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Abstract 
 

Leaf area index (LAI) is an important biophysical variable used to reflect the vegetation condition in ecosystems. 
However, accurate estimation of LAI is highly dependent upon the spatiotemporal scales. Both direct (destructive 
sampling, litter fall collection and point contact sampling) and indirect methods (optical instruments) have been 
used to measure LAI in mixed grasslands. In particular, remote sensing technique is rapidly gaining wide interest 
in developing various empirical and physical models for LAI estimation. The present review compares the 
advantages and disadvantages of different methods in estimating LAI. It also summarizes the spatiotemporal 
variation of LAI and its sensitive factors. The suitability of remote sensing data in capturing the spatiotemporal 
variation of LAI is particularly discussed.  Based on the gaps found in existing literature, this paper attempts to 
theoretically propose a spatiotemporally parameterized model to improve the accuracy of LAI derivation in mixed 
grasslands. The overall objective will be achieved by the following steps:1) Determine the sensitive factors 
influencing LAI spatiotemporal variation; 2) Identify appropriate remote sensing data in terms of spatial, spectral 
and temporal resolutions; 3) Establish the LAI parameterized model; 4) Assess the model accuracy and test it in 
one hydrology model.  
 

Keywords: Leaf Area Index (LAI), mixed grasslands, spatiotemporal variation, remote sensing, parameterized 
model 
 
1. Introduction 
 

Leaf area index (LAI), defined as half of the total green leaf area per unit of horizontal ground surface, is a critical 
parameter to quantitatively measure the abundance and structure of vegetation for understanding the entire 
biophysical processes [1-4]. LAI has wide applications in both agriculture and ecological studies including yield 
estimation, stress evaluation, primary production related to photosynthesis, respiration, transpiration, carbon and 
nutrient cycle and rainfall interception [5-6]. Therefore, LAI serves as a necessary input to many agricultural, 
climatical, ecological and hydrological models such as canopy photosynthesis models, evaporation models, 
transpiration models, precipitation models, crop growth models and primary production models [3, 7-8].  The 
performance of these aforementioned models is very sensitive to the variation of LAI at different spatiotemporal 
scales and requires an accurate estimation of LAI [9].  
 

For mixed grasslands studies, accurate LAI can be a good indicator of the variation of grassland ecosystem 
dynamics at the landscape level [10-12]. It is easier to obtain accurate in-situ LAI using instruments or destructive 
methods at field sites due to the accessibility and simplicity of vertical dimensions of grasses [13]. For LAI 
estimation and mapping at different spatiotemporal scales, remote sensing has been considered as a promising 
tool in quite a few relative studies because of its advantages in large-scale, real-time, and long-term monitoring 
[14-17]. Particularly most parameterized ecological and hydrological models, for example, the cold region 
hydrology model (CRHM), require LAI of high accuracy over different spatiotemporal scales to guarantee a better 
initiation and performance of the model simulation [18].  
 

However, the maximum accuracy of estimated LAI by satellite data can only reach approximately 50% owing to 
the surface heterogeneity (diverse cover types within a mixed image pixel) as well as the temporal variability of 
grasslands in different growing seasons [7,9].  
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Therefore, it is necessary to raise the accuracy of LAI estimation at different spatiotemporal scales to further 
improve the performance of hydrological and ecological models. In this research, we will establish a 
spatiotemporal parameterized LAI model combining various sensitive factors using remote sensing approaches. 
The spatiotemporal scales will be investigated by analyzing both the spatiotemporal resolutions of different 
satellite imagery and the spatiotemporal variation of LAI in mixed grasslands.  
 

The accuracy of the LAI model will be assessed based on in-situ data and then this LAI model will be tested in 
the cold region hydrology model (CRHM).The following review is organized in four parts for a better 
understanding of the above proposed objectives. The first one briefly summarizes the current LAI estimation 
methods. The second one investigates the spatiotemporal variation of LAI and sensitive factors responding to 
such variation. The third one explored remote sensing of LAI with regard to available sensors, imagery of 
appropriate temporal, spatial and spectral resolutions for LAI estimation, and current remote sensing models to 
derive LAI. The final one discusses the importance of LAI dynamic parameterization to the CRHM model for 
establishing a suitable LAI parameterization scheme of the expected performance of the CRHM model. 
 

2. Methods of LAI Estimation 
 

Two main methods consisting of direct and indirect optical measurements are available for estimating LAI values. 
Direct methods refer to the ground-based approaches such as destructive sampling, litterfall collection and point 
contact sampling by completely defoliating green leaves or collecting the leaf litter and then determining LAI in 
planimetric or gravimetric ways [19]. Jonckheere et al. [20] pointed out that the direct measurement of LAI is the 
most accurate method. Nevertheless, others argued that this approach is relatively time consuming, labor-
intensive, and merely applicable for small plants in limited experimental plots [8, 19, 21]. 
 

The limitation of direct methods has been compensated for by indirect methods mainly including LAI optical 
instruments and satellite sensors which have great potential to estimate LAI over large spatial extents [9, 19]. 
Common instruments such as LAI-2000 plant canopy analyzer (LI-COR, Lincoln, Nebraska) , 
SunfleckCeptometer (Decagon Devices, Pullman, Washington) and Demon (Cisro, Center for Environmental 
Mechanics, Canberra, Australia) are invented relying on the optical transmission theory. Several studies have 
shown that the primary problem within the instrument-derived measurements is the underestimation of LAI 
around 25% - 50% [22-24]. This underestimation is caused by the invalidity of the random dispersion in the real 
canopy as well as experiment designs. To reduce the error of LAI measurements, two new instruments called 
Tracing Radiation and Architecture of Canopies (TRAC) and MVI were developed by Chen et al. [25] and 
Kucharik et al. [26] respectively. In contrast, other studies drew different conclusions suggesting that instruments 
should overestimate LAI since all plant parts are counted as leaf area intercepted [27-28]. The aforementioned 
field optical instruments with the disadvantages of site-based, time consuming and low frequency fail to estimate 
LAI over large areas at all scales [21]. 
 

Remote sensing as another indirect method holds the greatest potential to characterize LAI variation at different 
spatiotemporal scales due to the multiple spatiotemporal resolutions of the available satellite data. Besides, remote 
sensing is considered to be a good solution to the time and labor problems identified in the traditional direct 
methods [6, 21, 29-30]. Generally, LAI remote sensing inverse models can be classified into three categories. The 
first type is called the empirical-based model through establishing the relationship between vegetation indices 
(VIs) and the in-situ LAI, which enables the deriving of LAI for large areas by computing the simple statistical 
equations with remotely sensed VIs as the input. The second type is the radiative transfer (RT) or physical process 
model. RT models are biome-independent because they are based on geometrical optical and radiative transfer 
theories by taking the interactions between LAI and influencing factors (e.g., the incident and observation angles, 
the canopy structure parameters and background effects) into consideration.  
 

The third type is the hybrid model as a result of combining the empirical and physical approaches into a integrated 
LAI inverse model, which can inherit advantages of the simplicity of an empirical model as well as the biome-
dependent characteristics of a process model [8, 19, 31]. Remote sensing derived LAI has been efficiently used as 
inputs to various ecological models [32-33]. However, Yao et al. [34] pointed out that for mixed grasslands of 
heterogeneity, LAI derived from remote sensing imagery with a large percentage of mixed pixels can hardly equal 
to in-situ data, resulting in inaccuracy and error. The higher the heterogeneity is, the lower the accuracy of LAI 
estimation will be. This is consistent with studies by He and Guo [35], suggesting that the remotely sensed LAI 
for heterogeneous area is also contributed by litter, soil and other canopy characteristics.   
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3.  Spatiotemporal Variations of LAI and Sensitive Factors 
 

LAI varies at different spatiotemporal scales, which is important to better understand the processes and patterns of 
ecosystems in different scales [36]. The spatial variation of global LAI changes with the distribution of vegetation 
biomes that shows high LAI values in tropical forest area, moderate LAI in agriculture and natural vegetation 
biomes, and low values in tundra and desert areas.  
 

 

The seasonality is considered to be the most significant cause for the temporal variation of LAI in different 
vegetation biomes [37]. Li [9] concluded LAI of grasslands spatially varies within different land covers and 
temporally varies in different phenological phases including green up, maximum growth and senescence. Both the 
spatiotemporal variations of LAI are controlled by different sensitive factors in respects of biotic and abiotic 
categories. To improve the accuracy of LAI estimation, it is necessary to analyze the interrelation of these factors 
and their sensitivities to the spatiotemporal variation of LAI, and then parameters can be determined as inputs to 
the potential LAI model. Biotic factors consist of species composition, canopy structure, and phenology while and 
abiotic variables include temperature, precipitation, radiation, topography and soil moisture [38-40]. Canopy 
structure involves vegetation height, plant form percentage, and leaf angle distribution.  
 

Slope, aspect, relative elevation, upslope length, and wetness index contribute to the topographical factor [16]. 
Soil moisture is a primary ecological parameter associated with LAI [41-43]. Consequently, LAI is considered as 
a function of the all the aforementioned factors [9]. Optical properties of the investigated vegetation, often 
quantified by vegetation indices (VIs) developed based on two or more spectral bands, are thought to be effective 
tools to measure the sensitivity of the aforementioned factors to LAI variation at different scales. 
 

Figure1. Sensitive factors of LAI in mixed grasslands 
 

 
 
 

Research has put efforts to investigate the relationships between LAI and its influential factors. Kramer et al. [43] 
concluded a linear relationship exists between LAI and the soil moisture and shows a direct proportion to the 
moisture deficit with some restrictions on threshold and time. He et al. [36] pointed out that the spatial variation 
of LAI at 30 m scales is determined by soil moisture and at 120 m controlled by topographical factor wetness 
index. Numerous studies show that VIs changes in the same trend with LAI or biomass below a maximum 
threshold called saturation value beyond which the VIs maintain unaffected by the variation of LAI [9, 44]. Some 
environmental factors merely control the LAI variation in either spatial or temporal scale, while others can 
contribute to the LAI variation at both scales at the same time. In view of the spatial aspect, topography is the 
primary determinant of large scale LAI, while soil moisture affects LAI at a smaller scale [36].  
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With regards to the temporal characteristic, climate variables considered as good indicators of LAI temporal 
variation, can reflect continuous vegetation conditions as well as leaf development in different times [41, 45-46].  
The seasonal cycle of precipitation over land displays a strong relationship with the temporal variability of LAI 
due to the change of the hydrological cycle and the atmospheric circulation pattern [37]. Other variables, such as 
soil moisture controlled by topography, precipitation, soil texture and its chemical elements, can show the LAI 
variation at both spatiotemporal scales [37, 39]. However, there exists dependence to different extents between 
some of the LAI sensitive factors which repeatedly contribute to the spatiotemporal variation of LAI.For example, 
soil moisture is highly controlled by precipitation and topography [9, 39].  
 

Therefore, it is necessary to identify the dependent influence among these sensitive factors for the accurate 
estimation of LAI at different spatiotemporal scales. 
 

4. Remote Sensing Techniques for LAI Estimation 
 

So far a collection of remote sensors have been explored to the application of modeling vegetation attributes, 
monitoring vegetation health and modeling biophysical processes [47-48]. For accurate LAI estimation taking 
account of spatiotemporal variation at different scales, satellite data with regard to spatial, temporal and spectral 
resolutions are supposed to be given to serious consideration and careful selection. Particularly in remote sensing 
modeling of LAI, satellite data of appropriate resolutions are required to be suitable for the spatiotemporal 
variation of LAI. 
 

4.1 Available sensors 
 

Different satellite sensors have different configurations in terms of orbital altitude, spatial resolution, spectral 
bands limits, and earth coverage period; especially radiometric properties acquired from different instruments are 
sensor-dependent [49-52]. Previous studies have shown that four satellite instruments are thought to be the most 
popular and frequently-used sensors in quantifying LAI. Those sensors involve the Advanced Very High 
Resolution Radiometer (AVHRR) carried on the meteorological satellite Television Infrared Observation 
Satellites (TIROS) and National Oceanic and Atmospheric Administration (NOAA) since 1978, Moderate 
Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s (National Aeronautics and Space 
Administration) Terra and Auqa satellites, Thematic Mapper/Enhanced Thermatic Mapper (TM/ETM+) aboard 
Landsat satellites, and High Resolution Visible Infrared (HRVIR) and Vegetation sensors aboard Satellite Pour 
l'Observation de la Terre (SPOT) 4 and 5 [8,30, 53-54] in Table 1. 
 

Table1. Temporal, Spatial and spectral resolutions of available satellite data for LAI estimation 
 

Satellite data Temporal 
resolutions(day) 

Spatial resolutions 
(m) 

Spectral resolutions 
(number of bands) 

AVHRR 1 1100 5 (Red, NIR,TIR, TIR, TIR) 

MODIS 1 
1000 29 (0.405µm - 14.385 µm ) 
500 5 (Blue, Green, NIR, MIR,MIR) 
250 2 (Red, NIR) 

SPOT 
Vegetation 1 1150 4 (Blue, Red, NIR, MIR) 

TM 16 30 (band 1 through 5, 7) 
120 (band 6) 

7 (Blue, Green, Red, NIR, MIR,MIR, 
TIR,) 

HRVIR SPOT 26 

SPOT4: 20 (Green, Red, NIR, 
MIR); 10 (Pan) 
SPOT5: 20 (MIR); 10 (Green, 
Red, NIR, MIR); 2.5 (Pan) 
 

5 (Green, Red, NIR, Pan, MIR) 

 

I AVHRR 
 

AVHRR was aimed to study the global climate and environmental change due to the high temporal resolution as 
well as the moderate spatial resolution (1.1 km ×1.1 km). There were 4 bands in the first AVHRR carried on 
TIROS satellite (1978) and AVHRR/2 was enhanced to 5 bands (0.6 um, 0.9 um, 3.5 um, 11 um and 12um 
respectively) initially aboard NOAA-7 (1981).  Subsequently, an extra band (1.6um) was designed for the latest 
instrument version AVHRR/3 on NOAA-15(1998) [55].  
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Available 20-year records of global dataset make it possible to conduct continuously long-term monitoring of 
earth surface features such as land-covers, snow, ice and sea. Besides, changes in land-cover conditions over short 
periods can also be detected due to the cloud-free imagery obtained from high frequency coverage [48].  
Operational NDVI products are generated from AVHRR data for monitoring vegetation conditions in different 
ecosystems. Canada-wide LAI maps were generated using 10-day cloud-free AVHRR imagery as well as SPOT 
Vegetation imagery since 1993 with validation by ground measurements and TM LAI scenes. Chen et al. [56] 
pointed out that the accuracy of AVHRR and SPOT Vegetation-derived LAI ranges from 50% to 70% with 
Landsat LAI as the standard due to the surface heterogeneity caused by mixed cover types.  
 
 

Qi et al. [54] applied an approach by combining bidirectional reflectance distribution function (BRDF) model and 
traditional LAI-VI empirical relation in the AVHRR imagery and confirmed the possibility to estimate LAI in 
simple ways requiring less ground information of the target. 
 

II MODIS 
 

MODIS was aimed to provide long-term observation of global dynamics and processes of the land surface, 
oceanic as well as high atmospheric properties [38, 57]. It has more advantages in viewing any point of the earth 
surface in measurements of 36 spectral bands (0.405 to14.385 µm) at three spatial resolutions from 250 m/ pixel 
(bands 1 and 2), to 500 m/pixel (bands 3 through 7), and 1,000 m/pixel (bands 8 through 36). Three categories of 
MODIS products involving Surface Reflectance, Vegetation Indices (VIs) and Leaf Area Index-Fraction 
Photosynthetically Active Radiation (FPAR) at different spatiotemporal resolutions have great potential in 
estimating LAI.  Ten types of global products in total are available for the Surface Reflectance category, twelve 
for the Vegetation indices and 4 for the Leaf Area Index-FPAR (Table 1). Yi et al. [30] compared two MODIS 
land surface reflectance data collections in wheat LAI retrieval and found the 8-day composite data are more 
preferable for LAI estimation due to the reduced cloud and aerosol impacts after composting.   
 

Propastin and Erasmi [8] established a physical radiative transfer model to derive LAI at 250 m resolution using 
MOD13Q1 vegetation index products showing good compatibility with in situ measurements and the global 
MODIS 1000-m LAI product. However, Fang et al. [53] pointed out that MODIS standard LAI products based on 
a physical algorithm generally show both spatiotemporal discontinuity with higher LAI values, which is 
consistent with results by Fensholt et al. [33] that there is around 2-15% overestimation within MODIS LAI 
standard products due to a moderate offset unable to be explained by model or input uncertainties. Propastin and 
Erasmi [8] also argued that MODIS LAI product MOD15A2 underestimate LAI for moist rainforest biome 
characterized by higher LAI amplitude. Therefore, the potential of MODIS data in LAI estimation is in need of 
further exploration and experiments.  
 

III Landsat TM/ETM+ 
 

TM (launched in Landsat 4, 5) is the predecessor of ETM+ (in Landsat 7) in Landsat series sensors with the cost 
of ETM+ data substantially reduced from TM. Table 1 shows the configuration of Landsat TM and ETM+ data 
with regard to spectral, spatiotemporal resolutions. Seven spectral bands are designed to distribute in the visible 
and infrared spectral regions. As high spatial resolution satellite data, both types of imagery are widely utilized to 
estimate LAI for different purposes [19, 58]. Various VIs, such as the Normalized Difference Vegetation Index 
(NDVI) and the Simple Ratio Index (SRI) derived from Landsat imagery, are related to ground-based LAI 
measurements in empirical models to retrieve large-area LAI [6, 8, 59-61].  
 

Chen and Cihlar [6] estimated LAI of boreal conifer forests in Canada and found that TM data perform better in 
spring than in summer due to the minimized effect of  understory and moss cover in spring. Brown et al. [1] 
reduced the background effects and improved the sensitivity of SR to the variation of LAI in boreal forests by 
modifying SR with the SWIR band information of TM imagery. Eklundh et al. [62] pointed out that there is a 
strong statistical relationship between LAI and reflectance in ETM+ band 7 and variation in LAI is sensitive to 
ETM+ visible wavelength than in NIR region particularly in band 3.  Customarily LAI generated from Landsat 
imagery are used to validate other LAI products quantified by lower spatial-resolution imagery such as MODIS or 
SPOT Vegetation [53]. 
 

IV SPOT HRVIR and Vegetation 
 

SOPT 4 and SOPT 5 are respectively the fourth (1998) and fifth (2002) generation of  the entire SPOT satellite 
series, carrying both HRVIR and Vegetation sensors for which different spatial, temporal and spectral resolutions 
are respectively shown in Table 1 [63].  
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Particularly the SWIR band (1580-1750nm) sensitive to surface moisture can improve the accuracy of LAI 
estimation [1, 64]. Numerous studies have focused on investigating LAI based on SPOT HRVIR and Vegetation 
data. Soudani et al. [52] compared the potential use of IKONOS, ETM+ and SPOT HRVIR sensors to estimate 
LAI in forest and concluded that the three sensors are similar in bare soil or sparse vegetation while ETM+ and 
HRVIR are more accurate that IKONOS in dense vegetation areas. However, Kraus at el. [65] assessed the LAI in 
East African rainforest ecosystems by comparing HRVIR, ASTER and MODIS data draw an inverse conclusion 
that ASTER data performed better than others in LAI derivation.  He et al. [36] showed that NDVI calculated 
from SPOT4 HRVIR satellite data has a significant correlation to wetness index and LAI which helps identify the 
impact of topography on spatial variation of grassland LAI in Saskatchewan, Canada. 
 

4.2 Appropriate temporal, spatial and spectral resolutions 
 

Various remote sensing data with different spatial, temporal and spectral resolutions present a promising 
opportunity to capture the spatiotemporal variation in LAI. How to identify appropriate remote sensing data is the 
key issue for grassland LAI estimation in a dynamic way.  
 

Three spatial scales (20 m, 40 m and 120 m) are significant for LAI variation in semi-arid mixed grassland. Scales 
at 20 m and 40 m are accounted for the variation of soil moisture while 120 m is controlled by topographical 
variation [36]. So far, spatial scale larger than 120 m has not been identified for LAI which might be determined 
by the variation of other sensitive factors. Spatial scale investigation of different LAI-sensitive factors aid in the 
selection of suitable imagery from diverse satellite data of multiple spatial resolutions (e.g., 250 m, 500 m and 
1000 m for MODIS, 30 m for Landsat TM/ETM+, 20 m for SPOT 4 HRVIR, 10 m for SPOT 5 HRVIR, 1150 m 
for SPOT Vegetation,  and 1000 m for AVHRR).  
 

Meanwhile, all the aforementioned satellite data can also make it possible to explore the variation of different 
sensitive factors and LAI at different spatial scales. Wu et al. [66] and He et al. [16] suggest that the detection of 
LAI spatial sensitivity depends on the spatial resolution of remote sensing imagery which agrees with a previous 
study by [67]. Especially for the semi-arid grasslands characterized by high heterogeneity of mixed cover types, 
determining an appropriate spatial scale can help improve the accuracy of ecological studies by using upscaling 
(processing images from small pixel size to large pixel size) or downscaling (processing images from large pixel 
size to small pixel size) approaches [68]. However, it is difficult to accurately extract the spatial information of 
LAI by merely processing image pixels of mixed cover types [16, 53]. To solve this problem, Chen et al. [56] 
emphasized that the accurate information of image subpixel mixture contributed by different cover types is 
considered as the key to raise the accuracy of such LAI retrieval.  
 

Concerning the temporal aspect, satellite imagery of multiple revisiting frequencies (e.g., 1 day for MODIS, 16 
day for Landsat TM/ETM+, 26 day for SPOT HRVIR, 1 day for SPOT Vegetation, and 1 day for AVHRR) makes 
it possible to quantify temporal variation of LAI in the entire growing season (the green-up, the maximum 
growing, and the senescence) due to timely and effective repeated observations [69]. However, numerous studies 
have demonstrated that remote sensing images suffer from cloud contamination (Clouds and Cloud shadows in 
the imagery) which results in temporal poor coverage of land surface; sometimes only a few images can be 
obtained during the whole vegetation growing season [70-71]. Two potential ways can solve this problem. Jensen 
[48] suggests that imagery of high frequency of coverage (e.g. AVHRR) can increase the possibility to obtain 
cloud-free observations and to detect land-cover conditions over short periods. Also Houborg et al. [72] stated 
that remote sensors such as MODIS can provide continuous daily data, which holds the potential to conduct LAI 
analysis in different time series. Another method to fill the gap caused by the cloud effect is to improve the 
detection and removal of clouds and their shadows from various satellite images [47].  
 

For example, Choi and Bindschadler [73] pointed out that the Automatic Cloud Cover Assessment (ACCA) can 
indentify clouds in Landsat imagery due to their high albedo in the visible spectrum and cold temperature in the 
infrared spectrum. Wang et al. [74] applied such a scheme to TM imagery and generated the cloud-free composite 
image by using image fusion technique and integrating complementary information. Also, Tseng et al. [75] 
implemented the same method to multitemporal SPOT images and derive cloud-free mosaic images. However, Li 
[9] argued that daily LAI estimation can be realized by an interpolation or extrapolation of LAI obtained on 
neighboring dates due to the relatively stable condition of vegetation in grasslands over a short time period. 
 

The spectral resolution of remote sensing data mainly determines the development of diverse VIs which are 
sensitive to various influential factors of LAI (e.g., canopy structure, soil moisture, and phenology).  
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VIs are defined as a dimensionless and radiometric value estimated from of multispectral information of remote 
sensing imagery to measure green vegetation abundance and activity (e.g., LAI, percentage green cover, 
chlorophyll concentration, and green biomass) (Jensen, 2007). VIs allows for monitoring or quantifying LAI 
variation because of a close positive relationship with LAI below the saturation threshold (Li and Guo, 2010). 
Hundreds of VIs were developed based on combined information of different spectral bands, and a majority 
makes use of the inverse relationship between red and near-infrared reflectance associated with green vegetation 
(Haboundane et al., 2004; Delalieux et al., 2008).  
 

Li and Guo (2010) pointed out that VIs developed based on reflectance ranging from 550 nm to 750 nm are not 
only sensitive to LAI but also responsive to chlorophyll leading to inaccuracy of LAI estimation.  
 
 

Therefore, Modified Chlorophyll Absorption Ratio Indices (MCARI) was developed utilizing green, red and near 
infrared bands to reduce the chlorophyll sensitivity but to increase that of LAI variation (Daughtry et al., 2000; 
Haboundane et al., 2004). The shortwave infrared (SWIR) region sensitive to moisture content is another option 
to distinguish vegetation from soil background due to the different water contents in vegetation and soil. Brown et 
al. (2000) modified the SRI by utilizing SWIR information to develop a new VI called Reduced Simple Ratio 
(RSR) which demonstrated increased sensitivity of LAI and minimized background influence in the boreal forests 
of Canada. Li and Guo (2010) investigated the performances of 16 VIs on temporal estimation of LAI in mixed 
grasslands and found NDVI is the most appropriate one for LAI variation during the entire growing season.  
 

In addition, it is necessary to reduce the impact of atmospheric effects on VIs for improved LAI estimation by 
taking advantage of blue band information which is sensitive to atmospheric scattering and absorption. 
Atmospherically Resistant Vegetation Index (ARVI) and Soil and Atmospherically Resistant Vegetation Index 
(SARVI) were developed with this purpose (Kaufuman and Tanre, 1992; Huete and Liu 1994). Besides, for 
semiarid mixed grasslands, abundant of dead materials can significantly impact the LAI variation, which leads to 
a new VI named the litter-corrected adjusted transformed soil-adjusted vegetation index (L-ATSAVI) proposed 
by He et al. (2006a) by incorporating a litter adjustment factor (L) to reduce effects of both soil background and 
litter on the LAI estimation by about 10%. All of the available satellite imagery have red and near infrared 
spectral bands which can aid in deriving NDVI as well as SWIR bands for reducing background effects. TM, 
SPOT Vegetation and MODIS have blue bands information for correcting atmospheric noise. However, litter 
adjusts factor utilizing the band 2000, 2100 and 2200 (not available in the aforementioned satellite imagery) can 
only be derived in hyperspectral reflectance (Table 2-6).  
 

4.3 Remote sensing models for LAI estimation 
 

Numerous studies have been conducted to develop different types of remote sensing models for LAI estimation at 
different spatiotemporal scales. Currently, there are primarily three approaches involving empirical models, 
physical models and hybrid models for LAI estimation [30, 54, 58].  
 

Empirical models are based on an empirical relation between in situ LAI measurements and remotely sensed VIs 
[54]. This approach can be easily implemented to retrieve LAI from local to regional areas, and have been 
effectively used in different studies [56, 76-77]. However, the first limitation of empirical models is the saturation 
problem (low sensitivity of VIs to LAI of high values). In addition, LAI derived from such models are site-season 
specific and scale-dependent, which means there is no single LAI-VI equation with fixed coefficients available for 
satellite imagery of different surface types [54]. Moreover, it is difficult to determine a suitable VI of less 
sensitivity to non-vegetation related factors (e.g., soil background, atmospheric conditions, topography and 
bidirectional nature of surfaces) [78-80]. NDVI is the most widely used VI for LAI estimation, which has been 
demonstrated in studies by [6, 34, 61]. However, Propastin and Erasmi[8] concluded that saturation and scale 
problems in the application of NDVI are still unsolved. Furthermore, for mixed grasslands of heterogeneity, the 
NDVI-LAI empirical models cannot eliminate the reflectance contributed by dead material and bare soil, which 
necessitate the development of other VIs to improve the estimation.  
 

Physical models are developed by the inversion of a radiative transfer (RT) equation, as a function of canopy, leaf 
and soil background characteristics based on theoretical laws [81-82]. Compared with the empirical models, RT 
models are able to physically describe the transfer and interaction of radiation, and thus can be applied widely in 
different vegetation surfaces [72]. However, the disadvantages within RT models are time-consuming 
computation and difficultly-obtained input parameters [54].  
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In order to improve the computation speed, two commonly used methods, the Lookup table (LUT) and the neural 
network (NN), are explored by many studies to optimize the procedure [83-86]. Another limitation of RT models 
is caused by the cloud cover and lack of regional data for validation [8] Therefore, RT models need to be 
incorporated with ground-based information on canopy transmission of vegetation [87]. 
 

The hybrid approach combines physical basis and LAI-VI empirical relationship into one integrated model, which 
is aimed to overcome the limitations of both LAI-VI and physical models [54]. A bidirectional reflectance 
distribution function (BRDF) model is inverted to generate a training dataset (LAI and pixel values) which was 
then used to establish a LAI-VI equation for large-scale LAI estimation based on remote sensing. The advantage 
of this approach is that little information of study target as well as few in-situ measurements is required. However, 
it is a preference to use in-situ LAI instead of the physical model-inversed LAI for the LAI-VI equation validation 
if LAI measurements are available. 
 

5. Challenges of Remote Sensing Of LAI 
 

Although a lot of studies have been done on LAI estimation using remote sensing technique, the accuracy is 
relatively low and lacks of a dynamic characterization. In particular, a majority of studies focused on to the 
relationship between VIs and LAI with only a smaller fraction of research carried out for LAI spatiotemporal 
sensitivity analysis.  Since the influence of sensitive factors exists in LAI scale studies, then how to incorporate 
the major influential factors of LAI spatiotemporal variation is of great significance in mixed grasslands.  In 
addition, the appropriate temporal, spatial, and spectral resolutions of remote sensing data for LAI estimation are 
still poorly identified. Therefore, the spatiotemporal scale problem of LAI estimation has not yet been solved 
completely. Satellite imagery of discontinuously-temporal and spatially-mixed pixels for heterogeneous 
grasslands always results in the inaccuracy of LAI variation. To determine the optimal temporal, spatial and 
spectral resolutions of suitable satellite data for grassland LAI derivation is in need of further exploration. 
Moreover, the current LAI estimation models, whether empirical or physical ones, have their own limitations. 
Therefore, to develop a parameterized model combining advantages of both empirical models and physical 
models has great potential in improving the accuracy of LAI estimation at different spatiotemporal scales for 
mixed grasslands.  
 

6. A Spatiotemporally Parameterized Model for Mixed Grasslands 
 

Our research hypothesis is that a spatiotemporal parameterized LAI model can be established based on remote 
sensing to improve the accuracy of LAI estimation in a dynamic way for mixed grasslands. The overall purpose of 
this parameterized model is to improve the accuracy of LAI estimation in a mixed grassland ecosystem. Four 
steps are as follows, 1) Determine sensitive factors of LAI spatiotemporal variation in mixed grasslands with the 
aim of preparing input variables for the target LAI model. 2) Identify satellite data of appropriate temporal, spatial 
and spectral resolutions for the LAI estimation at different spatiotemporal scales in mixed grasslands.3) Establish 
a parameterized LAI model that can provide spatiotemporal variation of vegetation canopy in mixed grasslands. 4) 
Validate the accuracy of the LAI model and test it in t hydrological model CRHM. 
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Figure 2.  A synthesized framework of establishing a spatiotemporally parameterized LAI model 

 

 
 
 

6.1 Determine the sensitive factors for the LAI model 
 

For the establishment of a spatiotemporal LAI estimation model, it is important to firstly investigate what 
sensitive factors can influence the spatiotemporal variation of LAI, and to determine which factors can be used as 
the input variables for the LAI model. This step is necessary to provide a theoretical base for accurately modeling 
LAI in the mixed grasslands. Previous studies have revealed that possible sensitive factors of LAI spatiotemporal 
variation are species composition, canopy structure, penology, topography, soil moisture, precipitation, 
temperature, radiation and VIs. To accomplish step 1, spatiotemporal variation analysis will be conducted in the 
aforementioned possible factors as well as in situ LAI, and correlation as well as sensitive analysis [36, 88] 
between those factors and LAI will also be investigated together to determine the final input variables for the 
spatiotemporal parameterized LAI estimation model. Both Field and satellite data are required to verify the effects 
of those factors on the spatiotemporal scale variation of LAI.   
 

6.1.1 Identify the spatiotemporal variation of the sensitive factors and LAI 
 

Considering different types of variation scales, the available sensitive factors of LAI in my study area can be 
classified into spatial-sensitive (topography), temporal-sensitive (precipitation and temperature) and spatial-
temporal-sensitive factors (soil moisture). 
 

Geostatistical analysis plays an important role to investigate the spatial variation in ecosystem studies. Particularly 
semivariogram and wavelet are two commonly-use approaches to verify the spatial scales of different quantities.  
In this study wavelet method will be selected to identify the spatial scales of LAI and its spatial-sensitive as well 
as spatial-temporal-sensitive factors due to the information of variation transition it can provide which the other 
method fails to [16]. Among the four familiar wavelet families (Haar, Daubechies Least Asymmetric, Mexican 
Hat and Morlet), the Morlet mother function is thought to be the most suitable one for scale investigation due to 
the balance of time and frequency location [89].  
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Therefore, the continuous Morlet wavelet transformation will be explored to find the periodicity of the repeated 
spatial pattern known as “scale of variation” of in-situ spatial-sensitive factors (e.g., soil moisture, topography) as 
well as LAI along transects by calculating the wavelet transform over a continuous range of dilation scales in 
MATLAB platform [16, 90].                
 

It is impossible to measure the in situ LAI frequently due to the difficulty of obtaining multiple entry permits to 
the study area, the insufficient labor and unavailable transportation tools for frequent long-distance travelling.  
Vegetation index such as NDVI has been proved to be a good indicator of LAI in broad studies of deciduous 
forest, grasslands and croplands [60, 9-93]. Thus, for the temporal analysis of LAI, it is necessary to investigate 
the time-series characteristics of vegetation-represented VI such as NDVI derived from satellite data of high 
temporal resolution (e.g. MODIS, AVHRR) to determine the temporal scales of  LAI in the mixed grasslands. 
Other temporal-sensitive and spatial-temporal-sensitive factors (e.g. temperature and precipitation) should also be 
conducted time-series analysis to determine the feasible temporal scales of LAI. 
 

6.1.2 Determine the major sensitive variables the LAI model  
 

First, the statistical correlation and sensitivity between possible variables and LAI will be analyzed to maintain 
the most insensitive factors, which are considered as a perquisite step for the next determination concerning the 
sensitivity to spatiotemporal scales. The dependence between factors should also be investigated in this step to 
select model variables as independent as possible. Then by comparing the spatiotemporal scales between the 
available sensitive factors and LAI, the factors with similar spatiotemporal patterns of LAI variation will be 
considered as the input variables to the parameterized LAI model.   
 

Different combinations of temporal-sensitive and spatial sensitive factors yield a parameterized LAI model with a 
group of sub-functions under different conditions of various spatiotemporal scales. That means the target 
parameterized LAI model is not an individual function, but consists of a set of equations of distinctive parameters 
or coefficients within a generic function (Equation 1.).  
 

௜ିଵܫܣܮ = ݂(ܱܶܲ, ௜ܫܸ,ܯܵ , ௜ܶିଵ , ௜ܲିଵ)                                             (1) 
 

Where i is time, VI is the vegetation index, TOP is topography factor, SM is soil moisture, T is temperature, and P 
is precipitation. The time unit can be bi-weekly, monthly or growing phases. For example, assuming the LAI 
model is developed based on a linear relationship between the dependent variables (LAI) and independent 
variables (sensitive factors) (Equation 2. ), if the spatial-sensitive factor  of LAI at 20 m is soil moisture while 
temperature is the temporal-sensitive factor from vegetation greenup to maximum growth.  
 

 

Then the first sub-function can give more accurate estimation of LAI under this spatiotemporal scale condition 
(spatial scale of 20 m and temporal scale from greenup to maximum growth). If topography is the controller of 
LAI spatial variation at 120 m while precipitation and VI are the most sensitive temporal factors from maximum 
growth to senescence, then the second sub-function can be the most suitable equation to quantify LAI under this 
condition (spatial scale of 120 m and temporal scale from maximum growth to senescence. 
 

௜ିଵܫܣܮ = ܱܽܶܲ + ܯܾܵ + ௜ܫܸܿ + ݀ ௜ܶିଵ + ݁ ௜ܲିଵ + ݂                                      (2) 
 

=൝
ܽ = 0, ܿ = 0, ݁ = 0, ݂ = 0 (20m, from greenup to maximum growth) 
ܾ = 0,݀ = 0, ݂ = 0 (120m, from  maximum growth to senecence)

⋮
 

 

6.2 Identify appropriate satellite data for LAI estimation  
 

To achieve this objective, the temporal resolution of possible satellite data should at least cover the three 
phonological phases (Greenup, Peak growth, and Senescence) or even provide higher temporal coverage of the 
mixed grasslands in our study areas. Daily continuously remote sensing imagery AVHRR, MODIS and SPOT 
Vegetation will be used to derive VI to investigate the sequential variation of LAI in a higher frequency by 
conducting chronological time-series analysis. Satellite data such as TM (16 days) and SPOT (26 days) will also 
be utilized to study the temporal variation of LAI at a coarse scale such as bi-week periods or monthly 
phonological phases.  
 

The optimal satellite data of appropriate spatial resolution should be able to detect the spatial scales of LAI 
variation as well as its sensitive factors in mixed grasslands.  
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According to the spatial scales of different variables identified in step 1, the remote sensing imagery of 
corresponding spatial resolutions will be chosen as the spatially promising data for the establishment of an 
accurate LAI model.  
 

The concerning of data spectral resolution mainly focuses on the derivation of different VIs which require 
distinctive combination of spectral bands. All available satellite data have the vegetation most-sensitive bands 
Red and NIR. To reduce the background, atmospheric and chlorophyll influences, a more accurate VIs  providing 
specific information associated with vegetation canopy necessitate  the utilization of other spectral bands besides 
the Red and NIR,  such as MIR (characterized bands in  0.9 nm, 1.1nm, 1.4nm and 1.9nm of moisture content) for 
vegetation detection, or Green band helpful for reduce chlorophyll effect. Therefore, multiple VIs (e.g. NDVI, 
RSR, and SARVI) will be attempted to generate by making full use of the available satellite imagery. The best 
input VI variable for the LAI model will be determined by ways of careful quantitative comparison.  
 

Since the temporal, spatial and spectral configuration of each certain remote sensor is fixed, then the most 
comparatively appropriate imagery will be finally selected to quantify VI for better estimation of LAI in mixed 
grasslands. If the temporal resolution fails to estimate the temporal variation of LAI but the spatial resolution is 
acceptable, then a data filtering algorithm of reducing clouds effect will be applied to generate continuous images 
at this spatial scale. Otherwise, if the spatial resolution is too low to reflect the spatial variation of LAI but the 
temporal resolution is satisfied, then remote sensing downscaling technique will be explored to extract the sub-
pixel information to improve the spatial quality of imagery.  Or if the spatial resolution is too high for LAI scale 
studies, then remote sensing upscaling technique will be considered for the adjustment of imagery spatial 
resolution. However, those remote sensing techniques (filtering, upscaling and downscaling) is complex and 
requires huge amount of labor and time. It is expected to avoid such procedures by directly using the original 
satellite data at a relatively acceptable level. 
 

6.3 Establish the parameterized LAI model  
 

To take the advantages of the easy computation of empirical models and physical aspects of radiative transfer 
models, a parameterized model incorporating the two aforementioned approaches will be proposed in this study to 
improve the accuracy of LAI estimation in the semi-arid grassland. The process to establish this LAI model is 
based on model inversion theory. A graphic presentation of the proposed model consisting of model establishment 
and implementation is illustrated in Figure 6. Three sequential steps involving, physical equation building, 
empirical equation building and accuracy control are designed for the section of model establishment. Firstly a 
physical LAI model will be developed based on a bidirectional reflectance distribution function (BRDF) physical 
theory (Equation 3.), and then an empirical equation by relating LAI and its spatiotemporal sensitive factors with 
a set of unknown parameters or coefficients in a linear or other fitting forms will also be established for different 
spatiotemporal scales (Equation 1.).   
 

The physical model can be fixed through an iterative inversion process using field measured data including soil 
reflectance, leaf structure parameter, canopy optical characteristics, leaf-scattering coefficients and in situ LAI 
under certain illumination and observation conditions [9, 54]. However, boundary conditions of different 
variables should be detected to avoid process failure. The empirical equation is the target parameterized model for 
LAI estimation using remote sensing data, because it can detect LAI variation at different scales by introducing 
different temporal and spatial sensitive factors. Also, empirical equations can be more conveniently applied into 
satellite imagery by utilizing different types of VIs. 
 

Due to the accuracy of physical deviation taking various environmental conditions into consideration; the physical 
modeled LAI will be used to control the accuracy (Equation 4.) as a reference standard to fix the parameters or 
coefficients for the empirical model under different scale conditions. A best-fit parameterized equation will be 
determined by performing an iterative optimization until the accuracy criteria ߜଶ can be satisfied with a given 
threshold. The difference between the proposed model and the model by Qi et al. [54] is that the former can 
provide spatiotemporal variation of LAI by incorporating different scale sensitive factors. Finally, this 
parameterized empirical model will be applied into satellite imagery to derive LAI estimation as well as LAI 
mapping at different spatiotemporal scales.   
 

 
 
 



© Center for Promoting Ideas, USA                                                        ___                                   www.ijastnet.com 

57 

 
Figure 6.   Flowchart of the parameterized LAI modeling 

 

 
 
௣ܫܣܮ =f (ߩ௦ , ,ݎ ఒ௅ߩ,ܦܣܮ , ߬ఒ௅)                              (3) 
 

Where ܫܣܮ௣stands for estimated LAI using the physical equation,  r is reflectance or radiance, LAD is leaf angle 
distribution describing canopy structure;ߩఒ௅ , ߬ఒ௅  are canopy leaf optical properties (single leaf reflectance and 
transmittance); ߩ௦is the soil reflectance.                                                  
 

ଶߜ = ∑ ௣ܫܣܮ) − ௜ିଵ)ଶேܫܣܮ
௜ୀଵ                                     (4) 

 

Where ߜଶ is a statistical merit function as an accuracy criteria here and N is the calculation time, by examining 
the corresponding ߜଶ values, the best-fit parameterized empirical equation for spatiotemporal LAI estimation can 
be obtained [54].  
 

6.4 Validate the accuracy of the LAI model  
 

For the final step the parameterized LAI model should be validated using accuracy assessment methods to 
measure the discrepancy between the modeled LAI and the ground LAI in mixed grassland areas. The accuracy of 
LAI derived from the proposed parameterized model should be analyzed quantitatively. For example, to test the 
LAI model in the CRHM model provides macro function to develop different models, so the parameterized LAI 
model can be incorporated into CRHM by writing a specific LAI module to replace the original constant LAI by 
LAI of spatiotemporal variation information. One input of the CRHM model such as evaportranspiration will be 
selected to test the sensitivity of the CRHM model to the parameterized LAI. Comparison will be made between 
the original constant LAI and the modeled LAI in the performance of evaportranspiration process. 
 

7. Expected Results and Contributions 
 

This research will fill the gaps in mixed grassland LAI estimation. First, with more sensitive factors of LAI 
spatiotemporal variation revealed, LAI scale estimation will have stronger theoretical basis. Besides, remote 
sensing data of appropriate spatial, temporal and spectral resolutions will be explored to provide more potential 
for LAI study at different scales. Last but not least, a new parameterized LAI estimation model taking advantages 
of both empirical and physical approaches can improve the accuracy of LAI estimation in mixed grasslands at 
different spatiotemporal scales. With this improved LAI estimation as an important input, the performance of 
climatologic, hydrological and other land-surface process models will also be enhanced. This will significantly 
contributed to the whole ecosystem sand global climate change study. 
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