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Abstract  
 

This paper introduces the method of estimating functions (EF) in the estimation of the Asymmetric GARCH family 

of models. This approach utilises the third and fourth moments which are common in financial time series data 

analysis and does not rely on distributional assumptions of the data. Optimal estimating functions have been 

constructed as a combination of linear and quadratic estimating functions. Estimates from the estimating 

functions approach are better than those of the traditional estimation methods such as the maximum likelihood 

estimation (MLE) especially in cases where distributional assumptions on the data are highly violated.  We 

investigate the presence of asymmetric (leverage) effects in empirical time series and fit two of the most popular 

Asymmetric GARCH models (EGARCH and GJR-GARCH) under both the MLE and EF approaches. An 

empirical example demonstrates the implementation of the EF approach to Asymmetric GARCH models assuming 

a student’s – t distribution for the innovations. The efficiency benefits of the EF approach relative to the MLE 

method in parameter estimation are substantial for non-normal cases.  
 

Keywords: Estimating function, Maximum likelihood estimation, Asymmetric GARCH, Volatility, Leverage 

effects 
 

1. Introduction 
 

The financial stock market has been an area of great interest to researchers for the last five decades. Starting with 

the pioneering works on the random walk model, stock market volatility has been a key subject in most 

subsequent research works relating to efficiency in the market (Fama, 1965; Fama, 1970). In financial decision 

making, volatility is an important factor in pricing of derivatives and portfolio risk management. This has 

warranted increased research on modelling and forecasting an asset’s price/returns volatility.  
 

Research on changing volatility using non-linear time series models has been vibrant since the introduction of the 

Autoregressive Conditional Heteroscedasticity (ARCH) model (Engle, 1982). This model was the first of its kind 

to takeconditional heteroscedasticity into consideration. Bollerslev (1986) generalised the ARCH model to 

include lagged conditional variances as well as lagged values of the squared innovations. The GARCH family of 

models have proved to be successful in capturing volatility clustering and some amount of the excess kurtosis 

which characterize financial time series data. 
 

Since the works of Engle (1982) and Bollerslev (1986), various variants of the GARCH model have been 

developed to model volatility. Of great importance is the Asymmetric GARCH family of models which address a 

major limitation of the Bollerslev’s (1986) basic GARCH model, relating to the inability of this model to capture 

the asymmetric impact of news on volatility. News is undoubtly a huge factor that affects stock prices and 

therefore measuring its impact on stock market volatility is an important area of research in financial theory 

(Neelabh, 2009). Different volatility models that capture this aspect have been proposed and widely applied to 

real life problems in the last two decades. Some of the most popular models include the EGARCH (Nelson, 

1991), GJR-GARCH (Glostenet al., 1993), NAGARCH (Engle and Ng, 1993), APARCH (Ding et al., 1993), 

TGARCH (Zakoian, 1994) and the QGARCH (Sentana, 1995). 
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In the bulk of literature available for the Asymmetric GARCH models, the maximum likelihood estimation 

method has been the most preferred in parameter estimation due to its simplicity and desirable properties. 

However, this method is based on distributional assumptions which are often violated in practice and thus 

alternative parameter estimation approaches are required. An alternative method of estimation is based on the 

estimating functions (EF) approach introduced by Godambe (1960). Under this approach, focus is usually on the 

estimating function itself which is a function of the observations and the unknown parameters. This approach 

takes into account higher order moments and does not rely on any distributional assumptions on the data for 

optimality. 
 

The focus of this paper is twofold. First we seek to introduce the method of estimating functions in the estimation 

of the Asymmetric GARCH family of models based on Godambe and Thompson’s (1989) optimal estimating 

functions for stochastic processes. Secondly we will utilise the EF method in the estimation of first order 

EGARCH and GJR-GARCH models based on empirical time series from the USA and Japanese stock markets. 

An overview of these two Asymmetric GARCH models is presented in section 2. The computation of optimal 

estimating functions for the first order EGARCH and GJR-GARCH models and the Asymmetric GARCH – class 

of models in general, is presented in section 3.  An example involving the two empirical financial time series is 

presented in section 4 to demonstrate the use of the EF approach in estimation of Asymmetric GARCH models 

particularly in cases where there are serious departures from normality. Finally a conclusion of this paper is 

presented in section 5. 
 

2. Asymmetric GARCH – Class of Models 
 

The conventional GARCH model besides its main virtue of simplicity imposes a number of shortcomings with 

regard to volatility modelling. However the primary limitation of the GARCH model relates to what Black (1976) 

first documented. There exists a negative correlation between stock returns and volatility implying that negative 

returns tend to be followed by larger increases in volatility while positive returns of the same magnitude tend to 

be followed by lower volatility. To model this phenomenon, this paper will consider two of the most popular 

models that allow for asymmetric shocks. 
 

2.1 EGARCH Model 
 

The EGARCH model was introduced by Nelson (1991) to address some of the weaknesses of the conventional 

GARCH model introduced by Bollerslev (1986). This model captures asymmetric responses of the conditional 

variance to shocks in the market. The variance equation in EGARCH       is specified as; 
 

 
1 1

ln ln
p q

t i t i i t i

i i

h h g z   

 

                                       (1) 

where,  1 1 21,  ,  gt t t t t t tz h z z z E z           . 
 

The left hand side is the log of the variance series. This makes the leverage effect exponential and therefore the 

parameters ,  ,  and  i i   are not restricted to be non-negative. i  
is the asymmetry parameter. 

 

The value of  g tz must be a function of both magnitude and sign of tz  in order to accommodate the asymmetric 

effect (Nelson, 1991). The components 
1 2 and t t tz z E z        represent the sign effect and magnitude effect 

respectively and each has a zero mean.  
 

Over the range  0  ,  gt tz z  is linear in tz  with slope 1 2   while over the range  0 , g  t tz z    

is linear in tz  with slope 1 2.  Thus  g tz  allows the conditional variance th  to respond asymmetrically to 

changes in stock returns. Consider the first order EGARCH model in (2), 

1 1 1 2 1 1

 
ln ln

t t t

t t t t t

z h

h h z z E z



      

 


         

            (2) 

where, tz is an identically distributed sequence of random variables with zero mean and a unit variance.  
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The term  1 1 1 2 1 1g t t t tz z z E z           gives the model capacity to capture asymmetry. If 

1 20 and 0   , the innovation (disturbance) in ln th is now positive (negative) when the magnitude of tz is 

larger (smaller) than its expected value. On the other hand if 1 20 and 0    the innovation in ln th is now 

positive (negative) when returns innovations are negative (positive). Thus the EGARCH       model is able to 

capture the leverage effects under these conditions. 
 

2.2 GJR-GARCH model 
 

This model was introduced by Glosten et al., (1993). It is an extension of the GARCH model to capture 

asymmetries between positive and negative shocks of the same magnitude on the volatility of returns. The GJR-

GARCH      model is specified as; 
 

 2 2

1 1

 

1   when 0
 

0     otherwise 

t t t

p q

t i t i t i t i i t i

i i

t

t

z h

h s h
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

     





   

 







    



  
 

 
               (3) 

 

where,  ~  0,1tz iid N . 
 

Consider the first order GJR-GARCH model in (4); 
 

2 2

1 1 1 1t t t t th s h    

                     (4) 
 

The model reduces to the traditional GARCH model whenever 0t  . The indicator term 
ts ensures that the 

asymmetric effect is captured in the model. With 0,  negative shocks  1 0t    increase volatility more than 

positive shocks  1 0t   of equal magnitude. The necessary and sufficient conditions to guarantee positivity of 

the conditional variance th  are 0,  0,  0 and 0.         
 
is the asymmetry parameter. 

 

3. Optimal Estimating Functions 
 

In this section we derive optimal estimating functions and show their application to Asymmetric GARCH family 

of models.  We draw extensively on the works of Godambe (1960), Godambe (1985) and Godambe and 

Thompson (1989).Without proof we first present an important theorem related to the theory of EF's in stochastic 

processes. 

Godambe and Thompson (1989) extended the concept of optimality of Godambe’s (1985) EF into a general 

setting using a more flexible conditioning method which is related to the concept of quasi-likelihood approach. 

Taking   as an arbitrary sample space, they considered the class of EFs
jM  which is a real function defined on 

  such that; 
 

 1 2, ,... ; / 0,j n jy y yE    M
   

                     (5) 
 

where,   is the parameter space and  , 1,...,j j k  is the  -field generated by a specified partition on the 

sample space .  
 

Theorem: To estimate    consider a class of EFs   h  for which; 
 

1

k

jj

j

h a


 M                   (6) 

where, 
ja  is a real function on .  
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The EFs , 1,...,j j kM are said to be orthogonal if,  
 

    0   / /j i i i j jE E for  M M M M , , 1,..., .i j i j k                
 (7) 

An estimate ̂  of   is obtained by solving the equation  1 2, ,..., ; 0nh y y y   . The optimal EF in this case is 

defined as; 
 

* *

1

k

j

j

jh a


 M                                   (8) 

where,  
 

  1 2

*

2

, ,...,

/

/;

j

j

j n

j

j

E

a
E y y y





   
  

  
   

M

M
                 (9) 

 

3.1 Parameter Estimation Using the Estimating Functions Approach 
 

To estimate parameters of the EGARCH and GJR-GARCH models in a regression model set up using the EFs 

approach, optimal estimating functions approach to discrete time stochastic processes by Godambe and 

Thompson (1989) was applied. 
 

Consider a general expression of the EGARCH and GJR-GARCH models in a regression model set up without 

making any distributional assumptions for the errors, 
 

 1

 
/ ~ ,

t t t

t t t t

y x

y x h

 

 

  



                (10) 

 

where, 1t  is the information set at time 1t  , th  follows either  an EGARCH or GJR-GARCH process and the 

component tx could be composed of exogenous variables and/ or lagged variables of the variable ty which is a  

discrete time series process. 
 

Consider the first EGARCH model in (11). 
 

 
1 1 1 2 1 1

1 1 1 2 1 1
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t t t t t

t t t t t

z h

h h z z E z

h h z z E z
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        


        

             (11) 

 

where, 
 

 1 1 21 ,  g  and  is an independent and identically distributed sequence of 

random variables.

t t t t tz z z E z z        
 

 

Let 1 1 2 ( , , , )     . We seek to estimate the unknown parameter vectors  and 1 in the regression model (10) 

where th is as defined in (11). 

Similarly consider the first order GJR-GARCH model in (12), 

2 2

1 1 1 1  
1   when 0

 
0     otherwise 

t t t

t t t t t

t

t

z h

h s h

s



    





   






    


 
  
     

                           (12) 

where,  tz is an independent and identically distributed sequence of random variables. 
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Let 2 ( , , ,  )     . Similarly we seek to estimate the unknown parameter vectors  and 2  in the regression 

model (10) where th is as defined in (12). 
 

To evaluate the optimal estimates of  and i ( 1,2i  ) in each case, Godambe and Thompson’s (1989) theorem 

for stochastic processes is applied. A good combination for basic unbiased and mutually orthogonal EFs is 1t  

and 2t  such that, 
 

 

1

2*

2

 
t t t

t t t t

y x

y x h

 

 

  


   

                    (13) 

 

The choice of these two estimating functions is based on the need to estimate the conditional mean tx and 

conditional variance th of ty simultaneously. However the EF
*

2t  is not orthogonal to the EF 1t . This implies that,  

 

 *

1 2 0t tE                        (14) 

 

*

2t is therefore orthogonalised using the Gram –Schmidt orthognalisation procedure (Hyde, 1997) as follows, 

 
2*

2t t t ty x h     

        
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3 2
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  
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   

   
 

3

2

1   /
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t t t t t t

t

y x
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h


   

  
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  

                                   (15) 

 

From (15), consider the component (16), 
 

 
3

1/
t t

t

t

y x
E

h


 

  
 
  

                  (16) 

 

Dividing and multiplying (16) by th  we have, 
 

 
3

1/2 1/2

1 13/2
/  

t t

t t t t

t

y x
E h h

h


 

  
 

  

       (17) 

 

where, 1t is the skewness of ty conditional on 1t  . 
 

Thus, 

 
2 1/2

2 1  t t t t t t ty x h h                        (18) 

 

Therefore the two elementary EFs in (19) are now orthogonal. 
 

 

1

2 1/2

2 1   

t t t

t t t t t t t

y x

y x h h

 

   

  


    

               (19) 

 

To estimate the coefficient vectors and in the regression model (10), optimal EFs are derived using the 

elementary EFs in (19). The theorem by Godambe and Thompson (1989) is applied to form a linear combination 

of the elementary EFs as, 
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Let     be the class of all EFs  1, 2g g given by (20). The jointly optimal EFs  * *

1 , 2g g are given by (20) with, 

*

it ita a
 
and

*

it itb b for 1,2i   and 1,2,3,...,t T  
 

Where, 
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Solving the numerator in (22) we have, 
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Solving the denominator in (22) we have, 
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Multiplying and dividing (24) by 
2

th leads to, 
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Where, 
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                                      (26) 

 

Equation (26) represents the standardized conditional kurtosis (excess kurtosis). 
 

Hence,  
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 2
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t

t t t

h

h
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

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                                        (29) 

 

Substituting (21), (27), (28) and (29) into (20) gives the jointly optimal EFs as, 
 

 

 

2

1

*

1 2
1 2 1

*

2 2
1 1 2 1

2

2

 
2

t

t

t
T

t t t t

t t
T T

t tt t

t

t t

h

g
h

x h

g
h h

 
 



  
 



 



 
 

 























 
                                              

(30) 

 

Where, th is given by equations (11) and (12) and  

1

2

(1,1)

(1,1)

for EGARCH

for GJR GARCH










                            (31) 

 

The result in (30) is very general in that no distributional assumptions on 1/t ty    have been made.  
 

The estimates for the unknown parameter vectors  and  are obtained by solving the optimal EF in (32). This 

means numerically minimizing 
* *

1 2g g . 
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* * *

, 1 2 0g g g                  (32) 
 

Where, 
*

1g  and 
*

2g are as defined in (30). 
 

4. Estimation of Asymmetric GARCH Models on Empirical Time Series 
 

This section presents estimation results. A brief description of the real data that was used to fit the models is 

provided. Some preliminary and diagnostic tests for asymmetry and normality are also conducted beforehand. 
 

4.1 Data 
 

In this sub-section we model the volatility of financial returns of the Japanese and the USA markets for the period 

2
nd

 Jan 2008 to 31
st
May 2011 using Asymmetric GARCH models under both the MLE and EF procedures. In each 

market we consider a comprehensive and diversified stock index.  For the New York Stock Exchange we consider 

the Standard and Poor’s 500 index while for the Tokyo Stock Exchange we consider the Nikkei 225 index. In 

each case daily returns are computed as logarithmic price ( tP ) relatives. 
 

1

log t
t

t

P
R

P

            (33) 

 

where,  tR  is the log return series (continuously compounded return). 
 

Each empirical time series comprises of daily observations covering the period (2
nd

 Jan 2008 to 31
st
 May 

2011).Stock markets in these two countries were among the most volatile in the world during the 2008 global 

financial crises and the early 2011 Japanese tsunami disaster respectively and hence the impact of shocks in the 

market on volatility of asset returns was more pronounced during this period. 
 

4.2 Preliminary Tests 
 

Table 1 presents summary statistics (empirical properties) and preliminary tests of normality and asymmetry for 

the daily stock returns of the two financial series. We notice that the daily volatility for the Nikkei 225 index, 

represented by the standard deviation (1.88%) is above the volatility (1.75%) for the S&P 500 index return series. 
 

Table 1: Summary Statistics of the compounded returns tR
 

 

 Series 

Statistics 

 

           SP500 INDEX 

 

NIKKEI 225 INDEX 

Mean -0.000060 -0.000917 

Std Dev. 0.017501 0.018802 

Skewness -0.163770 -1.022632 

Kurtosis 7.422417 8.238645 

Jarque – Bera 

(Probability) 

h  

 

0.0000 

1 

 

0.0000 

1 

ADF test 

(Probability)  

h  

 

1.000E-3 

1 

 

1.000E-3 

1 

 2

1Cov ,t tr r 
 

-0.078035 -0.064877 

 

The skewness coefficient is negative for both series suggesting that they a long left tail. The kurtosis coefficient 

on the other hand is very high (7.4224, 8.2386) for the (S&P 500, Nikkei 225) a reflection that the distributions of 

the two sets of real data are highly leptokurtic. The P-value corresponding to the Jarque –Bera normality test is 

zero at 5% level suggesting that the test is significant for both series. The test returns a value of 1h  which 

indicates that the series tR  does not come from a normal distribution in favour of 0h    which indicates that the 

series tR  comes from a normal distribution with unknown mean and variance. This implies that the two series 

exhibit non-normal behaviour. 
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The Augmented Dickey-Fuller (ADF) test rejects the unit root null in both data sets. This is indicated by the 

minimal p-values at 5% level and the values of h . The test returns a value of 1h  which indicates rejection of 

the unit root in favour of the trend-stationary alternative. 0h  indicates failure to reject the unit root null. Thus 

we conclude that the returns of both stock indices are stationary. 
 

Finally we test for presence of asymmetric effects on conditional volatility in both empirical series. A simple 

diagnostic test for the leverage effects involves computing the sample correlation between squared returns and the 

lagged returns,   2

1Cov ,t tr r  (Zivot, 2008). A negative value for this coefficient provides evidence for potential 

asymmetric effects. Both series have a negative value for this coefficient indicating evidence of asymmetry and 

hence Asymmetric GARCH family of models could perform well in explaining conditional volatility in this case. 
 

Figure 1: Daily Logarithmic Returns (S&P 500, Nikkei 225) 
 

 
 

Figure 1 presents the plot of daily logarithmic returns for both series over the considered time period.  We 

observe that volatility clustering is present in both cases as the two series show periods of low volatility which 

tend to be followed by periods of relatively low volatility and other periods of high volatility which likewise tend 

to be followed by high volatility. This aspect can be thought of as clustering of the variance of the error term over 

time, that is, the error term exhibits time varying heteroscedasticity. 
 

4.3 Model Estimates 
 

In this sub-section, first order EGARCH and GJR-GARCH models are fitted to the two empirical series and 

estimates obtained using the maximum likelihood estimation (MLE) and estimating function (EF) approaches. In 

parameter estimation under maximum likelihood method, we assume a standardized Gaussian or Student’s – t 

distribution with 10v   degrees of freedom for the innovations. Parameter estimates, corresponding standard 

errors (in parentheses), Akaike Information Criteria (AIC) and the log likelihood values are presented in Tables   

2 -6. 

 

Table 2: Parameter Estimates of EGARCH       – S&P 500 
 

Estimates Method     
1  2  

MLE* -0.108576 

(0.051021) 

0.986451 

(0.008837) 

0.220176 

(0.092262) 

-0.271144     

(0.061067) 

MLE** 

 

-0.203312 

(0.045728) 

0.976439    

(0.005239) 

0.138657     

(0.034506) 

-0.166382     

(0.028401) 

EF -0.204886     

(0.043279) 

0.976205     

(0.004959) 

0.138098     

(0.032848) 

-0.161534     

(0.026946) 
 

*Standardized Gaussian distribution **Student’s – t distribution ( 10v  ) 
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Table 3: Parameter estimates of GJR – GARCH       - S&P500 
 

Estimates Method         

MLE* 1.96653E-06   

(1.34835E-06) 

0.00207731 

(0.057016) 

0.889019     

(0.038039) 

0.201962     

(0.068537) 

MLE** 2.36413E-06   

(1.24408E-06) 

0.00114628 

(0.020089) 

0.901695     

(0.0205511) 

0.173676     

(0.0367019) 

EF 2.37614E-06   

(1.19813E-06) 

0.00113883 

(0.019185) 

0.902273     

(0.0196927) 

0.16956     

(0.0342864) 
 

*Standardized Gaussian distribution **Student’s – t distribution ( 10v  ) 
 

Table 4: Parameter Estimates of EGARCH       - Nikkei 225 
 

Estimates Method     
1  2  

MLE* -0.232894      

(0.100455) 

0.98245     

(0.010966) 

0.201285     

0.0918981 

-0.199053      

(0.048771) 

MLE** -0.280486     

(0.072460) 

0.966935    

(0.008745) 

0.140868     

(0.039929) 

-0.147923     

(0.025432) 

EF -0.285148     

(0.069517) 

0.966433    

(0.008371) 

0.147311     

(0.037503) 

-0.147345     

(0.023122) 

*Standardized Gaussian distribution **Student’s – t distribution ( 10v  ) 
 

Table 5: Parameter estimates of GJR – GARCH       – Nikkei 225 
 

Estimates Method         

MLE* 1.24593E-05   

(4.05034E-06) 

0.00125842 

(0.061365) 

0.860161     

(0.030681) 

0.21681     

(0.072392) 

MLE** 1.08575E-05   

(3.23021E-06) 

0.00379292     

(0.025691) 

0.859542     

(0.027509) 

0.188191     

(0.041084) 

EF 1.0501E-05   

(2.96121E-06) 

0.00618129     

(0.023774) 

0.857417     

(0.026016) 

0.185744     

(0.036715) 
 

*Standardized Gaussian distribution **Student’s – t distribution ( 10v  ) 
 

Table 6: AIC and Log – Likelihood Values 
 

MODEL 

SERIES 

EGARCH       
S&P 500                                 Nikkei 225 

GJR – GARCH       
S&P 500                                     Nikkei 225 

AIC   -6.0509                                      -6.3642   - 6.0463                                         -6.3637 

Log - Likelihood   5538.71                                     6084.26    5532.15                                         6082.83 
 

4.4 Discussion  
 

From the results, it is seen that both models have almost similar AIC and Log – likelihood values for the two 

financial series. However EGARCH (1,1)  has relatively higher Log – likelihood and lower AIC values than    

GJR – GARCH (1,1) indicating that it performs relatively better  in explaining conditional volatility in both 

empirical series over the considered time period.  

The coefficients 2 and  for the first order EGARCH and GJR – GARCH models respectively reflects the 

leverage effects. The estimates indicate the magnitude and sign of the leverage effects. The EGARCH model 

shows a negative parameter of asymmetry in both financial series suggesting that past negative shocks (bad news) 

have a greater impact on subsequent volatility of returns than positive shocks (good news) do. The GJR – 

GARCH model records positive leverage effects, attesting that bad news in the market lead to a higher volatility 

of asset returns than good news. 
 

From our parameter estimates it is clear that the EF approach is more efficient than the MLE method in parameter 

estimation of the first order EGARCH and GJR – GARCH models in finite samples.  
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The standard errors of the EF approach estimates are smaller than those of the maximum likelihood estimates 

assuming either a Gaussian or a Student’s – t ( 10v  ) error distribution. The gain in efficiency follows from the 

fact that the EF approach does not rely on distributional specifications for optimality and that it accounts for 

higher order moments present in non – normal data such as most empirical financial time series. However, it is 

evident that the MLE method when assuming a Student’s – t error distribution competes reasonably well with the 

EF approach and provides a better in-sample-fit than the MLE method when assuming a Gaussian error 

distribution across both data sets. This result is expected considering the Jarque –Bera normality test in Table 1 

which implies that the empirical distributions of the two return series exhibit heavier tails than the standard 

normal distribution. A Student’s – t distribution exhibits excess kurtosis and fat tail behaviour.   
 

5.0 Conclusion 
 

In this paper our main goal was to derive optimal estimating functions for the Asymmetric GARCH modes in 

general and demonstrate the application of the EF approach as an alternative to the MLE approach in parameter 

estimation. We have shown that the EF approach competes reasonably well with the MLE method especially in 

cases where there are serious departures from normality in finite samples. This approach therefore provides a 

useful alternative method of estimation to the MLE method for the Asymmetric GARCH models especially in 

cases where the true distribution of the data is unknown as it does not rely on distributional assumptions for 

optimality. Extending the EF approach to the multivariate GARCH model is a subject for future research. 
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Appendix (Proofs of Equations) 
 

Proof of equation (14) 
 

 *

1 2 0t tE     

      
    
  

2*

1 2 1

3

1

3

1

 /

                 /

                 / 0 

t t t t t t t t

t t t t t t

t t t

E E y x y x h

E y x h y x

E y x

    

  

 







    
 

   

  
 

 

Proof of equation (19) 
 

      2 1/2

1 2 1 1   /t t t t t t t t t t tE E y x y x h h       
     
   

Since   1/ 0t t t tE h y x    , 

      3 2 1/2

1 2 1 1  /t t t t t t t t tE E y x y x h      
    
 

 

  3 3/2

1 1   /  t t t t tE y x h      

3/2 3/2

1 1     0t t t th h     

 

 

 

 

 

 

 

 



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com  

209 

 

References 
 

Fama, E. F. (1965). The Behaviour of Stock-Market Prices, Journal of Business. 38: 34-105. 

Fama, E.F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work,  Journal of Finance. 25: 

383-417. 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United 

Kingdom inflation, Econometrica. 50: 987-1007. 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics. 31: 

307-328. 

Neelabh, R. (2009). Conditional Heteroscedastic Time Series Models with Asymmetry and Structural Breaks. Phd 

Thesis, University of Pune, India. 

Nelson, D.B. (1991). Conditional heteroskedasticity in Asset returns: A new Approach, Econometrica. 59: 347-

370. 

Glosten, L. R., Jagannathan, R. and Runkle, D. (1993). On the relation between the expected value and the 

volatility of nominal excess returns on stocks, Journal of Finance. 48: 1779-1801. 

Engle, R.F.  and Ng V.K. (1993). Measuring and testing the impact of news on volatility,  Journal of Finance. 48 

(5): 1749-1778. 

Ding, Z., Granger, C. and Engle, R. (1993). A long memory property of stock returns and a new model, Journal of 

Empirical Finance. 1: 83–106. 

Zakoian, J.M. (1994). Threshold Heteroskedasticity Models, Journal of Economic Dynamics and Control. 19: 

931-944. 

Sentana, E. (1995). Quadratic ARCH Models, Review of Economic Studies.62:639-661. 

Godambe,V.P. (1960). An optimum property of regular maximum likelihood equations,  Annals of Mathematical 

Statistics. 31: 1208-1211. 

Godambe, V.P. and Thompson, M.E. (1989). An extension of the Quasi-likelihood Estimation, Journal of 

Statistical Planning and Inference.22: 137-172. 

Black, F. (1976). Studies of stock price volatility changes, Proceedings of the 1976 Meetings of the Business and 

Economics Statistics Section, American Statistical Association, pp. 177-181. 

Godambe, V.P. (1985). The foundations of finite sample estimation in Stochastic processes, Biometrika. 72: 319 - 

328. 

Hyde, C.C. (1997). Quasi-Likelihood and Its applications, New York: Springer- Verlag 

Zivot. E. (2008). Practical Issues in the Analysis of Univariate GARCH Models, Handbook of Financial Time 

Series, Springer, New York. 


