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Abstract 
 

In sample surveys more than one population characteristics are estimated and these characteristics may be of 
conflicting nature. Stratified sampling has been designed to ensure that all important views are represented in 
samples.  In multivariate stratified sample design, correlation is considered among interest variables. A variation 
of one variable with lower correlation is more important than others.  Optimal allocation in multi-item is 
developed as a multivariate optimization problem by finding the principal components. A search was made for a 
set of mutually uncorrelated variables, 

pYYY ,.....,, 21
  each one being a linear combination of the original set of 

variables,
pXXX ,.....,, 21

.  An empirical study from a household survey conducted in Abeokuta South and Ijebu 
North local government areas were used. The data about the households are available for four characteristics or 
variables that are related to the survey.  These characteristics include occupation, income, number of dependants 
and the educational level. Each of the two local government areas with a sample size of 200 households each 
were randomly selected using simple random sampling technique making a total of 400 households. The heads of 
the households were interviewed. The study adopted an approach based on the fact that its methodology is more 
realistic under the ambit of multivariate analysis. Using Splus software, the variance- covariances matrices were 
computed. The principal component analysis ensured that the variance-covariance matrix was decomposed and 
the eigenvalues and eigenvectors calculated from the multivariate data representing information from the 
households were computed.        
 

Keywords: Principal components, multivariate stratification, optimal designs, sampling,  allocation. 
 

1.0 Introduction 
 

Sampling methods are designed to provide valid, scientific and economical tools for research problems. 
According to Kish (1965) and Hunt and Tyrell (2004), sampling plays a vital role in research design involving 
human population and commands increasing attention from social scientists, chemists, engineers,   accountants, 
biologists and medical practitioners. Sampling problems are equally material to practitioners engaged in 
marketing, commerce, industry, public health, biostatistics, education, public administration, economics, 
sociology, anthropology,   psychology, political Science and even social workers.  
 

Sampling methods are developed as means to an end originating in substantive research problems especially in 
the social sciences and their applications (Kish, 1965; Hunt and Tyrell, 2004).  A working knowledge of practical 
sampling methods with an understanding of their theoretical background need to be a requirement for 
quantitatively oriented students in the social sciences as well as in allied fields. It is helpful although difficult to 
separate sampling design from the related activities involved in survey research.  The sample design covers the 
tasks of selection and estimation for making inference from sample value to the population value. Beyond this are 
the problems of making inferences from one survey population to another and generally broader population, with 
measurements free from error. Different sampling designs would result in different standard errors, and choosing 
the design with the smallest error is the principal aim of sampling design. 
 

An effective sampling technique within a population represents an appropriate extraction of useful data which 
provides meaningful knowledge of the important aspects of the population (Garcia and Cortez, 2006).  Probability 
samples are usually designed to be measurable, that is, so designed that statistical inference to population values 
can be based on measures of variability, usually standard errors, computed from the sample data. 
 

In general, there is need to devise a sampling scheme which is economical and easy to operate, that yields 
unbiased estimates, and minimizes the effects of sampling variation. 
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Usually in sample surveys more than one population characteristics are estimated and these characteristics may be 
of conflicting nature. Stratified sampling has been designed to ensure that all important views are represented in 
samples.  Stratification is a means of sample design by which the population of interest is divided into groups, 
called strata, according to some known characteristic(s). Stratified sample designs are employed for several 
reasons. These include: 1) to increase the precision of estimates for the whole population for one or more key data 
items being collected in the survey; 2) to obtain more precise estimates for interesting domains; 3) to allow the 
use of different sampling, non-response adjustment, editing, or estimation methods for domains with differing 
characteristics affecting the choice of method, and 4) to facilitate administration of the survey. Stratified sampling 
is always more restrictive than simple random sampling. 
 

1.1 The Multivariate Stratification Scheme 
 

Moreover, in the context of stratified sampling, some multivariate approaches have been proposed whereby the 
sample size and its allocation within strata take diverse characteristics into consideration (Sukhatme et al., 1984 
and Arthanari and Dodge 1981). The multivariate stratified sample design is different with two steps from the 
univariate stratified sample design. The first step is to decide strata using stratified variables which are 
multivariate. The second step is to decide a sample size and the optimal allocation, that is, to decide a sample size 
of each stratum using interest variables which are multivariate. 
 

There are many methods for allocation to strata in the multivariate stratified sample design. The first method is 
the proportional allocation, and the second is the multivariate allocation using one interest variable which is 
selected of multivariate interest variables. The third is a compromise allocation which is a weighted average of 
sample size of strata using individual allocation (Cochran, 1977; Chatterjee, 1972). The fourth is the optimal 
allocation for a loss function of characteristic values which combine variances of all variables (Kish, 1976; 
Sukhatme et al, 1984; Bethel, 1989; Khan and Ahsan, 2003; and Diaz-Garcia and Cortez, 2008). 
 

In multivariate stratified sample design, correlation is considered among interest variables. The first method is a 
compromise allocation weighted by correlation coefficients or covariances, and the second method is the optimal 
allocation for a loss function of characteristic values of variance-covariance matrix. A variation of one variable 
with lower correlation is more important than others. The third method is to use weighted object function by the 
importance of interest variables in a mathematical programming and of importance is the error of estimation, the 
correlation coefficient or the covariances. The multivariate stratified sample design is used for multi-objective 
surveys in which there is difference among the importance of interest variables. 
 

The problem of allocation with more than one characteristic in stratified sampling is conflicting in nature, as the 
best allocation for one characteristic will not in general be best for others. Some compromise must be reached to 
obtain an allocation that is efficient for all characteristics. This problem was first considered by Neyman (1934), 
Dalenius (1957), Ghosh (1958), Kokan and Khan (1967), Khan and Ahsan (2003), Khan, Jahan and Ahsan 
(1997). Attempts were made for an acceptable allocation by either suggesting new criteria or exploring existing 
criteria further. 
 

One of the problems of stratification is that loss in precision in the estimate of a characteristic increases if the 
characteristic in a stratum is not internally homogenous. To refrain from the increase in loss of precision is to 
assign a maximum weight to the jth characteristic. Optimal allocation in multi-item is developed as a multivariate 
optimization problem by finding the principal components. This could be done by determining the overall linear 
combinations that concentrate the variability into few variables. 
 

The objectives of the study are to: 
 

1. Find allocation in multi-item stratified sampling using principal components, 
2. Determine which of the components accounts for most of the variation in the model proposed, and 
3. Compare the allocation in the two zones where the empirical data were collected. 

 

2.0 Methodology 
 

The problem of allocating sample to various strata may be viewed as minimizing the variances of various 
characters subject to the conditions of the given budget and tolerance limits on certain variances. The problem 
turns out to be nonlinear programming problem with several linear objective functions and single convex 
constraint.  Pizada and Maqbool (2003), solved the resulting linear programming problem through Chebyshev 
approximation. The criteria behind the Chebyshev approximation are to find a solution that minimizes the single 
worst. 
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2.1 Optimum Allocation via Multi-objective Optimization 
 

The estimator of the population mean in multivariate stratified sampling for the j -th characteristic is defined as 
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2.2 Optimal Designs in Multivariate Stratified Sampling 
 

The problem of optimal allocation of a stratified sample when several variables are measured on each unit can be 
summarized as follows. 
 

Suppose that 
kiYYY

iiNiiii .,,.........2,1        ).,,.........,( 21    
 

is a specified parametric function of the unknown values in the ith stratum, an objective is to estimate p  linearly 
independent functions from the stratified sample  
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To proceed with an allocation, Kokan and Khan (1967), suggested the minimization of the total sampling cost 
 





k

h
hhnCCC

1
0  

such that constraints on each variance 
 

pjYL j ..,,.........2,1                           )var(   
 

The conditions Kokan and Khan (1967) imposes on each variance are such that all jL̂  satisfies the proportional 
closeness requirement namely 
 

  1|}| |ˆ{| jjj LLL               for 10 and 10   ,,...1  pj  
 

Draper and Guttman (1968) remarked that it could be of interest to consider specific linear combination L  of 
elements of  . This leads to the following: 
 

Let the p – vector Yi be normally distributed with mean µi and Covariance .i ki ,,.........2,1  where i  is a 

p vector and i  is a pp   non singular matrix. Draper and Guttman, (1968) suggested that the first principal 
component is to be chosen so as to make its variance as large as possible. 
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2.2.1    Distance-based Method 
 

This method is a vector of ideal goals, which is determined with the null information. On many occasions, the 
investigator comes up against the problem that no antecedents are available with which to address it. With this 
method, it is possible to obtain the optimum values, minimizing the distance between the optimum and the vector 
of targets simultaneously. By letting jv  to be the ideal point or goal for the objective ,,.......,2,1),ar(V̂ Gjy j

st 
the vector of targets V is given as 
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A great advantage of this method is that this vector of targets V can be calculated without additional information. 
This is done by minimizing, separately, each objective ,,......,2,1),yar(V̂ j

st Gj  such that the vector V is defined 
as the vector of its individual minima, which is achieved on resolving the following G nonlinear minimization 
programmes for integers (Rao, 1985, 2003, 2005): 
 

Nn
HhNn

Ccnc

yarV

h

hh

h

H

h
h

j
st







          
           ,.......,2,1      2

(2.4)                                                   

subject to  

))(ˆmin

0
1

n

 

 

For j=1,2,……,G. When the vector V has been established, one proceed to examine the problem to be optimized 
with the new objective function, namely 
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Where d corresponds to a weighted norm. More generally, when the weighted norm qL , is considered, the 
problem to be optimized takes the following form 
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with ,0 and  1  jq  which is the weight or priority given to each objective .j  By taking 

,1  with 1  qj  we have the following problem 
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As jv  are constant for all j=1,2,……,G, the problem is reduced to 
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With ,q one need only to take into account the maximum deviation, and so the problem to be optimized is 
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And for q=2 the problem is 
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Alternatively, another distance has been proposed by Khuri and Cornell (1987): 
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In all these optimization methods, the cost restriction Ccnc h

H

h
h 


0

1
has been utilized. However, on some 

occasions the restrictions do not apply to the costs but to the availability of man-hours for carrying out a survey, 
or simply to the total time available for performing the survey. 
 

2.2.2 Linear Compounds 
 

A linear compound YYYY p or  ,........,, 21 of a 1p  random vector X   is a linear combination of its compounds 
such that  
                              XaY   
where ).,.........,( 21  paaaa  is a vector of real constants. Suppose that 1 a is pX  random vector, 1 a is pa
vector of constants and XaY  , then the mean of the linear compound is  
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The variance is defined as 
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For a 1p  random vector ,X and a np  matrix of real constants A  
Then 
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2.3    Principal Component Analysis 
 

We search for a set of mutually uncorrelated variables, pYYY ,.....,, 21   each one being a linear combination of the 

original set of variables, pXXX ,.....,, 21 . One of the motivations for determining such a collection is in of, if we 
derive a set that concentrates the overall variability into the first few variables, it is perhaps easier to see what 
accounts for the variation in the data. 
 

Indeed, if a few of the }{ iY  seem to account for most of the variation in the data, then it could be argued that the 
effective dimensionality is less than P and this could result in a simplified analysis based on a smaller set of 
variables. 
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2.3.1 Finding Principal Components 
 

Suppose that ),......,,( 21  pXXXX   is a random vector with mean   and covariance matrix . Then the 

principal components of ,X  defined by pYYY ,......,, 21  satisfies the following conditions: 
 

(i) pYYY ,......,, 21  are mutually uncorrelated. 

(ii) )(.........)()( 21 pYVarYVarYVar  . 

(iii) XaXaXaXaY jppjjjj  .......2211 . 
 

Where ),......,,( 21  pjjjj aaaa  is a vector of constants satisfying 
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To derive the first principal component of 1Y  , we have 
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The idea is to select 1a  in such a way that )( 1YVar  is as large as possible, subject to the constraint  111 aa  
This is a standard problem in constrained optimization and may be solved using the method of LaGrange 
multipliers. 
 

To use this method the LaGrangian is formed as 
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A non-trivial solution )0( 1 a  to the above exists if, and only if 
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Where   is the determinant operator.   
 

Thus δ must be an Eigen value of ∑, with 1a  being its corresponding Eigen vector: 
Since ∑ is a pp   symmetric matrix, then there can be up to p  distinct Eigen values.  Since ∑ is positive (semi) 
definite, then all of its Eigen values are non-negative. 
Assume, for the moment, that the Eigen values of ,  p ,.....,, 21    are all distinct, 
 

That is 
              0......................21  p  
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Using (2.13), which is equal to   11aa  will take its largest value at 1  , since this is the value of the 
largest Eigen value, with 1a  being the Eigen vector corresponding to 1 . 
 

3.0 The Empirical Study 
 

An empirical data from a household survey conducted in Abeokuta South and Ijebu North local government areas 
were used. The data about the households are available for four characteristics or variables that are related to the 
survey.  These characteristics include occupation, income, number of dependants and the educational level. Each 
of the two local government areas with a sample size of 200 households each were randomly selected using 
simple random sampling technique making a total of 400 households. The heads of the households were 
interviewed. 
 

Results 
 

3.1 Parameter Estimation 
 

The primary concern in all sample surveys is the derivation of point estimates for the parameters of main interest. 
The point estimate for the proportionately allocated sample data are obtained by adding up the observation over 
all the strata and dividing by the sample size. However, equally important is the derivation of the variances of the 
above estimates. The sampling variance is indeed one of the key indicators of quality in sample surveys and 
estimation. Variance estimation is crucial issue in the assessment of the survey results. Statistical software Splus 
was used in the analysis of data. 
 

The summary estimates of the sample statistics for Abeokuta South and Ijebu North samples are as shown in 
Tables 3.1 and 3.2. 
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Table 3.1: Summary Estimates of Abeokuta South Sample Statistics 

 

 Occupation Income Dependant Size Educational Level 
Mean  1.833 2.067 1.3000 1.700 

)(Vsrs y  0.008 0.0214 0.0062 0.018 
Var(post) 0.0036 0.0073 0.0036 0.0069 

)(Vmod sty  0.0027 0.0045 0.0023 0.0058 
 

Table 3.2: Summary Estimates of Ijebu North Sample Statistics 
 

 Occupation Income Dependant Size Educational Level 
Mean  1.833 2.033 1.333 2.033 

)(Vsrs y  0.0079 0.0206 0.0016 0.0019 
Var(post) 0.0047 0.0067 0.0014 0.0015 

)(Vmod sty  0.0013 0.0038 0.0011 0.0012 
 

3.2 Multivariate Stratified Sampling   
 

The problem of optimum allocation in multivariate stratified sampling has been examined in statistical literature, 
but the solutions proposed have been particular cases of a multi-objective optimisation technique. Using our data 
set for Abeokuta and Ijebu, the general multi-objective optimisation programme as in (3.79) is 
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The study adopted an approach based on the fact that its methodology is more realistic under the ambit of 
multivariate analysis. The first step is to compute the matrix of variance-covariances of the vector 

.),.......,( 1  G
ststst yyy  Using Splus software, the variance- covariances matrix is as in Tables 3.3 and 3.4.  The 

Eigenvalues of the covariance matrix of Abeokuta and Ijebu data set is as shown in Table 3.5 while the Eigen 
vectors are as shown in Tables 3.6 and 3.7. 
 

Table 3.3: Variance-Covariance Matrix of Abeokuta Data Set 
 

 Occupation Income Dependant Size Educational Level 
Occupation 0.2361 -0.0272 -0.0391 -0.1333 
Income -0.0272 0.2924 0.0677 0.2052 
Dependant Size -0.0391 0.0677 0.4046 0.0447 
Educational 
Level 

-0.1333 0.2052 0.0447 0.6068 

 

Table 3.4: Variance-Covariance Matrix of Ijebu Data Set 
 

 Occupation Income Dependant Size Educational Level 
Occupation 0.2197 -0.0508 -0.0392 -0.1744 
Income -0.0508 0.3020 0.0761 0.2132 
Dependant Size -0.0392 0.0761 0.3832 0.1059 
Educational 
Level 

-0.1744 0.2132 0.1059 0.5484 

 

Table 3.5: Eigenvalues of the Covariance Matrix of Abeokuta and Ijebu Data Set 
 

Eigenvalues )( i   Abeokuta Ijebu 
1 0.7593 0.7788 
2 0.3970 0.3391 
3 0.2297 0.2089 
4 0.1539 0.1266 

 

Table 3.6: Eigen Vectors of Abeokuta Data Set 
 

 1 2 3 4 
       1 -0.2532 0.0117 -0.7562 -0.6033 
       2 0.4176 -0.0713 -0.6469 0.6341 
       3 0.2143 -0.9569 0.0617 -0.1858 
       4 0.8459 0.2811 0.0774 -0.4466 

 

Table 3.7: Eigen Vectors of Ijebu Data Set 
 

 1 2 3 4 
       1 -0.3064 -0.1546 0.5704 0.7463 
       2 0.4344 0.0398 0.7952 -0.4212 
       3 0.3236 -0.9387 -0.1156 0.0266 
       4 0.7828 0.3054 -0.1703 0.5148 

 

3.3 Results Based On Principal Component Analysis 
 

The principal component analysis ensured that the variance-covariance matrix was decomposed and the 
eigenvalues and eigenvectors calculated from the multivariate data representing information from the households. 
 

The principal components were computed from the study on the basis of the sample covariance matrix, and the 
result for Abeokuta samples are 
 

43211 846.0214.0418.0253.0 XXXXY   

43212 281.095.00713.0117.0 XXXXY   

43213 073.0062.0647.0756.0 XXXXY   

43214 447.0186.0634.0603.0 XXXXY   
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with corresponding sample variances 0.7593, 0.3970, 0.2297 and 0.1539 respectively. 
Thus, the total variance is 1.5399 and the principal components, 4321 ,,, YYYY



  successively accounts for 49.3%, 
25.8%, 14.9% and 10.0% of the total variance. Similarly, the principal components, based on the sample 
correlation matrix for Abeokuta are given by 
 

4321 628.0307.0566.0438.0~
1

XXXXY   

43212 300.0887.0109.0333.0~ XXXXY   

43213 161.0297.0565.0752.0~ XXXXY   

43214 700.0173.0591.0363.0~ XXXXY   
 

Where 1,2,3,4ifor           
i

i
i S

XX  

The sample variances of the new principal components 4321 ,,, YYYY


   are 1.7280, 0.9463, 0.8971 and 0.4286 
respectively. In this case, the total variance is 4 and the principal components account successively for 43.2%, 
23.7%, 22.4% and 10.7% of the total variance. 
 

By using the Eigen function, we found that the Eigen values of the sample covariance matrix were 0.7593, 
0.3970, 0.2297 and 0.1539. The square root of these values is the standard deviations of the principal components 
and is 0.8714, 0.6301, 0.4792 and 0.3924 respectively. 
 

The principal components on the basis of the sample covariance matrix for Ijebu samples are 
 

43211 783.0324.0434.0306.0 XXXXY   

43212 305.0939.0040.0155.0 XXXXY   

43213 170.0116.0795.0570.0 XXXXY   

43214 515.0027.0421.0746.0 XXXXY   
 

with corresponding sample variances 0.7788, 0.3391, 0.2089 and 0.1266 respectively. 
 

Thus, the total variance is 1.4534 and the principal components, successively accounts for 53.4%, 23.3%, 14.4% 
and 8.7% of the total variance. Similarly, the principal components, based on the sample correlation matrix for 
Abeokuta are given by 
 

4321 620.0340.0519.0481.0~
1

XXXXY   

43212 189.0825.0158.0509.0~ XXXXY   

43213 104.0452.0689.0557.0~ XXXXY   

43214 755.0010.0481.0446.0~ XXXXY   
 

Where 1,2,3,4ifor           
i

i
i S

XX  

The sample variances of the new principal components 4321 ,,, YYYY


 are 1.9552, 0.9065, 0.7726 and 0.3658 
respectively. In this case, the total variance is 4 and the principal components account successively for 48.9%, 
22.7%, 19.3% and 9.1% of the total variance. 
 

By using the Eigen function, we found that the Eigen values of the sample covariance matrix were 0.7788, 
0.3391, 0.2089 and 0.1266. The square root of these values is the standard deviations of the principal components 
and is 0.8825, 0.5823, 0.4571 and 0.3558 respectively. 
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