
International Journal of Applied Science and Technology Vol. 6, No. 3; September 2016

1

Topological and Structural Properties of Butterfly-de-Bruin: A Product Network of

Wrap-Around Butterfly and de Bruin Networks

Osman Guzide, Ph.D.

Department of Computer Science, Mathematics, and Engineering
School of Natural Sciences and Mathematics

Shepherd University
Shepherdstown, WV25443
United States of America

Weidong Liao, Ph.D.

Department of Computer Science, Mathematics, and Engineering
School of Natural Sciences and Mathematics

Shepherd University
Shepherdstown, WV25443
United States of America

Abstract

This paper proposes and analyzes a novel interconnection network called Butterfly-de-Bruijn, which is a Product
of wrap-around Butterfly and de Bruijn Networks. This new network, as a product of Butterfly (Bn) and de Bruijn
(Dn) networks of degree n and denoted as BnDn, provides the connection among n2n2n nodes with a diameter of
|_3n/2_|, same as butterfly network, and a constant node degree of 8. We show that BnDnis symmetric, even
though it is a product of symmetric and non-symmetric networks, and it contains 2n distinct copies of Bn (wrap-
around Butterfly Network). Also shown in this paper is that BnDn supports all cycle sub graphs except those of
odd lengths when n is even and of odd lengths less than n.

Keywords: Interconnection Networks, Product Networks, Butterfly, de Bruijn

1. Introduction

As the common way to provide dedicated communication channels inside a high performance computer, the
interconnection network was historically used to provide processor-to-processor and processor-to-memory
connections. As the number of computational nodes and devices increases inside each computing system, the
interconnection network has also been adopted to provide connections to I/O devices, memory units, cache
modules and memory buffers, and processing cores and elements insider other computer systems. It therefore
creates a demand for the development of new interconnection topologies with larger cardinalities and other
desirable properties, such as being symmetric, with lower diameter, and of constant degree.

Many of these proposed topologies use modifications, extension, or enhancements to an existing topology, or the
merge of two topologies so as to benefit from the good properties of both. For instance, the cube-connected cycle,
as proposed by Preparata and Vuillemin (Preparata & Vuillemin, 1981), is a merger of a Hypercube and a ring,
which as a result possesses properties ofa low diameter from the Hypercube and a low node degree from the ring.
Hypercube is the product merged with the de Bruijnnet work (Ganesan & Pradhan, 1993) and the Butterfly
network (Shi & Srimani, 1998). In both examples, the diameter of the resulting interconnection network
topologies is the sum of diameters of the two child networks. Other examples of product interconnection networks
include Scalable Twisted Hypercube (Alam & Kumar, 2011) and Torus-Butterfly Networks (Latifah & Kerami,
Embedding on Torus-Butterfly Interconnection Network, 2012). The latter is the Cartesian product of Torus and
Enhanced Butterfly.

ISSN 2221-0997 (Print), 2221-1004 (Online) © Center for Promoting Ideas, USA www.ijastnet.com

2

Butterfly is a popular interconnection network used in parallel computing, and it is also used in peer-to-peer
networks (Datar, 2002)(Tang, Hu, Zhang, Zhang, & Ai, 2003).The wrap-around Butterfly (Wagh & Guzide,
2005)network (denoted as Bn) has 2n times more nodes than regular butterfly network and is of the same diameter.
Each wrap-around Butterfly network Bn(degree 4) has n2n nodes each labeled with a pair (I,X), where I is an
integer between 0 and n-1 and X is a binary vector of length n. There are four edges from each node (I,X) going to
(I+1,X), (I+1;X2I), (I-1;X) and (I-1;X 2I-1) where denotes eXclusive OR (XOR) operation of two vectors.
Due to its properties of being symmetric and of small diameter of only |_3n/2_|, the wrap-around butterfly
network is very attractive in many applications. It is employed to implement mappings of many signal processing
algorithms such as the fast Fourier transform as well as many basic structures such as cycles and trees. In addition
to wrap-around Butterfly network, research has been done on other modified versions of Butterfly networks.
Examples are Extended Butterfly Networks (Guzide & Wagh, Extended Butterfly Networks, 2005) and Enhanced
Butterfly Networks (Guzide & Wagh, Enhanced Butterfly : A Cayley Graph with Node 5 Network, 2007).

The de Bruijn Network is a hypercube network (of a fixed degree) that is derived from de Bruijn Graphs (Zhang
& Lin, 1987)(Baker, 2011). It has been shown that a de Bruin graph(Baker, 2011), denoted as Dn, is a directed
graph with dn nodes labeled by n-tuples over a d-character alphabet. If d=2, Dn will have 2n nodes that can be
labeled with a bit representation (n bit) of the numbers 0, 1, …, 2n-1.
In the graph, vertices are connected if the label of one end is the left or right shifted sequence of the other end, or
it is the left or right-shifted sequence of the other end and differs correspondingly in the first or last bit. In this
paper, we present a new Interconnection network based on the wrap-around Butterfly network and de Bruijn
network. We show that by proper integration of the product of the wrap-around Butterfly Network Bn and de
Bruijn Network Dn(2

n distinct copies of Bn), it is possible to derive a new symmetric network from the product of
a symmetric network and a non-symmetric network, We name the resulting network as Butterfly-de-Bruijn and
denote it as BnDn. A BnDn network of n×2n×2n nodes will possess desirable properties such as a constant node
degree of 8 and a diameter of BnDn is |_3n/2_| (equal to that of Bn).

As shown in later section of this paper, Bn Dn contains 2n disjoint Bn copies as sub graphs, and can therefore
support up to 2nindependent algorithms designed for Butterfly networks. It also supports cycle and tree mappings
much better than many other networks. We give here results for cycle sub graphs showing that in a BnDn network,
when nis odd, cycles of all lengths up to n×2n×2n (except odd lengths less than n) are sub graphs of BnDn. When n
is an even, all even length cycles are sub graphs of BnDn. The rest of this paper is organized as follows. Section 2
describes elementary properties of a Butterfly-de-Bruijn networks as a product of Butterfly and de Bruijn
Network. Section 3 presents and discusses other properties of the proposed product networks, including its routing
strategy, diameter, and cycle sub graphs. We summarize this paper in Section 4.

2 Elementary Properties of Butterfly-de-Bruijn

Let Zn denote the group of integers {0, 1, … ,n-1} with the operation of addition modulo n and Zn
2, the group of

binary vectors of length n under the operation of bit-by-bit modulo 2 addition of degree n ≥3, is defined as a graph
onn2n2n nodes labeled by triples (p, X, Y) where p∈Zn and X,Y∈Zn

2. As shown in Figure 1, a node in Butterfly-
de-Bruijn (BnDn) is connected to the eight nodes. Let us denote the integer p and the vector components X and Y
in a node label (p, X, Y) as the first, second and the third indices of the node respectively. The eight edges from
the node of BnDn are labeled f,f-1, g, g-1, h, h-1, i, and i-1, as shown in Figure 1.

Note that edges of BnDn are bidirectional. In particular, for u, v ∈BnDn, f(u) = v implies f-1(v) = u,g(u) = v implies
g-1(v) = u, h(u) = v implies h-1(v) = u, and i(u) = v implies i-1(v) = u. Since every node of BnDn has a fixed node
degree of 8, there are a total of n×2n+2×2n+1edges in BnDn.

International Journal of Applied Science and Technology Vol. 6, No. 3; September 2016

3

Figure 1: Connections from node (p, X, Y) in Butterfly-de-Bruijn Networks.

BnDn is a symmetric network. BnDn is the product of Butterfly and de Bruijn Networks and closely related to the
popular wrap-around Butterfly Bn. Recall that Bnis a graph on n×2n nodes, each with a label (p, X), where p∈ Zn
and X ∈Zn

2. By comparing the Bnwith the above definition of BnDn, the following can be observed.

Theorem 1.BnDn contains 2n disjoint copies of Bn sub graphs.

Proof. Partition the nodes of BnDn in 2n sets based on the first and second indices. Denote the set of nodes in a
partition where all nodes have the same last index Y byBnDn(*, *, Y). To show that the sub graph on nodes
BnDn(*, *, Y) is isomorphic to Bn, define a mapping(p,X) : BnDn(*,*,Y)ᵠp:BnDn(*, *, Y) →Bn as ᵠp(p, X, Y) =
(p,X). It is clear that ᵠp (.) is a one-to-one onto mapping. Further, the edges within BnDn(*,*,Y) are exactly
mapped ontothe edges of Bn. For example, consider the edge(p,X,Y) → (p, X 2p) of BnDn(*,*,Y). Byusing the
mapping ᵠp (.), this edge translates to theedge (p, X 2p)→ (p,X) of Bn. Therefore, index Y has 2n member of Bn.

Theorem 1 implies that 2n instances of any algorithm designed to run on Bn networks can berun on BnDn networks
without suffering any performance degradation. In addition, these instances can exchange information using the
additional links present in BnDn networks. This structure also suggests a possibility of being able to map other
algorithms on BnDn. In Section 4 we can see how to exploit the relationship between BnDn and Bn to develop cycle
mappings on BnDn.

3. Analysis and Other Properties of Bn Dn Networks

3.1 Routing Strategy

Routing strategy and diameter are important properties of any interconnection network. For the sake of efficient
implementation of parallel algorithms, it is desirable to have a low diameter and a good routing strategy. Herein
we provide an algorithm and strategy to obtain paths between nodes of BnDn networks.

Simple Path Algorithm to Go from (p1, X1, Y1) to(p2,X2, Y2) in|_3n/2_|Hops.

Step 1: Increase the second and third indices cyclically until the second and third indices becomes X2 and

Y2 respectively.

For p = p1 to pk, k=p1-1.
Let the current node be (p1,X, Y).
If X and X2 match and Y and Y2 match in the (p)-th bit, then use edge f or g or h and go to node (p + 1,
X,Y) or (p + 1, X 2p,Y) or (p + 1, X,Y 2p) or (p + 1,X 2p , X 2p).

Step 2: Increase the first index cyclically to p2.

Let the current node be (pk, X2, Y2).
If -(n/2) ≤(p2-pk) ≤ (n/2), then travel along edges f till the second index becomes p2. Otherwise, continue
along edges f-1 till the second index becomes p2.

ISSN 2221-0997 (Print), 2221-1004 (Online) © Center for Promoting Ideas, USA www.ijastnet.com

4

The correctness of the above path algorithm can be shown as follows. Note that in steps 1 of the algorithm, the
first index increases by 1 at every hop. Thus in each hop, they can modify a different bit of the second and third
indices. Together these steps use n hops and can therefore modify all then bits of the second and third indexes to
make it X2 and Y2. Clearly, within these first n hops, the first index will become p2 since ((p2- p1) mod n) < n.

Finally, after the second step of the algorithm, the maximum distance between the first index and p2 is at most
|_n/2_|since one cango cyclically to approach p2 from either direction by using edges forf-1. Thus the last step of
the algorithm uses at most |_n/2_|hops. Consequently, this algorithm provides a path of length at most
|_3n/2_|between any pair of nodes in BnDn. To illustrate this algorithm, consider the path from node (4, 111111,
111111) to node (2, 000000, 000000) in B6D6.According to step 1 of the path algorithm, one would use 5 hops
along edges g or f as follows:

(4. 111111, 111111) → (5, 101111, 101111) → (0, 001111, 001111) →(1, 001110, 001110) →
(2,001100, 001100)→ (3,001000, 001000)→ (4,000000, 000000).

The step 2 of the algorithm then suggests that we should use 2 more hops along edge f-1to modify the successive
bits of the first index to match the destination. These two hops are as follows:

(4,000000, 000000) → (3,000000, 000000) → (2,000000, 000000).

Since in the present case one needs to change the first index from 4 to 2, using edges f-1 is prudent. These last two
hops are:

(4,000000, 000000) → (3,000000, 000000) → (2,000000, 000000).

It should be noted that the above algorithm may not give an optimal path between the two nodes. But it is a simple
algorithm and suffices to specify the diameter of BnDn as the following theorem illustrates.

3.2 Diameter of Butterfly-de-Bruijn

Theorem 2 (Diameter of BnDn). Diameter of Butterfly-de-BruijnBnDnis|_3n/2_|.

Proof. As shown by the path algorithm given above, a path of length at most |_3n/2_| exists between any pair of
nodes in BnDn. Therefore, to prove the theorem we merely have to show that |_3n/2_| is also the lower bound on
the diameter. Following Theorem 1,we know that BnDn contains n copies of Bn sub graphs. Consider two nodes of
BnDn which lie in the same copy of a Bn sub graph. It is obvious that the shortest path between the nodes uses only
the edges of that sub graph. The distance between these two points in BnDn is the same as the distance between the
corresponding points of the graph Bn. Thus the diameter of BnDn cannot be more than the diameter |_3n/2_| of Bn.

Theorem 2shows that even though the Product of the wrap-around Butterfly Network and de Bruijn BnDn has 2n
times as many nodes as a wrap-around Butterfly Bn, its diameter is the same as that of Bn. It is interesting to note
that the path algorithm presented in this section uses edges f, g, h and i only. Therefore if one were to construct a
directed graph BnDn which uses only these four edges, then the node degree would drop to 4, but the diameter
would remain unchanged at |_3n/2_|.

3.3 Cycle Sub graphs

As indicated in Theorem 1 as shown in Section 2, Bn Dn contains 2n disjoint copies of wrap-around Butterfly
networks Bn. We use this fact to obtain larger cycle sub graphs of Bn Dn by merging smaller cycle sub graphs
located in these copies. To facilitate this, we first restate the following result from [6] that relates to the cycle sub
graphs of Butterflies.

Theorem 3 (Cycle Sub graphs of Bn) [6]. Cycles of all lengths L are sub graphs of Bn except when:

a. odd L when n is even.
b. odd L less than n.
c. L = 6 when n = 5 or n ≥7.
d. L = 10 when n = 7, n = 9 or n ≥11.

This paper does not intend to discuss the designs of cycles in Bn. It is sufficient to note that for lengths smaller
than 4×n, these cycles are generated using a template given in [6].For larger lengths, one first obtains a cycle sub
graph of length L’ such that n|L’ and L – L’ is a small eve number that is smaller than or equal to 2(n-1). One can
then attach up to (n-1) additional pairs of nodes to this cycle to get the length L cycle. Cycle sub graphs of length
L’ are obtained by judiciously picking edges h and i (see Fig. 1 for the edge naming convention) to form the
cycle. Recall that BnDn contains 2n distinct copies of Bn, each made up of those nodes of Bn Dn which have the

International Journal of Applied Science and Technology Vol. 6, No. 3; September 2016

5

same first index. By identifying cycle sub graphs in these copies of Bn and merging them together, one can get the
desired cycle sub graphs of BnDn.

The following two lemmas can be used as guidelines to carry out this merging.

Lemma 1 (Cycle Merging using Edges g).Given a node pair u, v єBnDn connected by an h-edge, i.e.,h(u) = v,
there exists another node pair z,w єBnDn, also connected by an h-edge, i.e. w = h(z) such that g(u) = z and g(v) =
w. Further, the four nodes v, u,w, and z are distinct.

Proof: Let u = (p, X, Y). Then, v = h(u) = (p+1, X, Y 2p). One can verify that the nodes z = (p + 1, X, Y)and w
= h(z) = (p +1+1,X,Y) satisfy the required conditions of the lemma.

Figure 2 illustrates the connections specified in Lemma 1. Note that nodes u and v in this figure belong to the
same copy of Bn (they have the same second index) and w and z to another copy. One can relate node pairs in
different copies of Bn by h edges as well. This is given in Lemma 2.

Lemma 2 (Cycle Merging using Edges f). Given a node pair u, v єBnDn connected by an h-edge, i.e.,h(u) = v,
there exists another node pair z,wєBnDn, also connected by an h-edge, i.e. w = h(z) such that f(u) = z and f(v) = w.
Further, the four nodes v, u,w, and z are distinct.

Figure 2: The connection of four nodes in BnDn.

Proof: One can verify that the nodes u = (p, X.Y), v = (p+1,X, Y 2p), z = (p + 1, X,Y 2p) andw = (p+1+1, X,
Y 2p) satisfy the required conditions of the lemma.

Before we identify the cycle sub graphs of BnDn, now let us first present a result that imposes a fundamental limit
on the cycle sub graphs of BnDn.

Theorem 4 (Impossible Cycle Sub graphs of BnDn). Cycles of the following lengths L are never sub graphs of
BnDn:

a. Odd L when n is even.
b. Odd L less than n.

Proof: For an even n, partition the nodes of BnDn into two sets based upon on whether the sum of the first two
indices of a node is even or odd. Once can see clearly that all BnDn edges go only between these sets an, BnDn is a
bipartite graph for even n and therefore cannot support odd length cycle sub graphs. Now consider a length L, L <
n, cycle sub graph of BnDn. Since L < n, there exists an integer k,0 ≤k < n such that no node on the cycle has the
form(n-k-2,X,Y). Replace each node (p, X,Y) of the cycle by node ((p-k -1) mod n, X,Y).

Note that this does not change the cycle connectivity. The new cycle of the same length L will not haveany node
whose first is n - 1. Consequently, this new cycle will not use any wrap-around edges (i.e., edges that go between
nodes whose first or second index changes from n-1 to 0). Thus along this cycle, the sum of the first two indices
of the nodes traversed alternates between odd and even. This implies that the cycle length L < n must be even.

We now state the main result of this section.

Theorem 5 (Cycle Sub graphs of BnDn). Cycles of all lengths, except those identified in Theorem 3, are sub
graphs of BnDn.

ISSN 2221-0997 (Print), 2221-1004 (Online) © Center for Promoting Ideas, USA www.ijastnet.com

6

Proof: Recall that nodes of BnDn can be partitioned into2n distinct copies of Bn. By virtue of Theorem3, cycle sub
graphs of all lengths up to n2n2n(except of lengths 6 and 10) specified in Theorem 5 exist inBnDn. Cycle sub
graphs of length 6 and 10 may be directly constructed in BnDn as:

(0,0,0) → (1,0,0) → (2; 2; 2) → (1; 2; 3) →(2,0,1) → (1,0,1) → (0; 0; 0).
(0, 0,0) → (1, 0,0) → (2,0, 0) → (1, 1,0) → (2,3,2) → (1, 3,2) → (2, 3,2) → (1,1,0) →
(0, 1,0) → (1,1,1) → (0; 0; 0).

To obtain cycle sub graphs of lengths greater than n2n,one may first design cycle sub graphs on multiple copies of
Bn, and then merge them using Lemma 1 or Lemma2. Recall that the cycles in each copy of Bn use only edges.

The merging process using Lemma 2 is illustrated in Figure 3.

It is evident from Figure 3 that the merging of cycles in p-th and (p+1)-th copies of Bn is possible if there exists an
edge (p, X,Y) → (p+ 1,X, Y 2p) in the first cycle and an edge (p + 1,X,Y) → (p + 1+ 1, X,Y 2p) in the second
cycle. However, the index Y of all the nodes in a cycle maybe incremented by the same amount without
destroying the cycle connectivity. Therefore the only requirement for merging the cycles in the two copies of Bn
is the existence of an edge (p, X, Y) → (p+1, X ,Y 2p)in the first cycle and an edge (p + 1, X , Y 2p) →
(p+1+1,X , Y 2p) in the second cycle for arbitrary Y1 and Y2. If one of these cycles has a length of at least 2n-1,
then this requirement can be met if the other cycle has an i edge. If the other cycle has only h edges, then one may
use Lemma 1 in place of Lemma 2 in this proof. Thus cycles of all possible lengths 3≤L ≤n2n2nare sub graphs of
BnDn.

Figure 3: Merging cycles in two Bn sub graphs by removing the f-edges and adding h-edges between point

su = (p, X, Y), v = (p+1, X, Y 2p), z = (p+1, X, Y) and w = (p + 1+1, X , Y 2p).

4. Conclusions

This paper describes and discusses BnDn, a product network of Butterfly (Bn) and de Bruijn (Dn) networks of
degree n. BnDn contains 2n distinct copies of Bn and therefore can run 2n different algorithms designed for
Butterfly networks without performance slowdown. The interconnection between these copies preserves all the
desirable properties of the Butterfly network. The novel product network BnDn is a symmetric network with n2n2n
nodes and a constant node degree. It has a diameter equal to that of Bn, i.e.,|_3n/2_|. We have obtained a
comprehensive solution to the problem of cycle sub graphs of BnDn. We have shown that BnDn does not have odd
length cycles of lengths less than n. When n is odd, all cycles of length larger than n are sub graphs of BnDn.
When n is even, all even length cycles are supported. It is instructive to compare the properties of BnDn with those
of the Hyper-Butterfly (Shi & Srimani, 1998). The Hyper-Butterfly Hm is obtained by combining a Hypercube of
degree m,Hm with Bn to get a network with n2m+nnodes.Clearly, this may be much larger than the number of nodes
n2n2n of BnDn. On the other hand, BnDn has a constant node degree of 8 as compared with the no degree m + 4 of
a Hyper-Butterfly. Similarly, the diameter of BnDn is only |_3n/2_|as compared with the diameter m+ |_3n/2_|of
the hyper-Butterfly.

References

International Journal of Applied Science and Technology Vol. 6, No. 3; September 2016

7

Alam, J., & Kumar, R. (2011). STH: A highly Scalable and Economical Topology for Massively Parallel
Systems. Indian Journal of Science and Technology, 4(12), 1737-1748.

Baker, J. (2011). De Bruijn Graphs and Their Applications to Fault Tolerant Networks. Oregon: Oregon State
University (Master Thesis).

Datar, M. (2002). Butterflies and Peer-to-Peer Networks. Proc. of the 10th European Symposium on Algorithms
(pp. 310-322). BerlinHeidelberg: Springer.

Ganesan, E., & Pradhan, D. K. (1993, September). The Hyper-de Bruijn networks: Scalable versatile architecture.
IEEE Trans. on Parallel and Distributed Systems, Vol. 4, pp. 962-978.

Guzide, O., & Wagh, M. D. (2005). Extended Butterfly Networks. Proc. of the The 18th Int. Conf. on Parallel and
Distributed Computing Systems, (pp. 109-113). Las Vegas, NV.

Guzide, O., & Wagh, M. D. (2007). Enhanced Butterfly : A Cayley Graph with Node 5 Network. ISCA PDCS,
(pp. 224-229).

Latifah, E., & Kerami, D. (2012). Embedding on Torus-Butterfly Interconnection Network. International Journal
of Apllied Information Systems (IJAIS), Vol. 4. No. 12, 38-41.

Latifah, E., & Kerami, D. (2012). Structural Properties of Torus-Butterfly Interconnection Network. International
Journal of Computer Applications (IJCA), 46(16), 31-35.

Preparata, F. P., & Vuillemin, J. (1981, May). The cube-connected cycles: a versatile network for parallel
computation. Communications of the ACM, pp. 300-309.

Shi, W., & Srimani, P. K. (1998). Hyper Butterfly network: A scalable optimally faults tolerant architecture.
Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing (pp. 732-736). Orlando, FL: IEEE Press.

Tang, Y., Hu, Z., Zhang, Y., Zhang, L., & Ai, C. (2003). A Practical Peer-Performance-Aware DHT. 2nd Int.
Workshop on Agents and Peer-to-Peer Computing (pp. 193-200). Melbourne, Australia: Springer Berlin
Heidelberg.

Wagh, M. D., & Guzide, O. (2005). Mapping Cycles and Trees on Wrap-Around Butterfly Graphs. SIAM Journal
on Computing, 35, 741-765.

Wagh, M. D., Math, P., & Guzide, O. (2000). Cyclic-cubes and Wrap-around Butterflies. Information processing
letters, 75(1), 25-27.

Zhang, F., & Lin, G. (1987). On the de Bruijn-Good Graphs. Acta Math. Sinica 30 (2), 195-205.

