dispersive wave or a dispersive wave-like character. 
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Discrete and wave-like features have been combined as “Quantic Behavior of Turbulence” or QBT. But this paper 

does not say that “turbulence is a Quantum Phenomenon”. Since the introduction of the turbulence notion in the 

historical Reynolds’ paper [Reynolds O, 1883], the use of continuum formulations led to consider turbulence as a 

continuum phenomenon. Calculations based on the continuum approach have been, no doubt, satisfactory and 

useful for many needs of engineering. 
 

On the other hand, the perception of turbulence as a discrete phenomenon is used at the onset independently and 

successfully by Taylor [Taylor G. I., 1915] and by Prandtl [Prandtl L. Z, 1925] in their “mixing length” theory of 

turbulence, though they did not use the word “discrete”. Their common approach was their conviction for the 

existence of lumps of fluid particles, each conserving its ‘identity’ for a while. The conserved quantity was 

momentum in the case of L. Prandtl and vorticity in the case of G. I. Taylor (ref. cited). 

The other feature i.e.: wave-like behavior of turbulence is used to advantage through Fourier or Wavelet 

transformations for the description of turbulence structure [Kai Schneider and Oleg V. Vasilyev, 2010].  
 

A Paradigm Of Turbulence 
 

General: From the physical point of view, turbulence is essentially an assembly of randomly moving and randomly 

created eddies. 
 

The word turbulence refers only to fluctuating part(s) of quantities (pressure, velocity…) of turbulent flow since in 

the present exposition this part of turbulent flow will be under consideration. Yet, it is clear that turbulence as such 

cannot exist and persist without so-called mean flow. Mean flow or main flow velocity plays a central role, either at 

turbulence scale (in the sense used here) or at RANS or FANS equations level.  
 

One-dimensional (1D) treatment of turbulence kinematics of incompressible fluids is the material of this paper. 

Yet, there is no restriction to apply the physical perception and related mathematics to 2D or 3D turbulence. 
 

Some characteristics of fluctuating velocity components may be repeated: Firstly, they are integral parts of the 

instantaneous velocity. Secondly, they are random functions of space and time. Thirdly, in general, their 

magnitudes are smaller than that of mean velocity by a factor less than 0.3. 
 

At the end of calculations results of QBT that will be presented in the sequel, any result pertaining to a frequency 

smaller than 1 c/s is rejected since f < 1 c/s is considered as a consequence of the unsteadiness of turbulent flow 

from the physical point of view. So, 1 c/s is used as a reference for minimum frequency just for the sake of 

comparison. Yet, f < 1 c/s and associated other quantities (wave numbers scale...) can be calculated in terms of 

QBT.  
 

Particle and Eddy: The word “particle” is a generic name to specify the fluid substance of an eddy, basically 

“molecules”. However, some groups of molecules may also be taken as particles. The term “eddy” defines any 

coherent agglomeration of particles which have chosen to move together for a certain while. Coherence is 

understood as the existence of a meaningful correlation of particles forming the eddy. 
 

The motion of an eddy is random. Its size cannot exceed the dimensions of the domain in which turbulence is 

generated [Landau-Lifshitz, 1959. pp: 118, first three lines]. The physics behind this argument is that boundaries of 

flow domain limit also fluctuating velocities associated with the coherent structure, either when the motion ceases 

because of a solid boundary or when a uniform flow (or no flow) becomes the boundary. Therefore, the size of a 

coherent structure cannot protrude from these boundaries. Hinze considers the smallest sizes of eddies to be not 

smaller than the conventional “micro-scale” of turbulence [Hinze J. O. 1959, page: 276]. Yet, any explanation for 

stopping the smallest size of eddies at the micro-scale is not noticed. 
 

While eddies are moving under the effect of a mean flow, the velocity of an eddy is composed of local mean 

velocity plus its own particular random motion, namely “fluctuating velocity”. The fluctuation velocity of an eddy 

is necessarily an association of velocities of particles that form the eddy.  
 

The definition of “eddy” implies that the life of an eddy has a limited duration. At the end of its lifespan, the 

coherence of particles forming the eddy is lost, and the eddy is dispersed. This fact will lead to the dispersive nature 

of wave-like behavior associated with the motion of eddies. During their lifespan, eddies have their own geometric, 

kinematic, and dynamic properties. The statistical evaluation of these properties leads to understand the ‘structure 

of turbulence’. 
 

How eddies are formed: One can begin by observing the motion of molecules. Molecules of static fluids move 

randomly in three dimensions, at velocities of about a few hundred m/s for gases as observed in the simulations of 

Argon at 300K which gave the RMS of molecule speeds as 432.9 m/s [Eneren P., 2016], and with a more refined 

calculation 432.8 m/s [Kabakci I., 2019]. The motion of any particle is influenced when molecules are subjected to 

move in a common direction with a certain velocity. This velocity can be named “bulk velocity” and it corresponds 

to the familiar “temporal-mean velocity”. The continuous directional constraint imposed by bulk-velocity forces 

molecules to move closer to each other while they are also forced to reduce their individual random motion (and 
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velocities) as a consequence of closer distance between them. As a result, they form groups of molecules which 

grow till the aggregate is in conformity with the definition of an eddy. 

The formation of “infant aggregates” by molecules has been observed in the molecular simulation of Argon at 

300K when the quasi-static molecular activity is subjected to a bulk velocity, Figures 1 and 2. Figures are selected 

from a set of five Test Cases [Kabakci I., 2019]. The figures below are related to TEST Cases I and II. 

 

 
 

Figure 1: Particle Formation. TEST I. Argon at 300K, Ubulk= 89 m/s. 2 particles and each with 14 molecules 

[Kabakci I., 2019]. 
 

 
 

Figure 2: Particle Formation. TEST II. Argon at 300K, Ubulk = 223m/s. 7 Particles and each with 13 

molecules [Kabakcı I., 2019]. 

 

TABLE 1: Bulk velocity, the number of aggregate and molecules in aggregates of TEST CASES. 

 

                                   TEST                          Ubulk                        Aggregate        Molecules in Aggregates 
 

- m/s - - 

I 89 2 14 

II 223 7 13 

III 447 1 16 

IV 894 4 18 

V 2233 1 24 

 

Though the analysis of data generated during the simulation of infant eddies is not complete, the first results 

indicate that the number of molecules forming infant aggregates increases with increasing bulk velocity, TABLE 1. 
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Since an eddy is a collection of particles having a common motion in the statistical sense, this is coherence. It 

entails the discrete character of turbulence and the identity of the eddy, Figure 3. Yet, eddies do not persist to 

maintain the coherence indefinitely and they disperse to end their lifespan.  
 

Wave-like Behavior and Group Velocity: The kinetics of an eddy is reflected (or perceived) as a wave
1
 which is 

the combined effect of activities (kinetic energies) of particles forming the eddy. When the togetherness of particles 

ceases, the wave behavior of the eddy is lost. 
 

Since an eddy is composed of particles, its kinetic energy can be depicted as the kinetic energy of a wave packet 

during its lifespan. Indeed, the kinetic energy of particles forming the coherent structure behaves like “pilot waves” 

with close wave numbers and gives rise to a wave package appearance, Figure 3. Therefore, the velocity of 

translation of the kinetic energy of this eddy is the “group velocity” which is at the same time the translational 

velocity of the eddy. The unicity of group velocity with energy transport velocity and translation velocity is shown 

to be true by Lamb [Lamb, 1962], de Broglie [a reference of Incropera, 1974], and Whitham [Whitham, 1974]. 
 

In sum, during the lifespan of the eddy, it has a discrete nature. During this period, the identity is conserved at an 

acceptable level. On the other end, the perception of eddy activity is reflected as a dispersive wave. This combined 

behavior is labeled “Quantic Behavior of Turbulence”, QBT for short. 

 

 
 

Figure 3: Conceptual Figure of Particle and Wave-like Behavior of an Eddy. 

 

Wave number: A consequence of QBT is that fluctuating velocity “u” of turbulent flow is a “group velocity”, 

[Çıray C., 1980, 2017]. Therefore: 

(1)                                                                                 
dk

d
u


 ,                                 

where “ω” and “k” are respectively circular frequency and wave number of turbulence. The relation (1) can be 

considered as an alternative to the well-known expression: 

(2)                                                                                  
U

k


 , 

where U  is the time-averaged instantaneous velocity of turbulent flow and the relation is a consequence of the 

“frozen turbulence” concept, [G.I. Taylor,1938].  
 

The literature contains a respectable number of papers that use the relation (2). Most of these papers exist in [de Kat 

R. and Ganapathisubramani B., 2015] and [Bekoğlu E., 2021]. Few of them discuss the validity of the frozen 

turbulence hypothesis which is the basis of (2). On the other hand, the common approach to calculate wave 

numbers consists of trying to find ways to remedy the relation (2) which is in fault to predict wave numbers at low 

frequencies. In essence, they maintain the relation (2) and try to find a suitable “convection velocity, UC” to replace 

“U ” in order to satisfy physical properties associated with wave lengths of turbulence. One of these properties is 

that the largest eddy size can at the most be of intrinsic dimensions of the domain in which turbulent flow takes 

place [Landau - Lifshitz, 1959. pp: 118, first three lines]. Therefore, it may be inferred that the minimum frequency 

corresponds to the relevant largest dimension of the turbulent flow domain. Then, it is possible to calculate the 

                                                           
1
 “..a wave is any recognizable signal that is transferred from one part of the medium to another with a recognizable 

velocity of propagation.” (From Linear and Nonlinear Waves. G. B. Whitham (1974). pp: 2, line 10 from the 

bottom of the page). 
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minimum frequency from (2). One finds this frequency to be around 200 c/s. This leads to a lack of consideration 

of turbulence energy in the frequency range of 0-200 c/s which is not negligible.  

This paper suggests calculating wave length using (1) which is the consequence of QBT. 

 

 

 

Calculation Of Wave Number 
 

Wave number as the consequence of Group velocity: One of the results from the turbulence paradigm described 

in the previous section is: 

“The fluctuating velocity is the group velocity of the wavy pattern signaled by the eddy, i.e.: 
 

(1)                                                                      
dk

df
u  .”

2
 

 

The definition of wave number in terms of group velocity, i.e. (1), is not sufficient to calculate wave number (k), as 

a function of frequency (f) or the “dispersion relation”: 
 

(3)                                                                     )( ffk  . 
 

Therefore, a complementary relation is needed. 
 

Complementary Equation: A relation between “u” and “f” is sufficient to close the gap, i.e.: 
 

(4)                                                                     )( fuu  . 
 

 Then, the solution of: 

(1)                                                                    
dk

df
fu )(  

 

will provide (3). Therefore, the triple connection between “u”, “f” and “k” can be realized. 
 

Complementary Equation and Use of a Probability Density Function: Eddies are elements which transport and 

transfer the kinetic energy of turbulence. The energy spectrum of turbulence shows the partition of this energy 

between eddies in terms of frequency (and wave number). Therefore, it appears logical to use the energy spectrum 

G(f) within the complementary equation. In addition, a spectrum is specific to a turbulent flow and may help to find 

(3) pertinent to the flow in question. Then, it is possible to obtain (4) using a pre-accepted probability density 

function (PDF) of normalized fluctuating velocity “x” through the “complementary equation (6). The 

complementary equation is based on equality:  
 

(5)                                                        







0

2
)(')( dffGudxuxP , 

 

where G(f) is twice the normalized kinetic energy per unit mass and frequency. Therefore, its integral shown on 

RHS of (5) is unity. Physically, the relation (5) means that the kinetic energy of turbulence calculated in the 

frequency domain is the same when it is calculated with the help of a proper PDF of velocity fluctuations, P(x). 
For convenience, the following relations are used for non-dimensionalization:  
 

   UyIxU
u

u

U

u
U

U

u
UuUU 

















 1

'

'
11 , 

 

where 

'u

u
x   , 

U

u
I

'
 , Ix

U

U
y  1  

 

and “U” is the instantaneous velocity, and “u’” is the root-mean-square of velocity fluctuations.  

 

It is proposed to apply (5) in intervals “-u” to “-u-Δu” and “u” to “u+Δu“. Then, we obtain the complementary 

equation (6): 
 

(6)                                                 









111

)(')()(
22

i

i

i

i

i

i

f

f

x

x

R

x

x

L
dGudPdP  . 

 

                                                           
2
 Frequency “f” in c/s is used in the sequel. 
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Equation (6) states that kinetic energy in the ranges “-ui” to “-ui -Δu” and “ui” to “ui + Δu” occur at the same 

frequency band “fi” to “fi+1” but may have different probabilities, Figure 4. Indeed, PL and PR represent the left and 

right branches of the PDF if it is chosen to be skewed. The PDF used in the application [Çıray C., 1980], is an 

extended form of Maxwell-Boltzmann distribution. It is:  
 

(7)                                                              nnn
yAyPxP  1exp)1()(

 
 

with y =1+Ix and: 

 
 

Figure 4: Schematic of Equation (6). 

 

(8)
                                      








 








 



n

1n
Γ

n

2n
Γ

A     and    P(1)  n

1n

-Aexp

n

1n
Γ

nA
I








 




. 

     

Γ(z) is the Gamma function of the argument “z” expressed as required in terms of “n” which appears in PDF. The 

choice of this PDF is reminded of the Maxwell-Boltzmann distribution of speeds of simple molecules. The PDF in 

question (7), leads to think that the random motion of eddies has a certain resemblance to molecular activity. The 

constants “A” and “P(1)” are obtained from conditions that a PDF has to satisfy. These are: the zeroth moment 

must be unity and the first moment must be the expectation or the mean velocity, i.e.: The second moment “µ
2
” is 

calculated with the help of (9) which is at the same time equal to “1+
2

I ”, 
 

(9)                                                          .1

2

31

2

2

2
I

n

n
Γ

n

n
Γ

n

n
Γ



















 








 







 



 
 

It is preferred to present mathematical developments as an Appendix at the end of this paper. The “κ
th

” moment, 

“μ
κ
”, is given as the formula (25) in the Appendix. 

 

 

PDF (7) and the Histogram of “u”: As can be seen in Figure 5, non-dimensional histograms H(x) of turbulence 

and the corresponding PDF given in (7), show remarkable numerical (therefore, geometrical) resemblance 

[Bekoğlu E., 2021] and later [Çolak I., 2022]. These references contain numerous Figures of the type shown in 

Figure 5 for turbulent boundary layers on flat plates, earth-boundary layer (obtained in a wind tunnel), 

axisymmetric turbulent jet, and turbulent boundary layers with active grids. 

 



International Journal of Applied Science and Technology          Vol. 13, No. 2, June 2023       doi:10.30845/ijast.v13n2p1 

 

7 

 
 

Figure 5: PDF (7) and Histograms for TEST CASE 0. 
 

The Figure is obtained by [Bekoğlu E., 2021] from instantaneous velocity-time-series measured in a canonical 

Turbulent Boundary layer [Doğan E. et al., 2016]. 
 

 
 

                                Figure5A:  Complementary information for Figure 5 [Bekoğlu E., 2021]. 
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TABLE 2: Complementary information to Figure 5 [Bekoğlu E., 2021]. 

 

Point y [cm] Um [m/s] u’ [cm/s] Iact [%] Icalc [%] n [-] 
 

Point 0A 0.10 4.67 103 21.9 21.9 4.63 

Point 0B 0.87 7.16 73.7 10.3 10.3 11.1 

Point 0C 3.55 9.46 42.4 4.48 4.48 27.2 

Point 0D 10.9 10.1 7.11 0.70 0.70 181 

 

Short Note On Calculation Procedure 
 

Turbulence intensity, Iact, is supplied as one of the parameters (for example from experiments) at the point of 

interest. Therefore, 2

act
  can be calculated. Using (8), the corresponding “n” can be found. Within the context of 

this work, a list of 2

calc
  is prepared for a number of “n” values. Then, “n” corresponding to the problem in hand is 

determined by matching 2

act
  with 2

calc
 . 

 

Solution of the algebraic form of (6) for successive intervals, yields a numerical relation between “u” (or “x”) and 

“f” i.e.: (4). Such numerical relation can be seen between columns 1 and 3 of TABLES 3 and 4. Then, the solution 

of (1) determines “f” as a function of wave number “k”, i.e.: the dispersion relation (3). The calculation procedure 

may be changed by replacing PDF (7) with the histogram which is likely to produce results closer to the natural 

event. 
 

Some Results 
 

Relation Between Eddy Properties (u, f, k, G, PL, PR) 
 

Applications of QBT to some turbulent flows are presented in three groups. The first group is based on two test 

cases (out of ten) drawn from the first paper on the subject [Çıray C., 1980]. The second group contains a set of 

results calculated for turbulent boundary layers under different conditions [Bekoğlu E., 2021]. Similar treatment of 

QBT for a turbulent jet will be the last group [Çolak I., 2022]. 
 

Frequencies 10
0
c/s, 10

1
c/s, 10

2
c/s, 10

3
c/s, and 10

4
c/s are selected to compare scales, PDFs… etc. of different flows. 

Though 1.0c/s appears as the minimum frequency of the turbulence, with the premise that “minimum frequency 

occurs at the intrinsic dimension of the domain”, a minimum frequency can also be defined and calculated. 

PDF and histogram graphics are illustrated in Second and Third Groups results. Spectra in terms of wave number 

are shown in graphical form for all cases. 
 

Numerical results of the triple connection between “u”, “f” and “k” are given only for “First Group” just to 

maintain the paper at a reasonable size. Yet, results presented in TABLES 3 and 4 have similar trends for the 

Second and Third Groups. 
 

First Group Results 
 

Numerical results of TEST CASE §2 are shown in TABLE 3 and those of TEST CASE §8 in TABLE 4.  They are 

chosen from a set of ten Test Cases [Çıray C., 1980]. Associated energy spectra in terms of wave number are given 

in Figures 6 and 7. Relevant information for each flow is supplied at the heading of tables and figures.   
 

The data for TEST CASE §2 belongs to hot-wire measurements performed at 4.00 cm downstream of the leading 

edge of a NACA 0012 airfoil of 30 cm chord and 30 cm span with tip-plates. The measurement point was at a 

distance of 0.67 cm from the upper surface. Therefore, the hot-wire was approximately 10.00 cm from the ceiling 

of the wind tunnel, since the mid-point of the airfoil was 15.00 cm from the ceiling of the wind tunnel and at an 

angle of attack of 12
o
. 

 

TABLE 3 (as well as 4) of TEST CASE §2 is self-explanatory. The wave number and the wave length are shown 

in columns 4 and 5 respectively. PDF values of “+” and “-” non-dimensional fluctuating velocities i.e. “x”, appear 

in the last two columns of TABLE 3. 
 

The wave length “L” for frequency 1.0 c/s in TEST CASE §2 is 7.645 cm. It is reasonably smaller than the gap 

between the airfoil and the ceiling of the wind tunnel. Magnitudes of turbulence velocities increase with frequency 

up to five times of “x” at minimum frequency. 
 

Positive fluctuations (+x) have a larger probability than negative ones that can be observed in 6 and 7. columns of 

TABLES 2 and 4. The creation of an eddy is an event of a certain probability. Hence, both positive and negative 

fluctuations must have the same probability for a given eddy.  
 

It can be seen from the PL and PR columns that “+x” is associated with “-x” of smaller magnitude and frequency (or 

vice versa) for the same probability. This phenomenon is judged as the mechanism leading to rotational movement 
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and two spear-like (or crescent-like) appearance of the structure. Similar observations can also be made with 

measurements of Rotta related to the transition region in a pipe (commonly referred as “intermittency“), Figure 7 

[Schlicting H., 1960]. 

 

TABLE 3: Data and Characteristics of TEST CASE §2. 
 

U = 32.22 m/s            actual
I  = 0.0354               n = 35                    A = 0. 98355565 

u’ = 135 cm/s        35n
I = 0.0352        P(1) = 0.4088 

 

f          ΔG             x                  k                   L            PR(x)          PL(- x) 

                           c/s           -                   -                    cm
-1   

               cm                -                     - 

 

                           0                                  -                      -                      -              0.4088           0.4088 

                                     0.02041 

                           1                              0.4369             0.1308             7.645         0.4562           0.3051 

                                     0.100 

                           2                              0.4968             0.2305             4.338         0.4540           0.2901 

                                     0.294 

                           5                              0.6219             0.4801             2.083         0.4407           0.2597 

                                     0.0237 

                         10                              0.6983             0.8327             1.201         0.4267           0.2418 

                                     0.0452 

                         20                              0.8136             1.448               0.6904       0.3971           0.2160 

                                     0.0820 

                         50                              0.9734             3.011               0.3321       0.3412           0.1833 

                                     0.0866 

                       100                              1.116               5.239               0.1909       0.2810           0.1572 

                                     0.1710 

                       200                              1.345               9.022               0.1108       0.1778           0.1213 

                                     0.2430 

                       500                              1.642              18.37                0.0544       0.0699           0.0851 

                                     0.0926 

                     1000                              1.812              31.84                0.0314       0.0330           0.0691 

                                     0.0878 

                     2000                              2.006              56.23                0.0178       0.0108           0.0541 

                                     0.1140 

                     5000                              2.305              121.0                0.008         0.0010           0.0369 

 

Figure 6 represents the kinetic energy spectrum of TEST CASE §2 in the wave number domain. The rectangular 

area below any dotted line is energy in one dimension for the corresponding wave number range. Hand-drawn full 

line shows the general trend of the spectrum. The insert indicates the (-5/3) slope of the inertial sub-range in the 

high wave number region. 
 

The numerical results of TEST CASE §8 are in TABLE 4 with the corresponding spectrum in Figure 8. The 

information used in calculations is generated from a figure showing the energy spectrum in the frequency domain 

for a turbulent flow behind a grid of bars [Hinze J. O., 1959, pp: 61, Figure 1.18]. It is reported that the study and 

the Figure are the work of Favre [Favre A. et al., Recherche Aéronaut.., 32; p: 21, 1953]. 
 

The measurements are conducted behind a 2.5 cm mesh-size grid, made with cylindrical bars of 0.5 cm diameter. 

The measurement point was at 40 mesh-size from the grid where turbulence was probably isotropic. 

Complementary information about the flow is supplied at the heading of TABLE 4. 
 

The study of columns reveals that trends observed for TEST Case §2 prevail also for grid turbulence.  The wave 

length corresponding to 1.00 c/s is 0.6 cm which is comparable with grid-bar-diameter (this may be accidental) and 

is almost ¼ of the mesh size.  Fluctuating velocities have amplified almost by a factor of ten, whereas trends of 

PDF values are similar to those of TEST Case §2. 
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Figure 6: One-dimensional spectrum of TEST Case §2 in wave number. 
 

 

The measurement system was composed of 55DO1 DISA constant temperature hot-wire anemometer, high and low 

pass filters of a DISA 55D25 Auxiliary unit, 55D35 rms meter and HP 322 Dual Channel recorder [Çıray C., 

1980]. 
 

 
 

Figure 7: [Schlichting H., 1960]. 



International Journal of Applied Science and Technology          Vol. 13, No. 2, June 2023       doi:10.30845/ijast.v13n2p1 

 

11 

 

 (This is a very low Reynolds number air flow (RE =2550) in a pipe of approximately 0.6 cm in diameter.) 

 

TABLE 4: Data and Characteristics of TEST CASE §8 

 

U = 12.25 m/s            actual
I  = 0.0200               n = 63                    A = 0. 991485 

u’ = 24.5 cm/s        63n
I = 0.0199       P(1) = 0.4104 

 

f          ΔG             x                  k                   L            PR(x)          PL(- x) 

                           c/s           -                   -                    cm
-1   

               cm                -                     - 

 

                           0                                  -                      -                      -              0.4104           0.4104 

                                     0.00298 

                           1                              0.2270             1.666              0.6002        0.4502           0.3563 

                                     0.00298 

                           2                              0.2841             2.668              0.3748        0.4565           0.3418 

                                     0.00893 

                           5                              0.3854             4.963              0.2015        0.4630           0.3157 

                                     0.0149 

                         10                              0.4862             7.900              0.1266        0.4625           0.2899 

                                     0.0298 

                         20                              0.6157             12.55              0.7970        0.4504           0.2579 

                                     0.0893 

                         50                              0.8469             23.05              0.0434        0.3945           0.2055 

                                     0.130 

                       100                              1.069               36.41              0.0275        0.3053           0.1623 

                                     0.186 

                       200                              1.317               57.87              0.0173        0.1879           0.1227 

                                     0.290 

                       500                              1.656             109.88              0.0091        0.0608           0.0822 

                                     0.134 

                     1000                              1.893             181.70              0.0055        0.0177           0.0614 

                                     0.0595 

                     2000                              2.058             311.30              0.0032        0.0057           0.0500 

                                     0.0513 

                     5000                              2.231             669.40              0.0015        0.0012           0.0401 
 

Dispersion Relation 
 

Dispersion relation, the relation between the frequency “f” and the wave number “k” can be obtained from 

numerical results displayed in TABLES of Test Cases. These relations are shown in graphical form for eight of ten 

TEST CASES in Figure 9. The frequency range is: 1 < f < 10
4
 c/s. The straight-line relationship between “f” and 

“k” in log-log coordinates seen in Figure 9, suggests the dispersion relation to be of the form: 
 

(10)                                                                              


Ckf  . 
 

Two constants “C” and “β” can be determined either from TABLES of Test Cases or from Figure 9. The power 

“β” is the “dispersion coefficient” reported in TABLE 5 for two ranges of “f” for which the log-log linearity 

appears to be a good fit. 
 

Fluctuating Velocity is Inversely Proportional to Wavelength. 
 

With the help of (1), from (10) we can obtain: 
 

(11)                                                                     
k

f
Cku 




1
.
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Figure 8: One-dimensional spectrum of TEST CASE §8 in wave number. 
 

 

The information for TEST CASE §8 is for a turbulent flow behind a grid made of 5 mm cylindrical bars with a mesh 

size of 2.5 cm. The data belongs to a paper by Favre, [Hinze J. O., 1959, pp: 61, Figure 1.18].   
 
 

 
 

Figure 9:  Dispersion relations for eight of studied ten TEST CASES. 
 

 (Cases §1 and §6 are omitted for a clearer figure.) 
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TABLE 5: Dispersion Coefficient (β)
3
 

 

TEST § Lower Range   Higher Range   
                           

- 1-100 (or 1- 500) c/s         500-5000 c/s 
 

1 1.8450 1.2240 

2 1.2438 1.2210 

3 1.4125 1.1625 

4 1.4641 1.1682 

5 1.4837 1.1520 

6 1.8215 1.1325 

7 1.5221 1.1325 

8 1.4793 1.2723 

9 1.5083 1.2107 

10 1.4577 1.1628 

 

It seems necessary to point out the difference between “u” and “f/k”. Whereas the former is the group velocity of 

the group of waves centered around the wave number “k” and frequency “f”, the latter is the phase velocity of the 

single wave with wave number “k” and the frequency “f”. In conjunction with (11), one can write: 
 

1



ku  
 

We define “α”: 
1

1





  . Then: 

 

(12)                                                                               
L

u
1




 
 

where “L” is the wave length. The values of “α” ranges are as follows: 

 
 

             1.0 < α < 4.0   for   1 < f < 100 (or 500) c/s   and 

 

                                                             3.7 < α < 7.5   for   500 < f < 5 kc/s. 

 

It is concluded that the magnitude of fluctuating velocity is an inverse function of eddy size. 
 

The Rate of Decay of Kinetic Energy of Turbulence 
 

The rate of decay of kinetic energy of turbulence is reported to be: 
 

(13)                                                                          
L

Au

dt

du
32



 
 

on grounds of experimental evidences obtained from turbulent flow generated behind a grid [Batchelor, 1960, p: 

103]. 
 

“A” is a number of the order of unity which may vary slightly with the time of decay and the initial conditions of 

the turbulence and the choice of L” quotes Batchelor, [Batchelor, 1960, p: 103].  
 

The relation (13) is used to express “A” which is a pure number: 
 

(14)                                                                             A

L

u

dt

du


3

2

 
 

Figure 10 shows “A” for different mesh Reynolds numbers at different distances from the grid as reported in the 

reference cited. 
 

In view of the QBT approach, one can express the energy transport with a decreasing trend as; 

                                                           
3 Values of “β” in this Table are inverses of corresponding values in [Çıray C., 1980]. 
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(15)                                                                    ...

22











t

u
u

t

u
G

G

G
 

 

The fluctuating velocity (group velocity) is symbolized with “uG” to distinguish it from “u” in Batchelor 

formulation. The relation (15) is converted to: 

(16)                                                                        
L

u
u

t

u
G

G

G

22





 

 

“uG” is transformed using (11): u
k

f
u

G
   , where “u” is the phase velocity. We reach: 

 

 
 

Figure 10: [Batchelor, 1960, p: 106]
4
. 

 

 

(17)                                                             
L

u

t

u

ut

u

u

G

G










2

2

2

2

11
. 

 

Therefore, the relation (17) becomes: 

                

(18)                                                      
L

u

t

u
32





   or   







L

u

t

u

u

2

2

1

. 

 

The first expression of (18) is similar to (13) and the second to (14). One may conclude that “A” and “β“ are quite 

alike, if not the same. The range of “A” (estimated from Figure 10) and “β” calculated from dispersion relation are 

given below: 
 

0.80 ≤ A ≤ 1.50, 

 

1.13 ≤ β ≤ 1.85. 
 
 

Data in Figure 10 are obtained from the decaying period of turbulent flow behind a grid. Data related to “β” belong 

to the whole range of spectra and for a variety of flows including grid turbulence, pipe flows, and boundary layers. 

It is remarkable that “β” of TEST CASE §8 (grid turbulence) is within the range of “A”. 
 

                                                           
4 It is taken from [Batchelor, 1960]. The data is the work of Dryden [Dryden, 1943]. 
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1: It can be asserted that the manner of transporting the kinetic energy of turbulence, as formulated in (13), is not 

restricted to the decay period, but at least to all wave numbers and flow types that are considered in this study.  

2: The relative kinetic energy is the same whether calculated with “group velocity” or “phase velocity”, (17).  
 

The lifespan of an eddy 
 

Since the existence of an eddy begins with the formation of a group of waves and ends with the dispersion of the 

group, the lifespan of the eddy is as long as the existence of a group of waves. The lifespan “T” of the eddy can be 

estimated by dividing the wavelength by its group velocity, i.e.: 
 

 

(19)                                                                              uLT / . 
 

 

Two test cases referred to above yield the following values: 
 

                                   1 c/s          5000 c/s 
 

Test Case §2           0.13 s           26 μs 

Test Case §8           0.11 s           27 μs 
 

Second Group Results 
 

Whereas the first group is directed to study various types of flows from the QBT approach, the second and third 

groups study specific flows with the same approach. 
 

The second group results are concerned with a zero-pressure-gradient turbulent B/L developing on a smooth 

surface in a wind tunnel, under three different Test conditions. Test conditions are labeled “0”, “1”, and “2”. 
 

TEST CASE 0: This test deals with a natural TB/L on the flat plate (canonical Turbulent B/L). 
 

TEST CASE 1: A system of “cutout wings” is mounted upstream of LE to influence turbulence, Figure 11. 

 

Figure 11: Cutout Wings, TEST CASE 1 (left) and Solid Wings, TEST CASE 2 (Right)
5
. 

 

TEST CASE 2: In this case, the entrance is furnished with “solid wings” with controllable openings. This system 

induces higher turbulence intensity. Detailed information about the set-up and measurement conditions can be 

found in E. Doğan [Doğan E., 2016].  
 

Hot-wire measurements are conducted at a station 43M (  348 cm) from the LE of the plate. Though hot-wire 

measurements are performed at 22 points at this station in the original work, only four of them are considered in the 

study reported here. These points are named A, B, C, and D. Wall distances of these points vary with TEST 

CASES. Therefore, their positions are labeled with an indicator of the TEST CASE such as 0A, 3B, and 2D. See 

Figure 5 and TABLE 2 for TEST CASE 0 and TABLE 5 and 6 respectively for TEST CASES 1 and 2. Points A, 

points B, and points C are not far from each other in all TEST CASES, but point D positions are highly different.  

OD point wall-distance is 10.9 cm, for 1D it is 17.2 cm and for 2D is 24.5 cm.   
 

Digitized analog hot-wire measurements at a rate of 20 kc/s were supplied by E. Doğan [Reference cited] and they 

are treated as “instantaneous velocities” throughout the second and third group presentations of this manuscript. 

Input quantities for the applications of the QBT approach are generated from these instantaneous velocities. 
 

Flow characteristics at measurement points of TEST CASES cover a wide range. Indeed, the mean velocity varies 

from a minimum of 2.83 m/s (Point 1A) to a maximum of 10.10 m/s (Point 0D). Turbulence intensity changes in 

the range of 0.70% (point 0D) to 28.70% (point 2A). 

 

                                                           
5
 From [Bekoğlu E., 2021]. Original Figure belongs to E. Doğan [Doğan E., 2016]. 
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TABLE 6: Flow Characteristics at measurement points for TEST CASE 1. 

 

Point y [cm] Um [m/s] u’ [cm/s] Iact [%] Icalc [%] n [-] 
 

Point 1A 0.10 2.83 77.7 27.4 27.4 3.50 

Point 1B 0.47 4.29 61.8 14.4 14.4 7.60 

Point 1C 3.98 5.71 52.9 9.26 9.26 12.5 

Point 1D 17.2 6.13 45.0 7.35 7.35 16.1 

 

TABLE 7: Flow Characteristics at measurement points for TEST CASE 2. 

 

Point y [cm] Um [m/s] u’ [cm/s] Iact [%] Icalc [%] n [-] 
 

Point 2A 0.08 3.83 110 28.7 28.7 3.31 

Point 2B 0.36 5.54 98.0 17.7 17.7 5.97 

Point 2C 3.83 7.35 101 13.8 13.8 7.98 

Point 2D 24.5 7.98 94.7 11.9 11.9 9.47 

       

 

 
 

Figure 12: PDF and histograms for TEST CASE 1. 
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Figure 13: PDF and histograms for TEST CASE 2. 

 

PDF, Relation (7)  
 

In spite of the wide range of variations of flow characteristics described above, the PDF given in equation (7) is 

satisfactory to represent probabilistic characteristics of fluctuating velocity (hence, instantaneous velocity) as can 

be observed in Figures 5, 12, and 13. 
 

Eddy-Scale Distributions 
 

Distributions of one-dimensional eddy scales for different frequencies and three TEST CASES are presented in  

Figure 14 as a function of wall-distance. Figure 15 contains the same information but, in terms of non-dimensional 

wall-distance “y
+
”. 
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Figure 14: Distribution in “y” direction of Eddy-Scales at different frequencies. 
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Figure 15A: Eddy-scales along “y
+
” at various frequencies and for all TEST CASES. 
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Figure 15B:  Eddy-scales along “y
+
” for frequency 10000 Hz and for all TEST CASES. 

 
 

It appears that for all frequencies and for all TEST CASES, at point y
+
 10 the slope of the y

+
(L) function 

increases sharply. Until y
+
 10 (lower layer) this function increases monotonically in log-log representation. 

Though viscosity dominates the lower layer, eddies of 1.2 cm at (0A) y
+
= 4.0, of 2.2 cm at (1A) y

+
= 4.5, and of 5.0 

cm at (2A) y
+
= 6.0 are observed for 1.0 c/s

6
.   

 

The general trend of y
+
(L) above y

+
=10.0 (upper layer) reflects an almost constant eddy size for all cases and 

frequencies, yet specific to TEST CASE and frequency. The constancy indicates that freestream turbulence (FST) 

introduced at the entrance and all along the depth of the flow has reached a certain dynamic equilibrium. Which 

station this equilibrium has begun, remains to be explored. 
 

Eddies generated in TEST CASE 1 (cut-out wings) are larger than those of TEST CASE 0, for small frequencies 

(no FST), Figures 15a and b. But differences diminish with increasing frequency and become smaller for 

frequencies 100 c/s and larger ones, Figure 15c, d, and e. One infers that cascading in TEST CASE 1 is more 

vigorous than NO-FST TEST CASE. Perforations of different diameter holes of cut-out wings create eddies of 

different scales at the on-set and they may be the cause of an earlier or more effective cascading. 
 

Energy Spectra in Wave Number 
 

Energy spectra in wave number at points A, B, C, and D are illustrated in Figures 16a, b, c, and d. Any of these 

illustrations contains spectra at these points for all three TEST CASES in order to exhibit differences or 

similarities. 

Different energy levels before peak points of G(k), i.e.; in the Large Eddies region, appear as they should be. On the 

other hand, coalescence towards high wave numbers (Universal Equilibrium region) of the same function is typical 

for TEST CASES 1 and 2, Figure 16. It can be concluded that FST enhances cascading when compared to no-FST 

case. Inertial-subrange can also be observed for all cases though their extent is small. 
 

The separation of G(k) towards higher wave numbers of TEST CASE 0 from FST cases is noticeable. It is observed 

that cascading and dissipation in TEST CASE 1 (cutout wings) is more active in all TEST CASES at points A, B, 

and C as reported earlier. 
 

                                                           
6
  This fact reminds once more why the original attribution “Laminar Sublayer” was replaced by “Viscous 

Sublayer”. 
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Figure 16: One-Dimensional Energy Spectra for all TEST CASES at four Measurement Points considered in 

this study. 
 

 

At point D, the spectrum function for TEST CASE 0 is peculiar in the sense that it does not have the typical G(k) of 

a boundary layer. This is normal since point 0D does not belong to B/L. It is 10.9 cm from the plate whereas the 

B/L is 5.5 cm thick. It has a “palier” around the wave number 10 cm
-1

 separating the flow into two zones. The 

upper zone is highly influenced from external flow and energy concentration is high almost reaching the 

concentration levels of TEST CASES 1 and 2.  
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The lower zone has the normal appearance of a G(k) of a boundary layer flow. Yet, while G(k) decreases regularly 

with high wave numbers, it shows an increasing trend after k = 10
3 

cm
-1

. This may be due to energy transported by 

entrained eddies from ambient flow. 
 

On the other hand, G(k) of TEST CASES 1 and 2 are typical energy spectra of boundary layer flows. 
 

Third Group Results 
 

Third Group Results belong to experiments and ensuing calculations for a round jet. It is a non-swirling jet in an 

unconfined environment. Details of the set-up and hot-wire measurements are described by I. Çolak [Çolak I., 

2022]. The results of data reported in the sequel are related to measurements of velocity components along the jet 

axis and in a region limited to a maximum distance of 2.0D from the nozzle (D = 2.8 cm is the nozzle diameter). 

Figure 17 shows the relative mean-turbulent velocity U/Um. It is observed that even at 2D distance from the nozzle 

turbulent jet flow is not yet established. Therefore, the measurements reported here belong to the jet flow-

formation-region just above the nozzle. Velocity vector at measurement points close to the nozzle surface may be 

three-dimensional requiring 3D measurements by Hot-Wire Anemometry.  
 

Results shown in the sequel are submitted for the sake of completeness of the work. 

 

 
 

Figure 17: Mean Turbulent Velocity Measurements of a Non-Swirling Round Jet in an Unconfined   

Environment (Radius of the nozzle: Dh = 1.4 cm). 
 

PDF, Relation (7)  
 

Red full lines representing the PDF (7) are closer to confirm histograms for measurements far from the vicinity of 

the nozzle. Indeed, at a distance of 0.3D from the nozzle there is concordance only at 10D and 14D from the axis of 

the jet, Figures 18c and 18d. Similar behavior is observed at 1D from the nozzle surface for radial distances 10D 

and 14D, Figures 19Bc and 19Bd. 
 

In general, accentuated discordance appears in the vicinity of  x = 0, corresponding to large scale structures at 

measurement points performed along the axis, Figures 18a,18b, 19Aa, and 19Ab.This may be attributed to the fact 

that the jet-flow-formation region is appreciably three-dimensional. 
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Figure 18: Histograms and PDF’s at a distance 0.3D from the nozzle plane and at positions: (a) 0.0 mm;  

(b) 6.0 mm; (c) 10.0 mm; (d) 14.0 mm from the axis. 

 

 

 
 

Figure 19A: Histograms and PDF’s at a distance 1.0D from the nozzle plane and at positions: (a) 0.0 mm; 

(b) 6.0 mm. 
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Figure 19B: Histogram and PDF at a distance 1.0D from the nozzle plane and at positions: (c) 10.0 mm;  

(d) 14.0 mm and (e) 18.0 mm from axis. 

 

Energy Spectra in Terms of Wave Number 
 

Spectra calculated at various positions in planes 0.3D, 0.5D, and 1.0D distances from the nozzle plane are shown in 

Figure 20. 
 

Energy spectra are peaky in the vicinity of the jet axis and reach the highest energy concentrations, G(k), at the jet 

axis. 

Reynolds numbers based on the distance from the nozzle plane are respectively 8.4x10
3
, 14.0x10

3
, and 28.0x10

3
 for 

plane distances 03D, 0.5D, and 1.0.D from the nozzle plane. At these Reynolds numbers, the formation of a 

“universal equilibrium region” is not expected as observed in graphs of Figure 20.  
 

The increasing energy level at both ends of the spectra is peculiar. These are attributed to the three-dimensionality 

of flow region as suggested in explaining PDF discordance in the previous section and observed in the spectrum at 

point 0D of non-FST boundary Layer case as seen in Figure 16d. 
 

Spectral analysis shows that eddies scale between approximately 5.00 cm which is commensurate with nozzle 

diameter (= 2.8 cm) and 20.0 µm.                                                                            
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Figure 20: Energy spectra for various measurements in planes at distances a) 0.3D; b) 0.5D and c) 1.0D from 

the nozzle plane 
 

IN BRIEF 
 

The paradigm of turbulence leading to the Quantic Behavior of Turbulence is a realistic description of the physics 

of turbulence. Indeed, three basic items of this approach tested in various flows and explained above, support this 

view. 

1: Particle characteristics such as the streamwise wave numbers of eddies satisfy intrinsic conditions of turbulence. 

The calculation uses a unique method for the whole range of the spectrum. 

2: Wave-like behavior of turbulence leading to define fluctuations as group velocity leads to obtain turbulence 

dispersion relation and lifespan of eddies.  

3: The PDF of fluctuations used in the calculation is a modified form of the Maxwell-Boltzman relation to estimate 

the speed of molecules conforms with histograms of velocity fluctuations. This leads to think that turbulence has its 

roots in molecular activity. 
 

The application of QBT in three dimensions and to extend the molecular simulations to reach higher Reynolds 

numbers in micro-tubes will be the following stage of this subject. 
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APPENDIX: MATHEMATICS RELATED TO QUANTIC BEHAVIOR OF TURBULENCE 
 

Cahit Çıray 
 

INTRODUCTION. This Appendix contains details of mathematical developments that was  not possible to include 

to QUANTIC BEHAVIOR OF TURBULENCE. 

 

 CONTENT 

I: GENERAL. 

II: CONSTANTS OF THE PDF. 

III: WORKING EQUATIONS. 

    1: DISCRETE FORM OF WORKİNG EQUATIONS. 

    2: INITIATION OF CALCULATION OF WORKING EQUATIONS. 

    3: FINDING “k” FROM 
dk

d
u


 . 

 

I. GENERAL. 
 

I.1. Definitions.   
 

U : Instantaneous velocity;          u : Fluctuating velocity 

                                               U : Mean velocity;                      
2/1

2
' uu  : rms of u 

 

  UyIxU
u

u

U

u
U

U

u
UuUU 

















 1

'

'
11 ;     

  

'u

u
x   ;     Ix

U

U
y  1 ;     

U

u
I

'
  

 

P(y) : PDF, a function that is known.      

G(f) : Spectrum function normalized with u’
2
. It is numerically available from experiments.             

    : Circular frequency, f 2 .   

f      :  Frequency in c/s. 


  : Normalized
th 

moment of “U”:    

.)(
1







 dyUyP

U






  

 

I.2. PDF Properties and Consequences. 
 

(1): 





 1)( dyyP                                                  (1A): 





dxxP )(
I

1
 

(2): 





 UUdyyP )(                                             (3):  





 1)( ydyyP       

 





UdyyP )(  





 dyuUyP )( 









 udyyPdyyPU )()( =U  

  U + 





udyyP )( =U .  Hence: 

(4): 





udyyP )( 0              and                              (5): 





 udxIxP )1( 0  .   
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





dyU)y(P
2  





 dyuUyP
2

)( 









 dyuyPdyyPU
2

2

)()( =
2

U + u’
2 
. Hence:     (6)  

2
 = 1+

2
I  

II. CONSTANTS OF PDF. 
 

II.1. Expression of PDF. 
 

(7)                                                        nnn
1-yAexpP(1)yP(y) 

 
 

where “P(1)” and “A”  are constants to be found from properties of PDF. “n” will be determined for each case. 

Expansion of (7) yields: 
 

(8)                                                           nnn
yAexpCyP(y) 

 
 

Hence: 
 

(9)                                                                n
AexpPC )1(

 
 

Shortly:  
 

(10)                                                                )( yCP(y) 
  

 

with 
  

(10)                                                        )exp()(
nnn

yAyy 
 

 

II.2. Finding P(1). 
 

To satisfy the condition (1), we must have: 
 

(12)                                                               









dyy

C

)(

1



 
 

II.2.1. Integral in (12) 
 

Apply the transformation: y
n
 = q. Then: 

(13)

                                                                

dq
q

q

n
dy

n

1

1


  

Hence:  





dyy 





 dyyAy
nnn

)exp( 





 dq
q

q

n
qAq

n

n

1

1
)exp(

 
 

or 
 

(14)                                                 





dyy .)exp(
1

1







 dqqAq
n

nn

 

The RHS of this equation is similar to the equation used for the definition of the   tΓ  as given in “Handbook of 

Mathematical Functions “, edited by M. Abramowitz and I. A. Stegun, Dover publication. The formula appears on 

page 255 with formula identification: 6.1.1. It reads: 
 

(6.1.1)                                                    zΓ   .exp

0

1






 dtkttk

zz

 
The lower limits of the two integrals are not the same. But this does not cause a problem since: 
 

                                                                             y ≥ 0.  
 

Therefore: 

 





dyy  



0

.dyy
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The correspondence can be established as follows: 

 

 

 

(6.1.1)                           (14) 
 

t                                 q 

k                                A
n 

n
z

1
1           →       

n

n
z

1
  

 

Then, one can write:                          





dyyn    






 





n

n
A n

n

n 1
1

            or: 

 

(15)                                                      





dyy
 








 




n

n
A

n

n 11 1

 
 

The consequence of (1), i.e.: (12) leads to: 
 

(16)                                                               








 






n

n

nA
C

n

1

1

  

and (9) yields: 

(17)                                                        

 

.

exp
1

)1(

1

n

n

A
n

n

nA
P








 






  

Hence: 
 

(18)                                                 .exp
1

)(

1

nnn

n

yAy

n

n

nA
yP 








 






  

If the same derivation process is used to express P(y) in terms of “x”, the condition (1A) leads to (19) where 

y=1+Ix by definition,       
 

(19)                                                   

  

 

II.3. Finding “A”. 
 

The condition (3) is used in conjunction with (8),                                    
 

(20)                                          





ydyyC  






 dyyAyC

nnn
)exp(

1
1. 

 

The integral on the RHS can be calculated as explained in II.2.1 for (14) .But, in this case:   
 

       n

n
z

2
 . 

 

The relation (20) becomes: 
 

           

1
121

2








 


n
An

n

n
C . 

 

Using (16):                                            
 

            







 




n

n

nA
n

1

1

.1
121

2








 


n
An

n

n
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Finally, one arrives to: 
 

(21)                                                                








 









 




n

n

n

n

A
1

2

. 

 

II.4. Finding “µ
κ
”.    

                                                                                                                   

By definition:    
 


 =  = 





dyUyP

U




)(

1
= 





dyyyP


)( =   .exp





 dyyyAyC
nnn 

 
 

We use (8) and obtain:          
 

(22)                                                     


 =  






 dyyAyC

nnn
exp



 
 

The integration of (22) can be performed parallel to II.2, i.e.: 
    

y
n
 = q       and      dq

q

q

n
dy

n

1

1
 . 

 

Then: 
 

(23)                                                    


 =   .exp

1









 dqqAq
n

C nn



  

Correspondence with 6.1.1: 
 

6.1.1                                  (23) 
 

t                                       q 

n
z




1
1        →        

n

n
z

1



 

                                                                  
n

kA                 →             
 1


nz

Ak  
 

Relation (23) becomes: 
 

(24)                                                    
 

.
11








 




n

n
A

n

C n 




  

Introducing (21) into (24), one arrives to: 
 

(25)                                                .

2

11
1



























 









 

















 






n

n

n

n

n

n

  

III: WORKING EQUATIONS.                                                                                                              
 

III.1. Discrete Form of Working Equations. 
 

The governing equation which is used to obtain u(f) is: 
 

(26)                             





dxuxP
2

)( = 



0

2
)(' dffGu

    

or    





dxxxP
2

)( = .)(

0





dffG

 
 

It is understood that “+u” and “-u” may occur at different probabilities but at the same frequency and contribute 

together to kinetic energy in the band of “f”. 
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The PDF used in this study is skew and both, left and right hand have to be considered separately during the 

integration process of (26). The integration is carried piecewise for a velocity range of  
i

x  to 
1


i

x  where the 

associated kinetic energy is 
i

G in the frequency range 
i

f
 
to

1i
f . Equation (26) becomes: 

 

(27)                                         






1

2
)(

i

i

x

x

L
dP  + 

 1

2
)(

i

i

x

x

R
dP  = .)(

1



i

i

f

f

dG 

  

The discrete expression equivalent to (27) is: 
 

 

 (28)                 
 

2

122

11

ii

iiLiiL

xx
xxPxxP







+ 

                                              +      
2

122

11

ii

iiRiiR

xx
xxPxxP







 =  .;

1


ii
ffG

 
 

We take: 
 

1i
x = 

1


ii
xx           ;               

1iR
xP =  

 
.....

1


i

iR

iR
x

dx

xdP
xP  

and 

1


i
x = 

1


ii
xx     ;              

1


iL
xP =  

 
.....

1





i

iL

iL
x

dx

xdP
xP

 
 

Then, to first order (28) becomes: 
 

(29)             
 

    





























2

122

11

i

iiLiii

iL

iL

x
xxPxxx

dx

xdP
xP  

                                             

 
 

   
2

122

11



























i

iiRiii

iR

iR

x
xxPxxx

dx

xdP
xP  =  .;

1


ii
ffG

 
 

Keeping terms up to second degree (inclusive) in ""
1


i

x , (29) reduces to: 
 

(30)                                                   
1i2

2

1i1
ΔxCΔxC


 =  

1ii
,ffΔG


           

 

where: 
 

(30a)   
1

C =     


















ii

x

R

x

L2

iiRiLi

dx

dP

dx

dP
x

2

1
xPxPx

  

(30b)   
2

C =     
iRiL

2

i
xPxPx   

 

The set of equations (30) form the Working Equations. 
 

III.2. Initiation of Calculation of Working Equations. 
 

III.2.1. Finding “
1

x ”. 
 

The initial value of  
0

x = 0 and associated PDF value is  0xP
L

=   )1(0 PxP
R

 . 

In the vicinity of 
0

x , to a good approximation: 
 

 

1

0

2
12

x

dxxP =  1;0G . 

 

The first non-zero value of “x” is x1.      
 

Hence:                                                      
           

 1;0)1(2
2

1
GxP  .  

 

Therefore: 
 

(31)                                                                     .
)1(

)1;0(

2

3
3/1

1 











 


P

G
x
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Remaining values of “
i

x ” are found with the help of the set (30) and 
1i

x = 
1


ii

xx . 

The result is a relation in numerical form like: 
 

(32)                                                                   ).( fxx 
 

 

II.2.1. Finding “k1”. We remember that:    
                                                                                

(33)                                                                    
dk

d
u


 . 

 

Using f 2 , (33) leads to: 
 

(34)                                                         




0
u

d
k  = .

'

2

0



f

x

df

u



 

 

The following practice is useful if “x” is available numerically. Then: 
 

(35)                                          
















  

1
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'

2
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f

x
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x
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u
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
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'

2
1

1



f

x
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u
k



 
 

In order to find  1k , it is proper to express x(f) as: 
 

(36)                                                 

B

b

b

f

f
xx














       or      

B
Mfx  , 

 

where “B”, “
b

x ” and  “
b

f ” can be determined once the first three (x ; f) combinations are selected from the list of 

numerical values of (32). Inserting (36) into the integral expression of k(1) in (35), one has: 
 

(37)                                                           

1

0
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2
)1(

f

B

b
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b
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x

f

u
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The result is: 
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B

f
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f

f

f

u
k

B
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In view of tabulated numerical values of (32), the far end of RHS of (35) is expressed as: 
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