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Abstract 
 

In this paper we prove the existence of the Banach space –valued Littlewood –Paley theorem implies that a Banach space is 
isomorphic to a Hilbert space.  
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Introduction 

Suppose that a function   is in  nS R  with 2 1supp : 2
2

R       
 

 and   0c     if 
3 5
5 3

  . Then 

one form of the classical Littlewood-Paley theorem on nR  says 
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                                                           (1) 

where    1 , 2 2kn k
kp x x     , and ,c C  are constants independent of f . 

We study the vector-valued Littlewood-Paley theorem. To be precise, let B  be a Banach space and  p n
BL R  be the space of strongly 

measurable B -valued function f  for which   p n
B

f L R . It is well known that if B  is a Hilbert space, then the classical 
Littlewood-Paley theorem still holds 
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where 1 p    and   is the same function as in (1). 
 
We first prove that if B  is a Banach space on (2) for one function   mentioned above, then (2) holds for a more general family of 
operators. 
 
Definition (1.1) [3]: 
 
A family of operators  k k zS


 is said to be an approximation to the identity if for 0 1   and 0       there is a constant 

C  such that for all ݇ ∈ ℤ and all , ,x x y  and  , ,n
ky R S x y , the kernels of kS , satisfy the following conditions: 
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(iii)    
 
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2
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(iv)        , , , ,k k k kS x y S x y S x y S x y              
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 for   1 2
2

kx x x k            

        and  1 2
2

ky y x y    , and 0       

(v)    , , 1k kS x y dy S x y dx    for all k� . 
 
All of the conditions (i) – (v) on the approximate identities are needed for the Calderon reproducing formula. 
 

Definition (1.2) [3]: 
 

Fix two exponents 0 1   and 0  . A B –valued function f , where B  is a Banach space, is said to be a test function  of  

type  ,   centered at 0
nx R  with width 0d   if f  satisfies the following conditions: 

(i)    0
nB

df x C
d x x 





 

, 

(ii)    
 0 0

B

nB

x x df x f x C
d x x d x x





 
        

 for  0
1 ,
2

x x d x x     

(iii)   0
nR

f x dx   

 

The collection of all test functions of type  ,   centered at with width 0d   will be denoted by    ,
0 ,BM x d  . If 

   ,
0 ,Bf M x d   the norm of f  in    ,

0 ,Bf M x d   is defined by  

     ,
0 , inf 0

BM x df C   
   

 

If (i),(ii),(iii)  of Definition (1.2) hold, we denote the class of all    , 0,1Bf M    by  ,
BM   . It is easy to see that  ,

BM    is a 

Banach space under the norm  ,
Bf M      . It is also easy to see that      , ,

0 ,B BM f M x d      for 0
nx R  and

0d  , with equivalent norms. 
 
Theorem (1.3) [ 3]: 
 

Suppose that  kS  is approximation to the identity defined in (4) below. Set 1k k kD S S   . Then there exists a family of operators 

 k k
D

�
  such that for all  ,

Bf M    , 

 k k
k

f D D f



�

                                                                                       (3) 

where the series converges in the norm of  ,
BM    with     and    . Moreover,  ,kD x y  the kernel of kD , satisfy the 

following estimates: for   , 0     where   is the regularity exponent of kS , there exists a constant 0C . 
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Such that 
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2

kx x x y     

(iii)       0,~,~ dxyxDdyyxD kk  for all Zk . 

Since  k
k z

D f f


  in the strong topology of   2 n
BL R , it is easy to see that  ,

BM    is dense in  2 n
BL R  for all 0 1   

and 0 . 
 

Theorem (1.4) [3]:  
 

Suppose that B  is a Banach space. Suppose  kS  is an approximation to the identity and 1k k kD S S    , and the Littlewood-

Paley theorem holds for  kD , that is, for 1 p   ,  

 
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kL L
k
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c f D f C f


   
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
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                                                      (4) 

Then the Littlewood-Paley theorem holds for  kE  where 1k k kE R R    and  kR  is an approximation to the identity, that is, 
for 1 p    

 
1
22

p p
B B

p
B

kL L
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L

c f E f C f


   
 

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                                                       (5) 

 

Proof: 
We need to show (5) for all  ,

Bf M   . Suppose that (5) holds and 1k k kE R R    where  kR  is an approximation to the 

identity. By Theorem (1.3) for all  ,
Bf M    with 0 1   and 0 , we have  

   



zj

jjkk fDDEfE ~
 

It is easy to check that  ,k jE D x y , the kernel of k jE D , satisfies the following estimates 

 
 
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                                               (6) 

where 0        and a b  denotes the minimum of  a  and b  
Hence  
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                          
p
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j fDC
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







 


                                                       (7) 

Where M  is the Hardy-Littlewood maximal function; the last inequality follows from the Fefferman-Stein vector-valued maximal 
inequality [1]. 
 

The proof of the inverse inequality of (7) is the same, and hence, this completes the proof. 
 

Corollary (1.5)[2]:  Consider the assumption of Theorem (1.4) ,then 
 

ܥ ∑ ฮ ௝݂ฮ௅ಳ೛
≤ ብቄ∑ ∑ หܦ௞൫ ௝݂൯ห

ଶ
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∞
௝ୀଵ

∞
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೛

∞
௝ୀଵ , 

for all ݂ ௝߳ܯ஻(ߚ,  .(ݎ
 

Proof:  for 0 < ߚ < ݎ ݀݊ܽ 1 > 0 we have 
 

෍ܧ௄൫ ௝݂൯ = ෍෍ܧ௄ܦ෩௜ܦ௜൫ ௝݂൯
௜∈ோ

∞
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 ෩௜ by Theorem (14). Satisfying the estimates of (6) in Theorem (1.4).Then we haveܦ௄ܧ is the kernel of (ݕ.ݔ)෩௜ܦ௄ܧ
 

ቱቱቐ෍෍หܧ௄൫ ௝݂൯ห
ଶ

∞

௝ୀଵ௄∈௓

ቑ

ଵ
ଶ

ቱቱ

௣

≤ ܥ ቱ
ቱ൞෍቎෍෍ 2ି|௄ି௜|ఌ′′ ቚܯ ቀܦ௜൫ ௝݂൯ቁ

∞

௝ୀଵ௜∈௓

቏

ଶ

௄∈௓

ൢ

ଵ
ଶ

ቱ
ቱ

௣

≤ ܥ ቯቐ෍෍หܯ൫ܦ௜( ௜݂)൯ห
ଶ

∞

௝ୀଵ௜∈௓

ቑ

௣

ቯ

௣

ଵ
ଶ

≤ ܥ ቱቱቐ෍෍หܦ௝൫ ௝݂൯ห
ଶ

∞

௝ୀଵ௜∈௓

ቑ

ଵ
ଶ

ቱቱ

௣

 

 

Theorem (1.6) [3]: 
 

Let B  be any Banach space, 1n  , 0 ,..., na B a B   . Let 1 11 ... ,...,n n j         be the integers for all ݆ and  

1 21 1 2

2 3 1

... ...2 ... 1n

n

    
 

   

   
     

 
                                              (8) 

Let   1
1 0 1,..., ... , 0 2nii

n n n kF a a e a e           for 1 k n    and  
1

0 1( ) ... , 0 2ni ti t
n n kF t a a e a e         . Then, 

   2 2 21 1n n nF F F                                                                          (9) 
 

where , the 2L –norm will always be the normalized  2 0, 2 nL   norm or  2 0,2L   with respect to all the variables. 
To prove this theorem, set  
 

  11
, 1 0 1 1, ,... ... ...k k ni t i ii t

n k k n k k nF t a a e a e a e a e    
                               (10) 

We will prove 

, 1 , , 12 22 2 2n k k n n k n k k nF f f f f                                                       (11) 

where 1 k n   and 1 1...2 k
k

k

 
 


 

 . 
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Observe first that once (11) is proved we obviously obtain 
 

   1 , , 1 12 2 22 2
1 ... 1 ...n n n k n k k n n nF F F F F                     (12) 

 

which yields the theorem. 
 

The second observation is that the inequality in (11) for 1 k n   follows from the inequality in (11) for nk  . Indeed, let us freeze 

1,...,k n   an write 
 

1
0 0 1 ...k ni i

k na a a e a e 
     

 

We now apply (11) with n  being replaced by k  , and obtain  
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 

1
20 1 ... k

k

i ti t
k L dtd
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
   

 
1

2
1
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... k

k
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k k L d

a a e a e 

 
     

 

Writing   for  1,...,k n   and using symbolic notation, we have obtained 
 

           k kA B C A B                                                                (13) 
 

Now we take 2L  norms with respect to   and obtain 
 

         2 2 2kL d L d L d
A B C

  
                                                               (14) 

                    2 2kL d L d
A B

 
     

 

Here we use the following observation:     0f x  ,    0, 0g x h x  , and      h x f x g x   imply 

2 2 2h f g  , since      h x g x f x   obviously implies 2 2 2 2h g h g f     . 
 

Since    2 , 1 2n kL d
A F


  ,    2 2nL d

B F


   and    2 , 1 2n kL d
C F


  , the inequality of (11) with k n  . Note 

first that  
#|

1
2 2

ni t
n n n
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k kf t f t a e  
 

   
      
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 *
1

2 2, , ni t
n n n

n n

k sf t k s f t a e  
 

 
    

 
 

If  0 1s  . Then  

 # 11
1 1

222 , , ... n
n n nB B

n n nB

kf t f t k s a a 
  




 
     

 
 

                                       nBnB
aa 11 ,...,sup   

We obviously have  

2nBk Fa    for nk 1  

Since ka  are the Fourier coefficients of nF . 
Therefore, 

 #
2

2 , ,n n n n
n B

kf t f t k s F 


 
   

 
                                                              (15) 

Taking the 2L  norm with respect to all the variables  1, 0,1,..., nt k   and  0,1S  , we obtain  
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 

  
1 1

2

1
2 2 12 1
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But  
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ni t
n nf t a e d


 

     

 
2

2

1
0

1
2

ni t
n nf a e d


 

                                                                              (17) 

Then (16) yields  

 
 

 

1
2 2 2

2

12 22
0 0

1
2

ni t
n n n n nf t f a e d dt f

 
  




     
  

                             (18) 

Which  is the required estimate  
 

Theorem (1.7) [3]:  
 

Suppose that B  is a Banach space. If the B –valued Littlewood-Paley theorem (4) holds for some 01 p    and where 

1k k kD S S    and  kS  is an approximation to the identity, then B  is isomorphic to a Hilbert space. 
Proof: 
First observe that if (4) holds for some 01 p   , then (4) holds for all 1 p   . We define the operator T  on  0P n

BL R  by 

    k k z
T f D f


  . The fact that (4) holds for means that is a bounded operator from  0P n

BL R  to  0
2
B

P n
L

L R  where  

      0
2

0

1
22

:
B

P n
k kk z B

k z
P

L R f x f x




 
       
  

 

L
 

It is easy to check that T  is a vector-valued Calderon-Zygmund operator. 
 

Here we say that an operator T  is a vector-valued  Calderion. Zygmuand operator if T  is a continuous linear operator from 

 0P n
BL R  to  0

2
B

P nL R
L

 for some 01 p    with the kernel  ,k x y  mapping n nR R  to the pace of all bounded operators 

from B  to 2
BL  and satisfy the following conditions: for some ߳ > 0 , there is a constant 0C   such that 

 , , with x yn nk x y C x y x y R         for all 
1 ,
2

y y x y  
              (19)   

 

     , nk x y k x y C x x x y         for all 
1 ,
2

x x x y                              (20) 

( )( , ) ( , ,nK x y K x y C x x x y         for all  
1 ,
2

x x x y                             (21) 

By the Calderion-Zygmund real-variable theory, T  also is bounded from  p n
B RL  to  p

B

p nL R
L

  for all  1 p   . 
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Let  , nS R   with 
1supp : 2
2

nR       
 

 ,   0c     if 
3 5
5 3

  , and  

 supp : 1nR    


,     2

0,2sup 0x x     . Suppose that we accept the B –valued Littlewood-Paley theorem 

in (4) for some 01 p    and  kD  where 1k k kD S S    and  kS  is an approximation to the identity. By Theorem (1.4) 
and the first observation above, we may assume the following inequalities hold: 
 

2 2 2

2 2 2*
B B BkL L L

k z
c f f C f



                                                                            (22) 
 

where the constants c  and C are independent of f . 

Now consider the function        1
1 ... ni xi x

n nf x f x x a e a e x        where 33 j
j   for 1 j n  . Then (22) 

implies  

 2

2 2

0,2
1

B

n

j n LB
j

a f



 �  

 

We now apply Theorem (1.6) and obtain  

   
1

2 2

22
10,2 0,2

... n

B B

ii
n nL L

f a e a e 
 

 �  

Now we have 

 
1

2

2 2
1 1 10,2

1... ...
2

n

B

ii
n n nn BL

a e a e a a




    �  

Where  the series is extended over all sequences  1,..., k    with k  being independent Bernoulli random variables, that is, 

1k    for 1 k n  . 
This shows that for any 1n   and  1 2, ,..., na a a B , there exist constants and such that 

2 22
1 1

1 1

1 ...
2

n n

j n n jn BB B
j j

c a a a C a 
 

       

which implies that B  is isomorphic to a Hilbert space, and hence, Theorem (1.7) is proved. 
 
Results and Discussion 
Our main results is collary (1.5) which is a deduction of theorem (1.4) and depends on its main assumption : the set  kS  is an 
approximation to the identity . 
 

Conclusion and Recommendations 
 

Does theorem (1.4) holds for 1 ≤ ݌ ≤ ∞  ? 
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