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Abstract

Since distributions of qualitative variables can be represented by multinomial distributions, the role of
multinomial distribution in entropy considerations is essential in statistics. Moreover for larger sample sizes
multinomial distributions can be approximated well by multivariate normal distributions. The measures of
qualitative variations depend on either class frequencies or some functional forms of class frequencies. Therefore
the connection between qualitative variation statistics and normality seems straightforward for larger sample
sizes. Asymptotic distributions of Shannon, Rényi and Tsallis entropies make some hypothesis testing and
inferential techniques applicable to qualitative variations because some entropy measures are also frequently used
in qualitative variation calculations. In this study, first we will give few examples of such applications by three
entropy measures. Then we make a comparison between the performances of these three entropy measures.
Finally, the degree of uncertainty, which is a significant factor that affects the speed of convergence to normality,
is emphasized.
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Introduction

For Boltzmann, the entropy of a physical system is the measure of disorder. The entropy of statistical mechanics
is Boltzmann’s constant times the natural logarithm of the number of possible states. The entropy of a statistical
experiment, on the other hand, can be evaluated as a measure of uncertainty before a statistical experiment takes
place. So in a statistical sense, entropy and the amount of information are two closely related concepts. Since,
uncertainty is not present after experimentation; entropy can be viewed as the amount of information that can be
gathered through sampling.

For some introductory concepts and applications of statistical entropy, one can refer to Renyi (2007-a, 2007b),
Pierce (1980), Khinchin (1957), Ash (1990), Cover and Thomas (2006) and Reza (1994). For more advanced
topics in entropy (and especially for statistical applications of entropy concepts) Pardo (2006), and Esteban &
Morales(1995) should be highlighted. Finally as a comprehensive study on different entropy measures, Ullah A.
(1996) should be emphasized.

Some of the frequently used entropy measures are Shannon, Rényi and Tsallis entropies. Among them maybe the
most popular one is Shannon entropy. Rényi entropy has gained popularity, recently, especially for the purposes
of information sciences. The role that Rényi entropy played in machine learning is crucial (Principe, 2010).
Another popular entropy measure, which is based on a different parameterization technique, is Tsallis entropy.
Gini Concentration Index is a special case of Tsallis entropy as well as Shannon entropy is the limit of Rényi
entropy as o approaches to unity. Therefore Rényi and Tsallis entropies serve as envelopes to bring researchers
more flexibility for further analysis.
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Qualitative Variation, Entropy and Multinomial Distributions

Especially, when the random variable is qualitative, it is impossible to calculate the mean, variance and standard
deviation. In such cases, measures based on frequencies of each category are to be used to measure qualitative
variation. Among several qualitative variation measures, entropy measures have gained familiarity, recently.
Finally, it should be noted that a suitable form of multinomial distribution could model a qualitative distribution.

The Relation between Entropy Measures and Multivariate Normality

Increasing the sample size of the binomial distribution with parameter 6 tends to a normal distribution with mean
nf and variancend (1 — 68). A similar result holds for the multinomial distribution. If the probability that a
random observation comes from the ith class is m; (i=1, 2, k), then the observed frequencies f; will tend to a
multivariate normal distribution with means nm; and the as sample size n increases indefinitely (Agresti, 2002).
The variance-covariance matrix V will be given as below;

[71 1 —my —T41 T, —7T17Tk]
V= nl —my; TM(l—my - ~T2my | (1)
—TT1 T e [ (1 - T[k)

Delta Method for Function of Random Variable and Asymptotic Normality
Let T,, denote a statistic based on a sample size n. For large sample sizes, suppose that T,, is approximately
normally distributed about & with approximate standard error G/\/H . More precisely, as n — oo, the cdf of

\Vn(T,, — 0) converges to a N(0, 52) cdf. Then

da
Vn(T, — 6) > N(0,0%) (2)
For a function g which is at least twice differentiable, the limiting distribution of g (T;,) can be derived as

a / 2
Vi(g(T) = g(0) > N(©O,a*[g@)]) @)
This, which is called as “delta method”, forms the necessary link between entropy estimators and asymptotic
normality.
Shannon Entropy

Let the discrete random variable X takes on the valuex;, x,, ..., xgWith respective probabilitiespy,p,, ..., pk-
Shannon entropy is defined as

Hy = — EiL 1 pilogp, (4)
The unit of entropy is bit if the base of the logarithm is taken to be 2 and nat if the base is Nauperian (Garcia,
1994). In case of maximum heterogeneity (i.e., the each probability is equal to each other)H; = logK.The upper
limit of Shannon entropy depends on the number of categories; K. Let A is the estimator of Shannon entropy. It is
calculated as
H=-%L pilogp; (5)

Here p; probabilities are estimated by maximum likelihood method. Although this estimator is biased, increasing
the sample size can reduce the amount of bias. The variance of Shannon entropy is found as (Zhang Xing, 2013).

Var(A) = - (B, piin?p; — H2) + 5+ 0(n™%)) (6)

2n
Note that H can be normalized dividing it by “log K”. In this case the variance of this normalized version can also
be obtained easily because of the linear relationship between Shannon entropy and its normalized version. Since
log K is greater than one, one can use standardized versions to decrease variability.

Rényi Entropy
Rényi entropy is defined as

K a
Hp =922 for g>0and a1 (7)

1-a
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Rényi entropy is also called as a type of entropy (Ullah, A., 1996). As the parameter aapproaches unity, Rényi
entropy approaches to Shannon entropy. Thus Shannon entropy is a special case of Rényi entropy. Pielou suggests
using Rényi entropy with @ = 2 as a diversity index (Fattorini, 2003). The variance of Rényi entropy is given as
follows (Pardo, 2006);
~ 1 2 -2 _ 2
Var(Hp) ==~ [(ﬁ) (B p®) ™ (B, p2et - (K, pf) )] ®)

n

Note that normalized versions of Rényi entropies can be formulated directly as discussed in (1.3). Like Shannon
entropy, the value of Rényi entropy is log K in case of maximum entropy.

Tsallis Entropy
Tsallis (or Havrda-Charvat) entropy is known as

_yK ,a
HTzli:l%;pl’for a>0and a#1 )

For a = 2 Tsallis entropy is identical to Gini Concentration Index. The variance of this entropy estimator is
(Pardo, 2006);

VaT(HT) == [(L)Z ( 5:1 Piza_l - (25:1 Pla)z)] (10)

nj|\a-1

_pl-a
The maximum value of Tsallis entropy can be calculated as : aK—l by setting p; = % in equation (9). It should
also be noted that parameterization (i.e., choosing alpha value arbitrarily) does have an effect on maximum
entropy as well as the number of categories. Unlike Shannon and Renyi entropies this quantity may be greater
than or less than unity. So when one considers Tsallis entropy, using normalized version to decrease variability
may not work all the time.

Asymptotic Sampling Distributions of Entropy Measures

In literature there are other entropy measures than Shannon, Rényi and Tsallis entropies. For asymptotic
properties of entropy estimators one can refer to Pardo (2006) and Esteban & Morales (1995). To summarize let
H be any entropy estimator whose expected value is H = E(H). If the number of categories K is finite, and the
H-H
Jvar (H)
entropy estimators are biased but the amount of bias is low especially when sample sizes are large enough.
Therefore an approximate 100(1 — a)% confidence interval for any entropy measure can be obtained as

qH=+ Za/Z\/ Var(H)(11)

Here Za/2 value is the abscissa of standard normal variable corresponding to a right-tail probability of “/2. For

some hypothesis testing examples on some entropy measures, one might refer to Magurran (1988) and Agresti
(1978). For testing the equality of entropies of two populations by all three measures (Shannon, Rényi and Tsallis
entropies), we consider two hypothetical frequency distributions on marital status of some people as shown in
Table 1. The summarizing statistics on three entropy measures; Shannon entropy; Rényi entropy (0=2), Tsallis
entropy (0=2) are given in Table II. Since all three measures distribute normally asymptotically, and the
probability distributions of each community on marital status are assumed to be independent, the following
hypothesis testing procedure will be repeated for three entropy measures:

H,: Entropies are equal

H,: Entropies are not equal

Test statistic T is calculated as
T —

- \/Variance of entropy of A+Variance of entropy of B

fits standard normal distribution. It should be noted that

sample size is sufficiently large, the statistic

Estimated entropy of A—Estimated entropy of B ( 2)

Assume 0=0.05

Decision rule:

Accept Hy, if—-196<T <1.96
Reject H, otherwise.

By any of these three measures, we can conclude that entropies are not equal as shown in Table I11.
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Simulation Study

52 different simulations on 6 different categorical distributions are run to analyze asymptotic behavior of 9
different entropy measures. Simulations are realized by macros on Microsoft Excel. Entropy measures that are
under consideration are Shannon, Rényi for &« = 0.5,0.99,1.5,2 and Tsallis for « = 0.5,0.99,1.5,2. The six
probability distributions used in simulations are given in Table IV, Table VV and Table VI.

Results
Simulation results on normality of entropy estimators for 52 trials are given in Table VII.

1. All entropy measures underestimate population entropies. Yet the bias is small.

2. All entropy measures are very highly correlated to each other. To give a better impression on this, the
correlation matrix of entropy estimators for 34th model is given in Table VIII, since all models have this property
more or less.

3. The coefficients of variation for different (normalized) entropy measures vary between 0.01% and 14.7%. Yet,
it is generally the case that coefficients of variation scores are frequently very low. The minimum, average and
maximum values for coefficients of variation (for normalized versions) are given in Table IX. It can also be
verified that minimum range scores are generally obtained for Shannon and Ré(0.5) entropies. This situation is
summarized by Figure I.

4. As a general tendency, distributions of entropy estimators tend to normality, as sample sizes and number of
runs increase indefinitely. One exception is the case of maximum entropy (i.e., uniform distributions) where the
rate of convergence to normality is low. This phenomenon should be underlined. For other instances, normality
can be reached even for smaller sample sizes (250 or higher). As an example, the frequency distributions of all
entropy measures for 34th model are given in Table X.

The non-normality of R&(0.99) and Tsa(0.99) entropies are probably due to the fact that these two entropies are
undefined at « = 1. Other entropy measures seem fit well some forms of normal distribution. Note that
normality tests of various entropy measures are realized by NCSS (2004). For illustrative purposes, the tendency
of entropy measures to normality for 34th model can be checked by Figure Il. Although it is impossible to
summarize all entropy statistics, it can still be said that all entropy measures studied by 34th simulation have the
normality property.

Conclusion

Asymptotic normality of nine entropy measures for some hypothetical multinomial populations is studied.
Normalized versions of various entropy measures are considered to be able to make sound comparisons since
different alpha values correspond to totally different transformations on probabilities.

The first result is that all entropy measures whether they are normalized or not, are highly and positively
correlated to each other. This is important because one can arbitrarily select any of these entropy measures for
further analysis. Yet we recommend considering normalized versions. Because in such cases, all normalized
entropy scores fall between zero and one, a property which facilitates statistical tests on equality of means.
Besides when considering Shannon and Rényi entropies, using normalized versions is beneficial because of lower
variances. Secondly, the normality of all nine entropy measures seems apparent as sample sizes and number of
runs increase indefinitely.

The third result is that in case of maximum entropy, the rate of convergence to normality is low. This is a factor
that affects the validity of interval estimates and hypothesis-tests based on asymptotic normality. In such cases
some probability inequalities like Chebyshev’s inequality may be useful due to the fact that the asymptotic
variances of these entropy measures are relatively low.
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Tables
Table I: Two hypothetical distributions on marital status of some people

Group Single Married Separated Divorced | Widowed Total
A 340 232 201 105 122 1000

P(A) 0.34 0.232 0.201 0.105 0.122 1
B 320 196 188 144 152 1000

P(B) 0.32 0.196 0.188 0.144 0.152 1
Table I1: Summarizing statistics of three entropy measures on two frequency distributions
Summarizing Statistics Group A Group B
Shannon's Entropy 2.195133 2.255867
Reényi'sEntropy(a=2) 2.084768 2.184425

Tsallis' Entropy(a=2) 0.764266 0.78
Estimated Variance of Shannon's Entropy 0.000347 0.000201
Estimated Std. Deviation of Shannon's Entropy 0.018617 0.014163
Estimated Variance of Rényi's Entropy 0.000527 0.000417
Estimated Std. Deviation ofRényi's Entropy 0.022946 0.020409
Estimated Variance of Tsallis' Entropy 2.93E-05 2.02E-05
Estimated Std. Deviation of Tsallis' Entropy 0.005409 0.00449

Table I11: Test Statistics for three entropy measures

Entropy Measure Test statistics (T)

Shannon entropy -2.596
Rényi entropy -3.245
Tsallis entropy -2.238

Table IV: First and second probability distributions used for random number generation

Category Probability Category Probability
1 0.25 1 0.125
2 0.25 2 0.125
3 0.25 3 0.25
4 0.25 4 0.5
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Table V: Third and fourth probability distributions used for random number generation

Category Probability Category Probability
1 0.167 1 0.05
2 0.167 2 0.05
3 0.167 3 0.1
4 0.167 4 0.1
5 0.167 5 0.2
6 0.167 6 0.5
Distribution no. 3 Distribution no. 4

Table VI: Fifth and sixth probability distributions used for random number generation

Category Probability Category Probability
1 0.1 1 0.05
2 0.1 2 0.05
3 0.1 3 0.05
4 0.1 4 0.05
5 0.1 5 0.05
6 0.1 6 0.05
7 0.1 7 0.1
8 0.1 8 0.1
9 0.1 9 0.1
10 0.1 10 0.4
Distribution no. 5 Distribution no. 6

Table VII: Simulation results on normality of entropy estimators for 52 trials.

Simulation Distribution No Explanation Sample Size Number of runs Normality ?
1 1 Max. Ent.Dist. 50 250 No.
2 1 Max. Ent.Dist. 50 500 No.
3 1 Max. Ent.Dist. 500 250 No.
4 1 Max. Ent.Dist. 500 505 No.
5 1 Max. Ent.Dist. 1000 502 No
6 1 Max. Ent.Dist. 1000 1000 No.
7 1 Max. Ent.Dist. 2000 500 No
8 1 Max. Ent.Dist. 2000 1000 No.
9 1 Max. Ent.Dist. 4000 500 No.
10 1 Max. Ent.Dist. 4000 1000 No.
11 2 50 250 No
12 2 50 500 No.
13 2 500 250 Mostly yes.
14 2 500 505 Mostly yes
15 2 1000 502 Mostly yes.
16 2 1000 1000 Mostly yes.
17 2 1000 2000 Mostly yes.
18 2 2000 1000 Mostly yes.
19 2 2000 2000 Mostly yes.
20 2 2500 351 Yes.
21 2 2500 553 Yes.
22 3 Max. Ent.Dist. 50 618 No.
23 3 Max. Ent.Dist. 250 290 No.
24 3 Max. Ent.Dist. 500 501 No.
25 3 Max. Ent.Dist. 2500 250 No.
26 3 Max. Ent.Dist. 2500 500 No.
27 3 Max. Ent.Dist. 1000 1000 No.
28 4 50 273 Partly no.
29 4 50 618 Partly no.
30 4 50 1155 No,.
31 4 250 290 No
32 4 500 250 No.
33 4 500 500 No.
34 4 1000 1000 Mostly yes.
35 4 2500 250 Partly yes.
36 4 2500 500 Yes.
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37 5 Max. Ent.Dist. 250 250 No.
38 5 Max. Ent.Dist. 250 500 No.
39 5 Max. Ent.Dist. 250 1500 No.
40 5 Max. Ent.Dist. 500 250 No.
4 5 Max. Ent.Dist. 500 500 No.
42 5 Max. Ent.Dist. 500 1000 No.
43 5 Max. Ent.Dist. 1000 1000 No.
44 5 Max. Ent.Dist. 2500 250 No.
45 6 250 250 Mostly yes
46 6 250 500 Partly yes.
47 6 250 1500 No.
48 6 1000 1000 Mostly yes.
49 6 1000 4000 Yes.
50 6 2972 2000 Yes
51 6 4000 500 Mostly yes.
52 6 4000 1000 Mostly yes.
Table VI11: Correlation matrix of entropy estimators for model 34
Shannon | Ré(0.5) | Ré(0.99) | Ré(L5) Ré(2) Ts(05) | Ts(0.99) | Ts(15) | Ts(2)
Shannon 1 0.98 0.84 0.99 0.97 0.98 0.84 0.99 0.97
Ré(0.5) 0.98 1 0.83 0.95 0.91 0.99 0.83 0.95 0.91
Ré(0.99) 0.84 0.83 1 0.83 0.82 0.83 1 0.83 0.82
Ré(1.5) 0.99 0.95 0.83 1 0.99 0.95 0.83 0.99 0.99
Ré(2) 0.97 0.91 0.82 0.99 1 0.91 0.82 0.99 0.99
Ts(0.5) 0.98 0.99 0.83 0.95 0.91 1 0.83 0.95 0.91
Ts(0.99) 0.84 0.83 1 0.83 0.82 0.83 1 0.83 0.82
Ts(1.5) 0.99 0.95 0.83 0.99 0.99 0.95 0.83 1 0.99
Ts(2) 0.97 0.91 0.82 0.99 0.99 0.91 0.82 0.99 1
Table IX: Coefficients of Variation for various normalized entropies
Coefficient of Variation
Index Minimum Mean Maximum Range
SH 0.000242 0.010516 0.03676876 0.036527
Ré(0.5) 0.0001354 0.0101 0.05907258 0.058937
Ré(0.99) 0.0048117 0.025334 0.13464958 0.129838
Ré(1.5) 0.0003991 0.026556 0.12136609 0.120967
Ré(2) 0.0004916 0.03449 0.14731634 0.146825
Tsa(0.5) 0.0001877 0.014241 0.08300134 0.082814
Tsa(0.99) 0.0049494 0.025838 0.13448719 0.129538
Tsa(1.5) 0.0002767 0.019177 0.08900824 0.088732
Tsa(2) 0.0001928 0.018698 0.09058598 0.090393
Table X: Normality tests of Shannon entropies calculated in 34
Tests Shannon | Ré(0.5) | R&(0.99) | R&(1.5) | Ré(2) | Ts(0.5) | Ts(0.99) | Ts(1.5) | Ts(2)
Shapiro-Wilk W normal | normal no normal | normal | normal no normal | normal
Anderson-Darling normal | normal no normal | normal | normal no normal | normal
Martinez-1glewicz normal | normal no normal | normal | normal no normal | normal
Kolmogorov-Smirnov | normal | normal no normal | normal | normal no normal | normal
D'AgostinoSkewness normal no no normal | normal | normal no normal | normal
D'Agostino Kurtosis normal | normal no normal | normal | normal no normal | normal
D'Agostino Omnibus normal no no normal | normal | normal no normal | normal
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