
International Journal of Applied Science and Technology                                               Vol. 4 No. 1; January 2014 

1 

 
Multi-Objective Optimization of Complex Thermo-Fluid Phenomena in 

Welding 
 

Agegnehu Atena 
Department of Mathematics 
Savannah State University 

Savannah, GA, 31404, USA 
 
 
 

Abstract 
 

This work is to investigate optimization of Gas metal arc welding (GMAW) by employing Multi Objective 
Optimization method. GMAW is a process that joins pieces of metal by heating them with an electric arc. The heat 
of the arc melts the surface of the base metal and the tip of the electrode. The electrode molten metal is 
transferred through the arc to the molten base metal to form the weld pool. The quality of the weld pool is 
characterized by the penetration depth, the bead height and width. These characteristics are controlled by a 
number of welding parameters. The subject of this paper is to establish the welding parameters that yield a weld 
pool which has a predefined geometry. The approach to this goal is by casting the problem of optimization of 
GMAW in the framework of Multi–Objective Optimization. 
 

 
1. Introduction 
 

Gas metal arc welding (GMAW) is a process used to join pieces of metal in the automotive manufacturing 
industry. In this process the pieces of metal are heated by an electric arc. The arc is between a continuously fed 
filler metal (consumable) electrode and the work piece. The heat of the arc melts the surface of the base metal and 
the tip of the electrode. The molten metal from the electrode is transferred through the arc to the molten base 
metal to form the weld pool. As the welding arc travels along the joint, the base metal is melted at the front edge 
of the pool, while it solidifies at the back edge. Externally supplied shielding gas protects the electrode and the 
weld pool from contamination. The GMAW process has become very popular in the last 40 years because of its 
speed and ease of use. 
 

GMAW is a very complex process which is a result of interplay of different physical phenomena. This includes 
heat conduction with change of phase (melting and solidification of the metal in the weld pool); melting of the 
electrode, droplet formation, its detachment, and impingement onto the work piece; liquid–metal convection with 
free surfaces; surface–tension-driven convection (Marangoni effect); electromagnetic forces due to the presence 
of electromagnetic induction; interaction of the free surface with the arc plasma; and fluid flow in the weld pool 
[14],[2].The mathematical analysis and computational modeling of GMAW process are very difficult, because of 
the multi-physics involved and the multiscale (in time and space) complexity of the problem. The presence of 
free–boundaries also makes the problem more complex. 
 

The quality of the weld joint is characterized by the penetration depth, the bead height and width. Weld 
penetration is the distance that the fusion line extends below the surface of the material being welded. These 
characteristics are controlled by a number of welding parameters. It is understood that the most important welding 
parameters in GMAW process are the welding current, arc length (the distance from the tip of the electrode to the 
work piece) and the arc travel speed (the rate that the arc moves along the work piece). These parameters will 
affect the weld pool characteristics to a great extent. 
 

The welding current is associated to the amount of heat applied to the process and the weld pool penetration is 
directly related to the welding current. An increase or decrease in the current will increase or decrease the weld 
penetration respectively. As the arc length increases, the bead height decreases and bead width increases. The arc 
travel speed is the linear rate that the arc moves along the work piece. Welding speed affects both the width and 
penetration of the weld pool. With the lower speeds, too much metal is deposited in the base metal resulting in an 
increase in the weld pool height. At the higher speeds, the heat generated by the arc does not have sufficient time 
to substantially melt the base material resulting in a decrease in the weld pool height and width. 



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com  

2 

 
The subject of this paper is to establish the welding parameters that yield a weld pool which has a predefined 
geometry. Our approach to this task is by casting the problem of optimization of GMAW in the framework of 
Multi–Objective Optimization. Gas–metal arc welding is a multi–input and multi–output process. Trial–and–error 
procedures have been used in the industry to identify key welding parameters in order to obtain a weld pool 
having desired characteristics. However, it is not only very expensive and time consuming, but also cannot 
provide the fundamental understanding of how the transport phenomena affect the weld quality. To overcome 
such difficulties, optimization procedures were developed to identify a proper set of process parameters that can 
produce the desired output of the gas arc welding process. 
 

Optimization of input parameters in welding has remained an open research area. For example, Kim and Rhee [4] 
adopted the dual response approach to determine the parameters of the welding process which produce the target 
value with minimal variance. The dual response approach optimizes the penetration obtained in GMAW via the 
following procedure. First, the regression models of the mean value and standard deviation of the penetration are 
induced through the regression analysis. Next, an optimization algorithm based on these regression models and 
constraints is applied to determine the parameters which generate the desired penetration with minimized 
variance. 
 

Kim et al. [3] conducted a sensitivity analysis of a robotic GMAW process to determine the effect of 
measurement errors on the uncertainty in estimated parameters. They employed non–linear multiple regression 
analysis for modeling the process and quantified the respective effects of process parameters on the geometry of 
the weld bead. Kim et al. [5] compared experimental data obtained for the weld bead geometry with those 
obtained from empirical formulae in gas–metal arc welding. 
 

A bi–directional model of gas tungsten arc welding was developed in [8] by coupling a neural network model 
with a real number based genetic algorithm to calculate the welding conditions needed to obtain a target weld 
geometry. They showed that specific weld geometry was attainable via multiple path ways involving various sets 
of welding variables such as arc current, voltage and welding speed. While adjoint–based methods of PDE–
constrained optimization [14] are well developed for thermo–fluid phenomena in welding process, it is too hard to 
apply such method to the current problem. In the present research effort the focus is on optimizing selected 
geometric parameters of the weld pool, namely the penetration depth, width and the height of the reinforcement 
track, see Fig. (2). Recognizing the conflicting nature of these objectives, we frame this problem in terms of 
multi–objective optimization which we believe should make it possible to identify the trade–offs inherent to these 
criteria. 
 

All optimization methods require solution of the fluid flow and heat transfer equations performed several times in 
order to obtain one optimal solution. Therefore, it is imperative to make the flow solver as efficient as possible. 
To this end, we have parallelized the serial code using the OpenMP directives and have seen a considerable 
speedup of execution (the code acceleration will be measured as the ratio of the serial run time to the time 
required when the code is executed in parallel using N processors). 
 

This paper is organized as follows. In Sec. II we formulate the set of partial differential equations, together with 
suitable boundary conditions, which describe the GMAW process. In Sec. III we introduce Multi–objective 
optimization and discuss how it is applied to GMAW process. Sec. IV contains results and discussion, whereas 
final conclusions are deferred to section V 
 

2. Mathematical Modeling 
 

The problem geometry is presented in section (2.1). Section (2.2) covers the governing equations used to describe 
the fluid flow and heat transfer in the problem, the droplet properties are discussed in section (2.3), the boundary 
conditions are given in section (2.4), and the last section (2.5) in this chapter is devoted for the discussion of the 
numerical methods used and some results. 
 

2.1 Problem Geometry 
 

We assume that the entire system is contained in a finite computational domain Ω ⊂R3. It is then subdivided into 
three subdomains Ω = ΩG ∪ ΩL ∪ ΩS, where ΩG is the region occupied by the plasma arc and the shielding gas, ΩL 

denotes part of the domain that contains liquid phase from the melted electrode and melted work piece, and ΩS = 
ΩSE ∪ ΩSW refers to the solid region which is occupied by the unmelted electrode (ΩSE) and solid work piece (ΩSW). 
Fig. (1) shows the y - z cross-section of the computational domain. Between the liquid zone and solid zone, there 
is also a small zone called mushy zone where the liquid and solid metal coexist.  
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In our mathematical model we assume that this interface is sharp and denoted by ΓLS. The liquid–gas interface is 
denoted by ΓLG while the solid–gas interface is denoted by ΓSG. We denote the east, west, south, north, bottom and 
top plane boundaries of the domain by x = xe,x = xw, y = ys, y = yn, z = zb, and z = zt respectively. The welding 
direction is chosen to be in the negative y-direction, and the corresponding travel velocity is denoted by V. We 
refer the electrode as anode and the work piece as cathode. 
 

2.2 Governing Equations 
 

In general, there are two approaches to model a multiphase problem: the first is using separate equations for each 
phase and the other is using one set of equations in the entire domain. The partial differential equations governing 
the conservation of mass, momentum, and energy to describe the fluid flow and heat transfer as presented in [10] 
are employed here. 
 

• The mass conservation equation: 
 ∇·v = 0 in Ω, (1) 

• Conservation of momentum: 
 ∇·[ρ(v −V)(v −V)] = −∇P −∇· τ + j × B + ρg in Ω, (2) 

• Conservation of Energy : 

  in ΩS ∪ ΩL, (3) 

  in ΩG (4) 
• The electric current continuity equation:  
 ∇· j = 0, in Ω 
where the current density j is calculated from the electric potential φ by 

(5) 

 j = −σ∇φ in Ω 
• The magnetic field B is given by 

(6) 

B = ∇× A in Ω 
where the vector potential A is obtained by solving 

(7) 

∇2A = −µ0j in Ω. (8) 
 

In the Eqs. (1)–(8) we introduce the following notations: h is specific enthalpy, P is pressure, j is current density, 
B is magnetic field, g is acceleration due to gravity, e is electron charge, κBis the Boltzmann’s constant, v ≡ 
(v1,v2,v3) is velocity field, x ≡ (x1,x2,x3) ≡ (x,y,z) is the position vector which is moving with the electrode with 
welding velocity V ≡ (0,V,0), ρ is mass density, cpis the specific heat capacity, κ is thermal conductivity, σ is 
electrical conductivity, µ0 is magnetic constant, and U is the radiative emission coefficient, τ is the viscous stress, 
given by: 
 

 where the Einstein summation convention is used, and η isthe viscosity. 
 

The right hand side of Eq. (2) describes the forces due to the pressure gradient, the shear stress, the Lorentz force 
(magnetic pinch), and gravity forces. The first and second terms on the right hand side of Eqs. (3),(4) are due to 
resistive Ohming heating and thermal conduction respectively. The third and fourth terms on the right hand side of 
Eq. (4) are the energy transfer arising from the flow of electrons and the radiative emission respectively. 
 

2.3 Droplet Properties 
 

In this subsection we discuss the method used to approximate the rate of momentum and energy transfer from the 
molten metal droplets to the arc plasma and the weld pool, following the detailed discussion presented in [9]. 
Since vaporization of the droplets is not taken into consideration, the rate of mass fed into the arc is equal to the 
rate of mass transferred to the weld pool. The rate of mass transfer by feed wire is described by the equation (

 and the rate of mass transfer in the droplets is given by ( . The initial 

diameter Dd0 of the droplet is determined by equating the above two relations resulting in .  
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Here, ∆M is a change in mass, ∆t is a change in time, rw is radius of the electrode wire, ρw is density of the wire, 
vwis wire feed rate, rd is radius of the droplet, ρdis density of the droplet, and fdis droplet transfer frequency. The 
droplet diameter Dd remains constant as the droplet falls through the arc region, but in the weld pool the droplet 
diameter is 

, 
Where Din is the diameter on entering the weld pool, is the diameter at the previous axial control volume, and 
∆z is the axial dimension of the current control volume. To describe the initial droplet velocity v0 ≡ (0,0,v0) 
(assuming that initially the horizontal components are zero), we have used the expression given in [7]. Lin et al. 
develops a simple expression for v0, based on the assumption that only the electromagnetic force is responsible for 
detachment, given by 

 
Where G = 0.98 is a geometric factor. The droplet velocity, vd, in the arc is obtained by solving the equation of 
motion 

 , (9) 
Where md is the droplet mass, v is the plasma velocity, ρ is the plasma density, and  is the drag coefficient. 
Integrating Eq. (9) over a small time interval ∆t, and assuming v is constant over the time interval, yields 
 

v 
 
where t0 is the characteristic time. 
 

The droplet velocity in the weld pool is given by 
 

v 
 
 

It is assumed that the droplet approaches the weld pool flow velocity exponentially, with a characteristic length 
equal to the droplet diameter as it enters the weld pool. The droplet temperature Td in the arc is obtained by 
solving the heat balance equation for the droplet, 
 
 

 ) (10) 
over a small time interval ∆t 

 

Where  is the droplet density, Nu is the Nusselt number, Td
pis the droplet temperature at the start 

of the time step, cpdis specific heat capacity of the droplet. The integration of Eq. (10) is performed under the 
assumption that the plasma temperature is constant over the time interval. 
 

By assuming the droplet temperature approaches the weld pool temperature exponentially, with a characteristic 
length equal to the droplet diameter as it enters the weld pool, the droplet temperature in the weld pool is 
computed as 

. 
Once we calculate the velocity and temperature of the droplet in the arc and the weld pool, we can determine the 
momentum and energy transfer of the molten droplet using Eqs. (11) and (12). The momentum transferred from 
the droplet to the arc and weld pool, per unit time, is given by 
 

 ) (11) 
and the energy transferred is given by 

 ) (12) 
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Wherein and out denote, respectively, the values entering and leaving the control volume. The momentum and 
energy transfers from the droplet to the arc plasma and weld pool are taken into account by adding Smin Eq. (2) 
and Se inEqs. (3) and (4) as a source term. 
 

2.4 Boundary Conditions 
 

At the east and west planes (x = xe,x = xw), the boundary conditions are v = 0, 
 

∂Ai/∂x = 0, for i= 1,2,3, T = T0 = 300Kand  ∂ϕ/∂x =0  
At the south and north planes (y=ys , yn) v = 0, ∂Ai/∂y =0 for i= 1,2,3, T = T0 =300K, and∂ϕ/∂y=0  
At the bottom plane (z= zt), v= 0,∂Ai/∂z =0 , for i= 1,2,3,  ∂T/∂z =0  and φ = 0 
 

At the top plane (z = zb)∂Ai/∂z =0 , for i= 1,2,3, T = T0 = 300K and 

 
Where is the input current density and rais the radius of the electrode. The velocity boundary conditions 
take the form v1 = v2 = 0 with 
 

 
 

Where Q is the input gas volumetric flow rate, r is the distance from the center of the electrode, rnozis the radius of 
the nozzle, , and  

 

At the interface between the electrode and the plasma, and in the electrode itself 
v = 0. The term 
 

 , on ΓLS, (13) 
 

is added on the right side of the energy equation, where the first term represents the heating effect of electrons 
absorbed at the anode, with the work function Φwa of the anode material, and the second term represents the 
radiative cooling of the anode. In Eq. (13), jcis the local current density, єais the emissivity of the anode, a is the 
Stefan–Boltzmann constant and Ta is the surface temperature of the anode. 
At the cathode–plasma interface, the term 
 

 , on ΓLS (14) 
 

is added on the right side of the energy equation. In Eq. (14) the first term represents the heating effect of an 
electron emitted from the cathode less the energy required to emit an electron and the second term is the black 
body radiation loss. φcis the cathode voltage fall, ϕwc is the work function of the cathode material, jcis the local 
current density, and єcis emission coefficient. 
 

The weld pool–plasma interface is subjected to the following free–surface boundary conditions: 
 

Pp−Pw = −γ∇· n, on ΓLG, (15) 
τp−τw= −t · ∇sγ, on ΓLG, (16) 

 

Where Ppand Pw are the pressures, respectively, on the plasma and weld pool sides of the interface, 
 

  (17) 
 

is the curvature, τp and τw are the shear stress, respectively, on the plasma and weld pool sides, γ is the surface 
tension, t is a unit tangent vector, ∇s denotes tangential gradient, and h(x,y) is the surface height. 
 

The most widely used methods for tracking of liquid surfaces are surface tracking methods such as volume–of–
fluid (VOF) and the equilibrium surface method. We implemented the latter one. In this method, the weld pool 
surface profile is determined by assuming it has reached the equilibrium.  
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The weld pool free surface is calculated by minimizing the total surface energy taking into account the surface 
tension energy, the gravitational potential energy, and the work done by the arc force, Parc, and droplet 
impingement force Pd, 
 

 γK= ρgh+ Parc+ Pd+ λ,, on ΓLG, (18) 
 

where λ is the Lagrange multiplier determined by a constraint representing the volume of the metal fed from the 
wire electrode. This constraint is given by 
 

, 
 

Where vw is wire feed speed, rwis the radius of the wire, and z0 is the height of the work piece before melting at a 
position ynthat is far enough behind the weld pool. The droplet pressure, Pd, on the free surface is calculated as 
 

. 
 

At the liquid–solid metal interface the term v is added on the right hand side of the momentum 
equation to account for the flow in the mushy zone. Here C and B are constants, and fl is fraction of liquids which 
is calculated as: 
 

  (19) 
Where Ts and Tl are, respectively, the solidus and liquidus temperatures. The latent heat of melting is taken into 
account by adding the source term 
 

SH = ∇· [ρ(v −V)∆H] 
 

to the energy equation, where H = h+∆H is the total enthalpy with the latent heat ∆H. 
 

2.5 Numerical Methods 
 

The numerical method used to solve the stationary conservation equations together with the appropriate boundary 
conditions is the control volume method of Patankar [13]. The general differential equation to be solved is 
expressed in the form 
 ∇·(ρvΦ) = ∇·(ΓΦ∇Φ) + Sφ (20) 
 

Whereρ is the fluid density, v is the velocity vector, ΓΦ is the diffusion coefficient, SΦ is a source term, and Φ 
represents a scalar variable (such as enthalpy, velocity component, etc.) to be solved. 
The computational domain is divided into small rectangular control volumes with a grid point at the center of each 
control volume storing the values of the variables. The discretized equation has the form [13] 
 

 aPΦP= aEΦE+ aWΦW+ aNΦN+ aSΦS+ aTΦT+ aBΦB+ SU∆V (21) 
 

where the subscript P stands for a given grid point, while subscripts E, W, N, S, T, and B represents the east, west, 
north, south, top and bottom of the grid point P respectively. SU is the constant part of the source term SΦ which is 
expressed as SΦ = SU + SPΦP, and ∆V is the volume of the control volume. 
The coefficient aPis defined as: 
 

aP= aE+ aW+ aN+ aS+ aT+ aB−SP∆V. 
 

The discretized equations are solved by a combination of the tridiagonal matrix algorithm (TDMA), which 
provides a direct solution for the one–dimensional case, and the Gauss–Seidel point-by-point method. 
 

3. Multi–Objective Optimization of GMAW Welding 
 

In this Section we cast the problem of optimization of Gas Metal Arc Welding (GMAW) in the framework of 
Multi–Objective Optimization.  Following a brief review of the main tenets of Multi–Objective Optimization, we 
will argue that this is in fact an appropriate setting for our problem and will show how GMAW optimization can 
be formulated in terms of Multi–Objective Optimization. We will also present some results of this approach. 
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3.1 Introduction to Multi–Objective Optimization 
 

Multi–objective optimization is a problem of determining a vector of decision variables that optimize a vector 
function whose elements represent different objective functions. 
The general form of a multi–objective optimization as given in [1] is: 
 

 Minimize/Maximize fm(c), m = 1,2,...,M; 
subject to gj(c) ≥ 0, j = 1,2,...,J;  
hk(c) = 0, k = 1,2,...,K; (22) 
ci

L≤ ci≤ ci
U , i= 1,2,...,N.  

 

We call ci,i= 1,...,Nthe decision variables whose values are to be chosen in the optimization problem. The 
symbols cL

i and cU
i denote the lower and upper bounds, respectively, of control variable ci. gj, j = 1,2,...,J are the 

inequality constraints, and hk, k = 1,2,...,K are the equality constraints of the optimization problem. The objective 
functions fm(c),i= 1,...,M depending on the decision variables form a mathematical description of the performance 
criteria of interest in a given problem. In general, some of these objective functions will be in conflict with others, 
and some will have to be minimized while others are maximized. The multi–objective optimization problem can 
be now defined as the problem to find the vector c = (c1,c2,...,cN), i.e., solution which optimizes the vector function 
f(c) = (f1(c),f2(c),...,fM(c)). The solutions satisfying the constraints and variable bounds constitute a feasible 
decision variable space X. The objective functions f(c) form another space, called the objective space Y. For each 
solution vector c in the decision variable space, there exists ay in the objective space which is denoted by y=f(c). 
 

A single–objective optimization problem involves a single objective function and usually results in a single 
solution, called an optimal solution. On the other hand, a multi–objective optimization considers several (possibly 
conflicting) objectives simultaneously. In such a case, there is usually no single optimal solution satisfying all 
these objectives, but a set of alternatives with different trade-offs, referred to as the Pareto optimal solutions. The 
set of solutions of multi-objective optimization includes all decision vectors for which the corresponding objective 
vectors cannot be improved in any dimension without degradation in another dimension. 
 

The idea of Pareto optimality is based on the concept of the Pareto dominance defined as follows [1]. A solution 
c1 is said to dominate another solution c2, if both of the following conditions are true: 
 

1. the solution c1 is no worse than c2 in all objectives; that is to say fj(c1) ≤ fj(c2) for a minimization problem 
(fj(c1) ≥ fj(c2) for a maximization problem), for all j = 1,2,...M; thus, the solutions are compared based on their 
objective function values (or location of the corresponding points y1 and y2 in the objective space), 

 

2. the solution c1 is strictly better than c2 in at least one objective i.e.,fj(c1) <fj(c2) for a minimization problem 
(fj(c1) >fj(c2) for a maximization problem ) for at least one j in {1,2,...,M}. 

 

We can also say that c1 is nondominated by c2 or c2 is dominated by c1. Fig. (3) illustrates this idea with a bi–
objective space f = (f1,f2), assuming both of them are to be minimized. The point A represents a solution which 
gives a near–minimum of f2, but is far from the minimum values of the function f1. On the other hand, the point B 
gives a lower value for f1 but a higher value for f2. If both objectives are important goals in the design, one cannot 
say whether solution A is better than solution B, or vice versa. One solution is better than the other in one 
objective but is worse with respect to the other objective.  
 

In fact, there exist many such solutions (e.g., solution D) which are also nondominated. In the objective space the 
set of nondominated solutions lie on a surface (or curve for a bi–objective problem) known as the Pareto–optimal 
front. All solutions, in the front marked by the dashed line in Fig.( 3), are known as Pareto–optimal solutions. One 
cannot conclude about an absolute hierarchy of solutions A, B, D, or any other solution in the set.We also observe 
there are non–Pareto–optimal solutions such as for example solution C in Fig. (3). Solution C is not Pareto–
optimal, because there are other solutions, for example D, which are superior to C with respect to both objective 
functions. Such solutions are called dominated solutions or inferior solutions. 
 

In practice, only one of those solutions is to be selected.  
 
 

Thus, in multi–objective optimization two tasks are performed simultaneously: the first is finding Pareto optimal 
solutions, and the second is choosing the most preferable solution by the decision maker. The Pareto–optimal 
front allows the decision maker to make an informed decision by assessing a wide range of options, as it contains 
the solutions that are optimal from a global standpoint reflecting different objectives.  
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Hence, optimizing multi–objective functions means finding such a solution which would give the values of all 
objective functions that is acceptable to the user. 
 

3.2 Gas Metal Arc Welding as a Multi–Objective Optimization Problem 
 

Gas metal arc welding is an arc welding process that uses a plasma arc between a continuous, consumable filler–
metal electrode and the weld pool. Very complicated transport phenomena, including the arc plasma, electrode 
melting, and weld pool dynamics occur during the GMAW process. The fluid flow and heat transfer both in the 
arc and metal work piece affect the weld characteristics such as the weld penetration and the shape of the weld 
pool surface. When the electrode melts, droplets are formed and detached to be added to the weld pool, thereby 
raising the weld pool surface above the horizontal level (see Fig. ( 2)). The energy and momentum of droplets also 
increase the depth of the weld pool [9]. 
 

Gas metal arc welding is a multi–input and multi–output process. Trial–and–error procedures have been used in 
the industry to identify key welding parameters in order to obtain a weld pool having desired characteristics. 
However, it is not only very expensive and time consuming, but also cannot provide the fundamental 
understanding of how the transport phenomena affect the weld quality. To overcome such difficulties, 
optimization procedures were developed to identify a proper set of process parameters that can produce the 
desired output of the gas arc welding process. 
 

In the present research effort we focus on optimizing selected geometric parameters of the weld pool, namely the 
penetration depth, the weld pool width, and the height of the reinforcement track (see Fig. (2)). Recognizing the 
conflicting nature of these objectives, we frame this problem in terms of multi–objective optimization which we 
believe should make it possible to identify the trade–offs inherent to these criteria. As regards the process control 
variables, we will use the wire feed rate, the welding speed, and the welding current, which will be discussed in 
more detail below. 
 

3.2.1 The Process Control Variables 
 

To obtain the desired weld pool geometry, it is essential to have a control over some essential parameters. 
Welding speed or travel speed controls the depth of penetration. Higher speeds reduce the penetration depth. If the 
welding speed is too slow, burn–through can occur which is an undesirable phenomenon in the welding process 
[12]. 
 

As arc lengths are increased, the arc voltage will increase, and the amperage will decrease. Arc voltage controls 
the width of the weld bead, with higher voltages generating wider beads. 
 

The process also requires a sufficient electric current to melt both the electrode and a proper amount of base 
metal. The welding process must therefore be performed using a certain minimal amount of power (current) to 
achieve a required weld geometry and weld quality. The current density controls the depth of penetration, the 
higher the current density the greater the penetration. For example, if it is too high, the electrode will melt too fast 
and the molten weld pool will be too large. 
 

Hence, the most important process control variables chosen for this study are the welding speed vw, the arc length 
Al, and the welding current I. 
 

3.2.2 Objective Functions and Optimization Strategy 
 

In our optimization process we chose the objective functions which are related to the width of the weld pool, the 
penetration depth of the weld pool, and the height of the reinforcement. These functions are described 
mathematically as follows 
 

(23a) 
 

  (23b) 
 

(23c) 
 

 

Where b0 is the desired weld pool width, d0 is the penetration depth measured from the horizontal level and h0 is 
the reinforcement track height.  
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The symbols b(I,Al,vw), d(I,Al,vw) and h(I,Al,vw) denote the width, the penetration depth and reinforcement height 
obtained by solving the system of governing partial differential equations describing the fluid flow and heat 
transfer in the system corresponding to the current (I), the arc length(Al), and the travel speed(vw) (cf. [10], see 
also Fig. ( 2)). Thus, the goal we want to achieve in the optimization process is to produce a weld pool which has 
a width as close to the target width b0, with a penetration depth as close to d0 as possible, and having the 
reinforcement height as close to h0 as possible. 
 

One of the most widely used methods for solving multi–objective optimization problems is to transform a multi–
objective problem into a single objective problem. The weighted sum method is a method that parametrically 
changes the weights among the objective functions to obtain the Pareto–optimal front. The weight of an objective 
can be chosen in proportion to the relative importance of a given objective in the problem. Other applicable 
techniques include the –constraint method, weighted metric methods, and evolutionary methods to mention just a 
few. 
 

The optimization strategy we adopt in our study is the weighted sum method. In this method, the individual 
objective functions are combined into one scalar objective function. For M objective functions, the aggregate 
objective function f is expressed as: 
 

f(c) = w1f1(c) + w2f2(c) + ... + wMfM(c), 
 

where x is the vector of the control variables, while f1,f2,...,fMare the individual scalar objective functions, and 
w1,w2,...,wMare the weights expressing the importance of each objective function in the optimization process. 
Usually, non–zero fractional weights are used and the sum of all weights is equal to one. The weight wi can be 
thought of as quantifying our desire to make fi small. Large value of wi indicates that we want the ith objective 
function small, if we consider fi less important we can take wi small. For example, if more emphasis is placed on 
obtaining a weld pool that has the desired penetration depth, then we will multiply the objective function related 
to the penetration depth by a weight that has larger value. Accordingly, the other objective functions will be 
multiplied by weights with lower values. 
 

The weighted sum method can be employed as a posterior method, so that different weights are used to generate 
different Pareto–optimal solutions and then the decision maker selects the most satisfactory one. Alternatively, the 
decision maker can be asked to specify the weights in which case the method is used as an a priori method. We 
chose this method for its simplicity and it is one of the widely used methods to optimize multiple objectives 
simultaneously. 
 

The scalar objective function to be minimized according to the optimization strategy described above is therefore 
 

  (24) 
 

This formulation aims to optimize the single objective function f to obtain an optimal solution using a chosen 
weight vector (w1,w2,w3). To obtain different Pareto–optimal solutions, one can choose a different weight vector 
and optimize the resulting function f separately in each case. A resulting individual single–objective optimization 
problem has therefore the following form 
 

  minimize f(I,Al,vw) 
subject to (I,Al,vw) ∈R3 

 

IL ≤ I ≤ IU (25) 
Al

L≤ Al ≤ Al
U 

vw
L≤ vw≤ vw

U 

 

3.2.3 Nonlinear Conjugate Gradient Method 
 

In this study we use the Polak–Ribiere variant of the nonlinear conjugate gradient optimization algorithm [11] in 
order to solve problem (25). The optimization process is carried out iteratively in two steps. First, obtain the 
steepest descent direction and compute the conjugate direction via the Polak–Ribiere formula, and secondly, 
perform a line search procedure to determine the step size in the chosen direction. 
 

Our implementation of the nonlinear conjugate gradient method is summarized by the following algorithm.  
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For simplicity of notation, the vector x = (x1,x2,x3) will denote the vector of the decision variables (I,Al,vw), 
whereas the vector (y1,y2,y3) will represent the vector of the system outputs (b,d,h). 

 
 

Given x0: 
evaluate∇f(x0) 
start in the steepest descent direction: ∆x0 = −∇f(x0) find a step size α that minimizes f: 
 

α0 = argminf(x0 + α∆x0) 
α 

define : Λx0 = ∆x0 n ← 1 
 

repeat calculate the steepest direction : ∆xn= −∇f(xn)  
 

compute β using Polak-Ribiere formula : 
 

 
 

update the conjugate direction : Λxn= ∆xn+ βnΛxn−1perform line minimization to find the step size αn: 
 

αn= argminf(xn+ αΛxn) 
α 
 

(The line search is performed using the Brent’s method) update the vector:xn+1 = xn+ αnΛxn 
n← n + 1 
 

until a stopping criterion is satisfied 
 

 

In the above algorithm the gradient ∇f(xn) of the scalar objective function Eq. (24) is given by 
 

, 
 

where the partial derivatives are computed using a finite difference approximation as,     
    

fori,j =,1,2,3, 
 
 
 

in which δxjis a small increment to the jth decision variable, and ej is the unit vector in the jth direction. The 
function values yi(xn) or yi (xn+ δxiei), are obtained by solving the entire system of governing equations describing 
the fluid flow and heat transfer using the corresponding input parameters. 
 

4. Results and Discussion 
 

In this section we present some results obtained by the multi–objective weighted sum method. Table (1) shows 
various combinations of the decision variables, i.e., arc current I, welding speed vw, the arc length Al obtained to 
achieve the target weld dimensions: penetration depth d0 = 1.9mm, reinforcement height h0 = 1.4mm, and weld 
pool width b0 = 5.9mm. Each row in the table is computed using different combinations of weights. We observe 
that several combinations of the decision variables produce a weld pool with similar dimension that indicates the 
existence of alternate paths to obtain the target weld geometry. 
 

Multi–objective optimization is conducted in order to present trade–off information to the decision makers that 
enable them to make the best decision. In two-dimensional case, it is not difficult to interpret a Pareto curve that 
contains the optimal solutions. In three–dimensions, however, construction of the Pareto surface, with optimal 
solutions on it, is a bit difficult and we only plotted the optimal solutions.  
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Fig. (4) depicts the Pareto optimal solutions obtained using multi–objective weighted sum method. Note that some 
of the solutions are obtained by multiple combinations of the decision variables as shown in table (1). 
 

The resulting flow patterns and temperature distributions, for selected optimal solutions, are shown in Fig. (5) in 
different cross–sections. Fig . (5a, 5b) display the flow solution where the objective function corresponding to the 
reinforcement height J3 is minimal (point B on Fig. (4)), i.e., the solution that gives a better approximation for the 
reinforcement height. The closest value, achieved in our simulation, to the desired reinforcement height h0 = 
1.4mm is h = 1.31655 mm. However, this optimal solution does not give a good approximation for the penetration 
depth, i.e., the objective function corresponding to the penetration depth J2 is not minimal. This flow pattern is 
obtained using the welding current I = 95 A, the welding speed vw= −1.5 cm/s, and the arc length Al = 0.5cm. 
 

Figs. (5c, 5d) show the optimal solution (point A on Fig. (4)) which have a good approximation for the 
penetration depth (the objective function J2 is minimal). The penetration depth d = 2.3177 mm is the nearest value 
to the desired depth ofd0 = 1.9 mm. This solution corresponds to the welding current I = 95.02702 A, welding 
speed vw= −1.47217 cm/s, and the arc length Al = 0.47298. 
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Figure 1: A section of the computational domain in the y −z plane. 
 

 
 

Figure 2: The parameters defining the weld pool geometry: b is the width of the weld pool, h is the reinforcement 
height, and d is the penetration depth. 
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I (A) Al (cm) vw(cm/s) b (mm) d (mm) h (mm) 

 
 

Table 1: Various combinations of welding variables: arc current I, welding speed vw, and arc length Al to achieve 
the weld pool dimensions: weld pool width b, penetration depth d, and reinforcement height h. 

 
Figure 3: Schematic of a Pareto front together with some Pareto-optimal(A, B, and D) and dominated (C) 
solutions. Only two objective functions are considered. 
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Figure 4: Pareto optimal solutions (•) obtained by multi-objective weighted sum method. The points marked by ×, 
o, and  *represent the projections of the Pareto solutions on the y - z, x - z and x - y planes, respectively. J1, J2, 
and J3 are, respectively, the objective functions corresponding to weld pool width, penetration depth, and 
reinforcement height. 

 
(a)                                                                               (b) 

 
 
Figure 5: The temperature and velocity fields at y = 1:0 cross-section ( 5(a), 5(c)), andatx = 0 cross-section (5(b), 
5(d)). The undisturbed weld pool surface is located atz = 30:1mm 
 

0 

1 

2 x 10 −3 

0 0.02 0.04 0.06 0.08 0.1 

0 

0.005 

0.01 

0.015  

J2 J1  

J3 

A 

B 

C 


