
International Journal of Applied Science and Technology                                                  Vol. 4 No. 2; March 2014 

47 

 
Mathematical Modeling of Asian Carp Invasion in the Upper Mississippi River System 

 
Hyunju Oh, Ph.D. 

Department of Mathematics and Computer Science 
Bennett College 

900 East Washington Street, Greensboro, NC, 27401 
USA 

 
 
 
Abstract 
 

In our research we constructed two mathematical models, a competition model and a Lolka-Volterra model, with 
Asian Carp and native fish in the Upper Mississippi River System and the Great Lakes. The Asian Carp now 
threatens the Upper Mississippi River and the Great Lakes since they were imported from China in the 1970s to 
improve water quality of aquaculture and to control aquatic vegetation ponds. The goal of our research was to 
gain a better understanding of the interaction between Asian Carp and native species using mathematical model. 
In order to construct our research we used data from the Upper Midwest Environmental Science Center and then 
used numerical method with Maple to solve the system of partial differential equations which cannot be solved 
exactly. From our research we were able to find equilibriums which determine the behavior of the model such as 
coexistence or competition exclusion.  
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1. Introduction 
 

In 1970s Asian Carp including Bighead Carp and Silver Carp were imported from China to improve water quality 
of aquaculture ponds and to control aquatic vegetation in the Mississippi river along Illinois. But they eat up the 
algae and other microscopic organism which are the important source of food for small fish and big fish in their 
ponds. The Asian Carp can grow incredibly quickly up to 110 pounds and the growth rate of population increases 
exponentially (NPS [Online]). An Asian Carp could eat 5-20% of its body weight each day, so the native fish 
whose diet overlaps with the diet of Asian Carp compete directly in the Mississippi river system. It causes to 
decrease the population of native fish quickly in the upper Mississippi river system (UMRS)(USGS [Online]). 
 

Thus, they are considered invasive species, highly detrimental to the ecological balance, as they threaten the 
native fish population in the upper Mississippi river system and the Great Lakes. In July 2012 Congress enacted 
the "Stop Invasive Species Act", which requires the U.S. Corp of Engineers to implement measures, which will 
prevent Asian Carp from invading the Great Lakes from the Mississippi through the Chicago area canal system 
(Obama Administration Releases 2013 Asian Carp Control Strategy Framework). 

 

The objective of this project is to make a mathematical model of this ecology problem and to discuss the 
qualitative behavior of the model. First, we make a mathematical model of competition model with parameters of 
Asian Carp, Silver Carp, and native fish species, Gizzard Shad for the same resources in the Open River (Figure 
1).The system of partial differential equations in competition model cannot be solved exactly, so we use 
numerical method to solve them and investigate an equilibrium analysis. The equilibriums determine the behavior 
of the model such as coexistence or competitive exclusion. Second, we make a Lotka-Volterra model as predator-
prey using Largemouth Bass as predator and Gizzard Shad as prey which is a competing species with Asian Carp 
in the Open River. We have lots of valuable ecological information from the equilibrium analysis of the model. 
The data for the model were obtained from U.S. Geological Survey (USGC), Upper Midwest Environmental 
Science Center (USGS [Online]). The Long Term Resource Mentoring Program (LTRMP) has been collecting 
Asian Carp and native fishes from multiple aquatic habitats of six reaches of the UMRS (Figure1)since 1993 
(Koel et al. 2000). 
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2. Competition Model: Two Species of  Silver Carp and Gizzard Shad in Open River 
 

2.1 Materials 
 

We select two fish species of Silver Carp and Gizzard Shad in Open River (Figure1) to create a competition 
model. The Silver Carp and Gizzard Shad consume phytoplankton and zooplankton, so they are competitors 
(Sampson et al 2009). We collect data of total catches of Silver Carp and Gizzard Shad in Open River from 
LTRMP (USGS [Online] and Pool Open River [Online]). We make a percentage table of each fish species total 
catches from 1993 to 2010 in Open River (Table 1). We can see clearly that Silver Carp population increases 
exponentially, but Gizzard Shad decreases quickly (Figure 2 & Figure 3). 
 

2.2 Method: Mathematical Model of Competition 
 

For an individual species with a population at time t given by  P(t) , we can write general model using a 
differential equation of the formௗ௉

ௗ௧
= 1)ܲݎ − ௉

ெ
) where ݎis proportionality constant andܯis a positive constant. 

This is called the logistic growth model (Brannan et al. 2010).  
 

We make logistic growth models for Silver Carp and Gizzard Shad by numerical method using MAPLE. The 
differential equation of Silver Carp is ௗௌ(௧)

ௗ௧
= (ݐ)2.810ܵ ቀ1− ௌ(௧)

ଷ.ଷଷଷ଻ଶ଼଻ଽଷ
ቁand the model of percentage of Silver 

Carp’s population is S(t) = ଶ.଻
଼଴ଽଽ଴ଷଽଵସ଼ଷାଽଵଽ଴଴ଽ଺଴଼ହଵ଻௘షమ.ఴభ೟where S(0) = 0.27 with t = 0 representing year 2000. 

We apply a nonlinear least squares best fit to the data. The method of finding the best model to fit the data is 
computed by minimizing the expression given by the formula 
 

V( ଴ܲ,ܯ, (ݎ = ∑ (ܲ(݅) − ݅]ܽݐܽ݀ + 1])ଶ௡
௜ୀ଴ . 

 

Finally, we have best fit model of Silver Carp 
 

ௗௌ(௧)
ௗ௧

= (ݐ)0.33ܵ − ଶ ,  S(0)(ݐ)0.01ܵ = 0.27.   (eq.1) 
 

Similarly, we build a differential equation of Gizzard Shad,  
 

(ݐ)ܩ݀
ݐ݀

= 1)(ݐ)ܩ0.007895 −
(ݐ)ܩ

326.8885631.333728793
) 

 

And the model of percentage of Gizzard Shad’s population G(t) = ସଶଶହହ
ଵ.ହ଻×ଵ଴భమିଷ.ଶଵ×ଵ଴భమ௘షబ.బళఴవరఴబవమళళ೟ where 

G(0) = 33.804 with t = 0 representing 1993 and the best model to fit the data by minimizing least squares 
method 

ௗீ(௧)
ௗ௧

= (ݐ)ܩ25 − ,ଶ(ݐ)ܩ G(0) = 33.804.       (eq. 2) 
 

Finally, we create a mathematical model for two competing species. We add the interspecies competition 
term,−ܽଷܵ(ݐ)(ݐ)ܩ,  to the (eq. 1), so the equation for the dynamics of the Silver Carp is given byௗௌ(௧)

ௗ௧
=

(ݐ)0.33ܵ − ଶ(ݐ)0.01ܵ − ܽଷܵ(ݐ)(ݐ)ܩ. 
 

Similarly, the growth of Gizzard Shad satisfies the differential equation 
ௗீ(௧)
ௗ௧

= (ݐ)ܩ25 − ଶ(ݐ)ܩ − ܾଷܵ(ݐ)(ݐ)ܩ. 
The system of differential equations cannot be solved exactly, so we use numerical method to find the unknown 
parameter using MAPLE. The computation of the sum of squares error is given by the formula 
 

෍((ܵ(݅) − ݅]ܵܽݐܽ݀ + 1])ଶ +
௡

௜ୀ଴

(݅)ܩ) − ݅]ܩܽݐܽ݀ + 1])ଶ). 
 

The result of this complex minimization problem produces the parameters ܽଷ = 1.4, ܾଷ = 9 whereܵ(0) =
(0)ܩ݀݊ܽ 0.27 = 27.892  .Finally, we have the system of differential equations with the best fitting initial 
conditions is given by 
 

(ݐ)ܵ݀
ݐ݀

= (ݐ)0.33ܵ − ଶ(ݐ)0.01ܵ − ,(ݐ)ܩ(ݐ)1.4ܵ
(ݐ)ܩ݀
ݐ݀

= (ݐ)ܩ25 − ଶ(ݐ)ܩ −  ,(ݐ)ܩ(ݐ)9ܵ
where ܵ(0) = (0)ܩ,0.27 = 27.892. 
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The equilibria are found by setting the derivatives equal to zero. To solve the systems of nonlinear equations, we 
use MAPLE and find the following the four equilibria: 
 

[ܵ = ܩ,0 = 0], [ܵ = ܩ,33 = 0], [ܵ = ܩ,0 = 25], [ܵ = ܩ,2.753772836 = 0.2160444797]. 
 

In Figure 4, we can see two phase trajectories of the differential equations on the direction field. From the 
direction field, the mixed equilibrium solution [ܵ,ܩ] ≈ [2.753772836, 0.2160444797] is a saddle point, so 
unstable. Thus one species (Silver Carp) will eventually overwhelm the other (Gizzard Shad) and drive it 
extinction.  
 

2.3 Results and Discussion 
 

The surviving species is determined by the initial state of the system. A graph of data and the solutions to these 
differential equations is shown below (Figure 5).With initial conditions S(0)=0.27 and G(0)=27.9 in Figure 4, 
Silver Carp will be extinct around after one year and the Gizzard Shad is decreasing quickly and then stable to 
25%.We investigate the model with several different initial conditions, and we can estimate of the value for this 
coexistence equilibrium. The Silver Carp will be extinct around after two years and the Gizzard Shad is increasing 
exponentially and then stable to 25%with initial conditions S(0)=2.5 and G(0)=0.1 (Figure 6). The Gizzard Shad 
will be extinct around after two and half years and the Silver Carp is increasing exponentially with initial 
conditions S(0) =2.6 and G(0) =0.1 (Figure 7). We can find that the Silver Carp will eventually overwhelm the 
Gizzard Shad when the percentage of the population of Silver Carp is greater than or equal to 2.6% and the 
percentage of the population of the Gizzard Shad is less than or equal to 0.1%. 
 

3. The Lolka-Volterra Model: Largemouth Bass and Gizzard Shad in Open River 
 

3.1. Materials 
 

We select two fish species of Largemouth Bass and Gizzard shad in Open River (Figure1) to create a Lolka-
Volterra model. We set Largemouth Bass species as a predator and Gizzard Shad species as a prey since 
Largemouth Bass primarily eat sunfish, shad and crayfish (Sampson et al 2009). We collect data of total catches 
of Largemouth Bass and Gizzard Shad in Open River from LTRMP (USGS [Online] &Pool Open River 
[Online]). We make a percentage table of each fish species total catches from 1993 to 2010 in Open River (Table 
2). We can see clearly that the Gizzard Shad (prey) population begins dropping while the Largemouth Bass 
(predator) population is sufficiently high from the Figure 8 and 9. After the Gizzard Shad population falls, and 
then the predator Largemouth Bass population falls, this allows the prey Gizzard Shad population to recover and 
completes one cycle of this interaction. Thus, we see that qualitatively oscillations occur. Thus we can make the 
Lotka-Volterra, predator-prey, model for the dynamics of the populations of Largemouth Bass and its prey species 
Gizzard Shad. 
 

3.2 Method: Mathematical Model of Lotka-Volterra 
 

Let G(t) be the percentage of population of Gizzard Shad and L(t) be the percentage of population of Largemouth 
Bass. We develop a mathematical model based on the growth rates for the percentage of populations. The rate of 
change of the percentage of Gizzard Shad population isௗீ(௧)

ௗ௧
 and the rate of change of the percentage of 

Largemouth Bass population isௗ௅(௧)
ௗ௧

. The percentage of Gizzard Shad population grows in proportion to its own 
population, denoted by ܽଵܩ. The primary loss of Gizzard Shad is due to predation of Largemouth Bass. Predation 
is modeled by assuming random contact between the species in proportion to their populations with a fixed 
percentage of those contacts resulting in death of the prey species, denoted by−ܽଶ(ݐ)ܮ(ݐ)ܩ. The primary growth 
for the Largemouth Bass population depends on sufficient food for rising young Largemouth Bass, which implies 
an adequate source from predation on Gizzard Shad. Thus, the growth of percentage of the Largemouth Bass 
population is similar to the death rate for the Gizzard Shad population with different constant of proportionality, 
denoted byܾଶܮ(ݐ)ܩ. The loss of Largemouth Bass is in proportion to their own population, denoted by−ܾଵ(ݐ)ܮ. 
 

The discussion leads to the Lotka-Volterra model: 
 

(ݐ)ܩ݀
ݐ݀

= ܽଵ(ݐ)ܩ − ܽଶ(ݐ)ܮ(ݐ)ܩ,
(ݐ)ܮ݀
ݐ݀

= −ܾଵ(ݐ)ܮ + ܾଶ(ݐ)ܮ(ݐ)ܩ, 
 

where ܽଵ,ܽଶ, ܾଵ,ܾଶare positive constants. 
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The model ignores the role of climate variation and the interactions of other species, including human 
disturbance. We find the least squares best fit to the data (Table 2). We set the initial conditions G(0) = 33.8 and 
L(0) = 0.2. To find the rate constantsܽଵ,ܽଶ, ܾଵ,and ܾଶ, we use the averaging data of one period. Thus we obtain a 
reasonable estimate of equilibria for these data. The averaging the data between 2002 and 2008(omitting the first 
year to not bias the maximum) for the Gizzard Shad is 20.52 and the equilibrium estimatesܩ௘ = ௕ଵ

௕ଶ
= 20.52. 

Similarly, averaging the data between 1999 and 2010(omitting the last year to not bias the maximum) for the 
Largemouth Bass is 0.15 and the equilibrium estimatesܪ௘ = ௔ଵ

௔ଶ
= 0.15.From the graph of the data, we find a low 

in Largemouth Bass around 2007 and the Gizzard Shad population grows at this time (Table2). We get theܽଵ =
0.9423093823 from G(t) = ଴݁௔భ௧ܩ , where ܩ଴ = 9.742 in 2007,ܩ = 24.997 in 2008. Since the steepest decline 
of the Largemouth Bass population occurs between 2003 and 2004 (Table 2), we get 
ܾଵ = 1.791759469 from L(t) = ଴݁ି௕భ௧ܮ  where ܮ଴ = 0.12 in 2003, ܮ = 0.02 in 2014. Combine the above 
information; we obtain the initial estimates for the parameters 
 

ܽଵ = 0.9423093823,ܽଶ = 6.282062549, ܾଵ = 1.791759469, and ܾଶ = 0.08731771291. 
 

With these estimates on the parameters, we use MAPLE to find the least squares best fit of the model to the data. 
The formula is given by 

V(a1, b1, a2, b2) = ෍{(ܩ(݅) − ݅]ܩܽݐܽ݀ + 1])ଶ + (݅)ܮ) − ݅]ܮܽݐܽ݀ + 1])ଶ}.
௡

௜ୀ଴

 
 

The output of this function gives the best parameter value asG(0) = 22 and L(0) = 0.9. And  ܽଵ = 2.1,ܽଶ =
6, ܾଵ = 20.5 and ܾଶ = 1.1. Finally, we have Lotka-Volterra model for Gizzard Shad and Largemouth Bass: 
 

(ݐ)ܩ݀
ݐ݀

= (ݐ)ܩ2.1 − ,(ݐ)ܮ(ݐ)ܩ6
(ݐ)ܮ݀
ݐ݀

= (ݐ)ܮ20.5− +  ,(ݐ)ܮ(ݐ)ܩ1.1
 

where G(0) = 22 and L(0) = 0.9. 
 

We obtain the graph of the percentage of populations of Largemouth Bass and Gizzard Shad as functions of the 
year and its phase portrait (Figure10& 11). 
 

3.3 Results and Discussion 
 

If there are no Largemouth Bass and Gizzard Shad, the populations are certainly not going to increase. If Gizzard 
Shad and Largemouth Bass populations are approximate to18.6% and 0.35%, respectively, then Gizzard Shad are 
just enough to support a constant Largemouth Bass population of 0.35% in Figure 11. There are neither too many 
Largemouth Bass (which would result in fewer Gizzard Shad) nor too few Largemouth Bass (which would result 
in more Gizzard Shad). 
 

4. Table and Figures 
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Year Total Catches of Silver Carp 

(Percentage) 
Total Catches of Gizzard Shad/ 
Percentage 

Total Catches 
by gear 

1993 0 (0 %) 6057 (33.80 %) 17918 
1994 0 (0 %) 1633 (11.61 %) 14061 
1995 0 (0 %) 10860 (44.81 %) 24234 
1996 0 (0 %) 5013 (35.42 %) 14154 
1997 0 (0 %) 2097 (9.35 %) 22430 
1998 0 (0 %) 5557 (37.03 %) 15006 
1999 0 (0 %) 6987 (38.07 %) 18353 
2000 32 (0.27 %) 3294 (27.89 %) 11810 
2001 7 (0.05 %) 3839 (29.46 %) 13031 
2002 13 (0.11 %) 5731 (48.55 %) 11804 
2003 5 (0.1 %) 1230 (24.83 %) 4954 
2004 121 (2.23 %) 1581 (29.17 %) 5420 
2005 16 (0.32 %) 790 (15.97 %) 4948 
2006 12 (0.21 %) 1061 (18.42 %) 5760 
2007 248 (3.53 %) 684 (9.74 %) 7021 
2008 318 (3.83 %) 2074 (25.00 %) 8297 
2009 114 (2.54 %) 339 (7.54 %) 8297 
2010 257 (5.1 %) 672 (13.34 %) 5039 

 

Table 1: Total catches of fish collected in Pool Open River from 1993 – 2010 
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Year Total Catches of Largemouth Bass 
(Percentage) 

Total Catches of Gizzard 
Shad(Percentage) 

Total Catches 
by gear 

1993 36 (0.2 %) 6057 (33.80 %) 17918 
1994 19 (0.14 %) 1633 (11.61 %) 14061 
1995 11 (0.045 %) 10860 (44.81 %) 24234 
1996 11 (0.045 %) 5013 (35.42 %) 14154 
1997 16 (0.07 %) 2097 (9.35 %) 22430 
1998 14 (0.1 %) 5557 (37.03 %) 15006 
1999 49 (0.27 %) 6987 (38.07 %) 18353 
2000 8 (0.07 %) 3294 (27.89 %) 11810 
2001 9 (0.07 %) 3839 (29.46 %) 13031 
2002 4 (0.034 %) 5731 (48.55 %) 11804 
2003 6 (0.12 %) 1230 (24.83 %) 4954 
2004 1 (0.02 %) 1581 (29.17 %) 5420 
2005 0 (0 %) 790 (15.97 %) 4948 
2006 11 (0.19 %) 1061 (18.42 %) 5760 
2007 12 (0.17 %) 684 (9.74 %) 7021 
2008 14 (0.17 %) 2074 (25.00 %) 8297 
2009 23 (0.51 %) 339 (7.54 %) 8297 
2010 50 (0.99 %) 672 (13.34 %) 5039 

 

Table 2: Total catches of fish collected in Pool Open River from 1993 – 2010 
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