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Abstract 
 

Recent work reported at the Quark Matter Conference 2005 has led to the suggestion that Brown-Rho scaling is 
ruled out by the NA60 data. (Brown-Rho scaling describes the reduction of hadronic masses in matter and at 
finite temperature.)  In the present work we argue that the interpretation of the experimental data presented at the 
Quark Matter Conference is not correct and that Brown-Rho scaling is valid.  To make this argument we discuss 
the evolution in time of the excited hadronic system and suggest that the system is deconfined at the earliest times 
and becomes confined when the density and temperature decrease as the system evolves.  Thus, we suggest that 
we see both the properties of the deconfined and confined systems in the experimental data.  In our interpretation, 
Brown-Rho scaling refers to the later times of the collision, when the system is in the confined phase. 
 

I. Introduction 
 

There has been an ongoing attempt to understand how quantum chromodynamics, the theory of strong interactions, 
governs the properties of hadrons in vacuum and in matter. Associated with this program are investigations of the 
properties of the quark-gluon plasma and of hadronic matter at finite temperature and finite matter density. 
(Experimental data concerning mesons in matter are often discussed in terms of Brown-Rho (BR) scaling [1]. The 
reviews may be found in Refs. [2, 3].)  Various authors have discussed the behavior of meson masses in matter.  
For example, Hatsuda and Lee obtain 

 
 
 

Using QCD sum rules [4]. Here nB   is the baryon density and n0 is the density of nuclear matter.  The Brooklyn 
College Group has also studied the properties of mesons at finite temperature and finite density [5-12] and we will 
make use of their resu lts as we proceed. 
 

The experimental data [13] obtained by the NA60 experiment is shown in Fig. 1 [14]. There the solid curve 
corresponds 

 
 

while the dashed curve represents 
 

 
 

The dilepton rate is given in Ref. [14] as 
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Where The Bose distribution function is 

 
 

and the lepton kinematic factor is  
 

 
 

 
 

FIG. 1:  Invariant mass distribution of dimuons from semi-central In+In collisions at the beam energy 158A GeV. 
Experimental points are from [13]. The solid and dashed curves are calculated using the -mass modification 
factors of Eqs. (1.2) and (1.3), respectively. The dotted line indicates the hydrodynamically calculated -meson 
decay at the freeze-out. (This figure appears in Ref. [14].) with lepton mass ml .  If the pole shift is neglected, the 
imaginary part of the current correlation function is [14] 
 

 
with 

 
 

In the present work we will present results for the hadronic correlation function obtained in earlier studies for values 
of T > Tc and T < Tc [5-12]. 
 

In these years we have developed a generalized Nambu-Jona-Lasinio (NJL) model that incorporates a covariant 
model of confinement.  The Lagrangian of the model is 
 

 
 

where the are the Gell-Mann matrices, with , m0 = diag (m0
u,m0

d,m0
s) is a matrix 

of current quark masses and  denotes our model of confinement.  Many applications have been made in the 
study of light meson spectra, decay constants, and mixing angles. In the present work we describe the use of our 
model when we include a description of deconfinement at finite density and temperature. 
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The organization of our work is as follows.  In Section II we review results for mesonic excitations at finite matter 
density and at zero temperature. (It is of interest to note that the pion and kaon masses do not change very much 
with increasing density or temperature since these mesons are (pseudo) Goldstone bosons.)  In Section III we 
discuss the properties of mesons at finite temperature in the confined mode.  In Section IV we consider 
temperatures above Tc, the temperature for deconfinement.  Above Tc, one finds resonant structures in the plasma 
which correspond to some of the excitations seen in computer simulations of QCD [15-22] whose analysis makes 
use of the maximum entropy method (MEM).  Such excitations are also seen in our calculations made at finite 
density and zero temperature and are described in Section V. 
 

In Section VI we return to a discussion of the NA60 data of Fig. 1 and argue that Brown-Rho scaling is indeed 
correct and that the experimental data supports our observation that the compound system evolves from the 
deconfined to the confined mode as the collision develops in time. Section VII contains some further comments 
and conclusions. Finally, in the Appendices, we review our model of confinement at finite temperature and at 
finite density. 
 

Ii.  Mesonic Excitations at Finite Density 
 

In this section we review some of the results reported in Ref. [5] for meson mass values at finite matter density. 
We made use of the density-dependent masses which are shown in Figs. 2 and 3. We also used density-dependent 
coupling constants in a generalized NJL model, in part to avoid pion condensation, and we have also introduced a 
density-dependent confining interaction [5]. Our model of confinement is discussed in Appendices A and B. 

 

 
FIG. 2: The density-dependent constituent quark masses, mu(ρ) = md(ρ) and ms(ρ) a r e  shown. (See Ref. [12] 
and caption to Fig. 3.). 

 
FIG. 3: The dashed line is a linear approximation to the result shown in Fig. 2 which we use for ρ ≤2ρNM (Nuclear 

matter density corresponds to k3
F =0.0192 GeV3.) See Ref. [12]. 
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In Fig. 4 we see results for the pion and its various radial excitations. Note that the pion energy is fairly constant 
up to the point of deconfinement, since the pion is a (pseudo) Goldstone boson. In this case, deconfinement takes 
places at ρ/ρNM ≃ 1.75. In Fig. 5 we show corresponding results for the K meson. Figs. 6 and 7 show our results 
for the a0 and f0 mesons, respectively. (The curve for the f0 meson is reasonably well fit with m*f0 = mf (1 − 0.15 
ρ/ρNM) for ρ/ρNM < 1.0).   Finally, in Fig. 8 we show our results for the K*0 meson mass as a function of density 
[12]. (In these calculations we have used the covariant confinement model which we review in the Appendices.) 

 
FIG. 4:  The mass values for the pion and its radial excitations are presented as a function of the density of 
matter. Here, the NJL model was used with density-dependent coupling constants, density-dependent masses and a 
density-dependent confining interaction [12]. [See the Appendices.] We use  
Gπ (ρ) = Gπ (0) [1 - 0.087/NM] and mu(ρ) = md(ρ) = m0u + 0.3585 GeV [1 - 0.4/NM], with m0u = 0.0055 
GeV. We use Gπ (0) = 13.49 GeV−2  and GV  = 11.46 GeV−2.  Note that the various curves end at densities 
beyond which the excitations are no longer bound states. 

 
 

FIG. 5: Mass values of the K mesons are shown as a function of the density of matter.  Here we use     GK (0) = 

13.07 GeV−2, GK (ρ) = GK (0)[1 −0.087/NM ] and GV  = 11.46 GeV−2.  (See Ref. [12].) 

 
FIG. 6: Mass values for the a0 mesons are given as a function of the matter density. Here, we have used Ga0 (0) = 
13.10 GeV-2 and Ga0 () = Ga0 (0) [1 − 0.045/NM]. We have also used mu = m0

u + 0.3585GeV [1 − 0.4/NM] 
with m0

u = 0.0055 GeV. The dotted line results if we put Ga0 () = Ga0 (0) [1−0.087/NM] and use the mass values 
of Table I of Ref. [12]. The dotted curve is similar to the curve for the a0 mass given in Ref. [23]. The curves 
representing the masses of the radial excitations are changed very little when we use the second form for Ga0 () 
given above.  The dotted curve is reasonably well represented by m∗a0 () = ma0 [1 − 0.22/NM]. 
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FIG. 7: The figure shows the mass values of the f0 mesons as a function of density. The mass values for the quarks are 

taken from Table I of Ref. [12].  In a singlet-octet representation, we have used the constants GS
00 = 14.25 

GeV−2, GS
08 = 0.4953 GeV−2 and GS

88  = 10.65 GeV−2.  Deconfinement takes place somewhat above  = 
1.8NM.  (See Ref. [12].) For small ρ/ρNM, the mass of the f0 is fairly well represented by m* f0 (ρ) = m f0 (ρ) [1 − 
0.14ρ/ρNM]. 
 

 
FIG. 8: The figure shows the mass values obtained for the K*0

 mesons as a function of density. Here we use a 
constant GK0*   = 10.25 GeV−2.  Deconfinement takes place somewhat above  = 1.8NM. For the smaller values 

of /NM the mass of the K*0
 is given by m∗K0* (ρ) = m K0* [1 − 0.14/NM]. 

 

The results presented in this Section are generally consistent with Brown-Rho scaling at finite density as 
represented by Eq.  (1.1), for example.  We see that our results are in agreement with those of Hatsuda and Lee [4], 
although we have used an entirely different method of calculation. 

 
FIG. 9: The temperature-dependent constituent quark masses, mu(T ) and ms(T ), are shown. Here  m0

u =  0.0055 
GeV, m0

s  = 0.130 GeV, and GS (T ) = 5.691[1 − 0.17(T /Tc)],  if we use Klevansky's notation [24]. We have used 
the equation , which appears in Ref. [24]. 
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Iii.  Mesonic Excitations at Finite Temperature 
 

Calculations similar to those made at finite density have also been made at finite temperature [11]. In this case, 
temperature-dependent coupling constants were used in our generalized NJL model. The quark masses were 
calculated as a function of temperature and are shown in Fig. 9. Also, a temperature-dependent confining 
interaction was used based upon the lattice QCD analysis of Ref. [25]. (See Appendix B.) 
 

In Figs. 10-13 we show our results for the K, a0, f0 and K*0 mesons. In all these cases the mesons are no longer 
confined at energies slightly below Tc. (See Figs. 10-13.) In these calculations we find that the linear 
approximation m*(T) = m0 [1 − αT/Tc] is only satisfactory up to about T/Tc ≃ 0.5 for the a0, f0 and K*0 mesons. 

 
FIG. 10: Mass values of kaonic states calculated with GK (T ) = 13.07[1 − 0.17 T /Tc] GeV,  GV (T ) =11.46[1 − 
0.17 T /Tc] GeV, and the quark mass values given in Fig. 9. The value of the kaon mass is 0.598 GeV at T /Tc  = 
0.95, where mu(T ) = 0.075 GeV and ms(T ) = 0.439 GeV. (See Ref. [11].) 

 
 

FIG. 11: Mass values for the a0 mesons calculated with Ga0 (T ) = 13.1[1 − 0.17 T/Tc] GeV, and the quark mass 
values given in Fig.9. The value of the a0 mass at T /Tc  = 0.95 is 0.416 GeV. (See Ref. [11].) 

 
 
FIG. 12: Mass values of the f0 mesons calculated with G00(T)= 14.25 [1−0.17T /Tc] GeV,  G88(T ) = 
10.65 [1 −0.17T /Tc] GeV, G08(T ) = 0.495 [1 −0.17T /Tc] GeV, and G80(T ) = G08(T) in a singlet- octet 
representation. The quark mass values used are shown in Fig. 9. The f0  has a mass of 0.400 GeV at T /Tc  = 0.95. 
(See Ref. [11].) 
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FIG. 13: Mass values obtained for the K0 

∗ mesons calculated using GK0∗ (T) = 10.25 [1 − 0.17 T /Tc] GeV and the 

quark mass values shown in Fig. 9. (See Ref. [11].) 

 
FIG. 14: The figure presents values of the correlation function, ImCπ (P 2), for various values of ρ/ρc. Here, ρ/ρc 
= 1.2 [solid line], 2.0 [dashed line], 3.0 [dotted line], 4.0 [dashed-dotted line] and 5.88 [dashed-(double)dotted  line]. 
We have used Gπ = 13.51 GeV−2.  (See Ref. [8].) 
 

Iv.  Excitations of the Quark-Gluon Plasma at Finite Density 
 

For calculations at finite density we use the formalism of Ref. [8]. In this case the unusual form of the curves 
shown in Figs. 14 and 15 is due to Pauli blocking of the excitations by the filled states of the Fermi sea of quarks 
at finite density and zero temperature. 
 

In Fig. 16, taken from Ref. [14], we show the calculated energy density and values of nB /n0     = ρ/ρNM   
relevant to the NA60 experiment. For times less than t = 1 fm/c, 1.2 ≤ nB /n0  ≤ 1.7. 
 

In Fig. 17 the theoretical results for the ratio of the entropy S to the baryon charge in the NA60 experiment is 
shown, as presented in Ref. [14] for the specific model used, the Quark-Gluon String Model. The authors of Ref. 
[14] suggest that for tkin ≥ 1.3 fm/c the system may be considered as undergoing isoentropic expansion. 
 

In Fig. 18, taken from Ref. [14], the temperature is given as a function of tkin .  For 0 < tkin < 1 fm/c the 
temperature is in the range 162 MeV ≤T ≤170 MeV. While these values are a bit below the deconfinement 
temperature at zero density, the value of nB /n0 is given as 1.7 at t = 0. The combination of the elevated 
temperature and the finite matter density may be sufficient to keep the system in the deconfined phase at the 
earliest times of the collision, t < 1 fm/c, as suggested in our analysis. 
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FIG. 15: The figure shown the values of ImCρ(P 2).  [See the caption of Fig. 14.] Here we have used GV = 11.46 

GeV−2.  (See Ref. [8].) 

 
 
FIG. 16: The average energy (solid line) and baryon (dashed) densities of an expanding fireball formed in In+In 
collisions. Dotted line shows a contribution of quarks and gluons to the energy density, as calculated in Ref. [14]. 
 

The authors of Ref. [14] suggest that the critical temperature (at the finite chemical potential µB) is about 160 
MeV. According to Fig.18, taken from Ref. [14], the temperature drops  

 
FIG. 17: Temporal dependence of entropy S per baryon charge QB of participants for semi-central In+In collision at 
Elab  = 158A GeV, as calculated  in Ref. [14]. 
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FIG. 18: Evolution of the average temperature as calculated in Ref. [14]. The dotted line corresponds to the 
Bjorken regime with ultra-relativistic ideal gas EoS. (See Ref. [14].) below 160 MeV for t ≥ 1.3 fm/c suggesting that 
the hadronic mode becomes dominant above that temperature. According to Fig. 16, the baryon density nB /n0 is 
approximately 1.0 at t ~1.3 fm/c.  Note that the dotted line in Fig.16 represents the contribution of the quarks and 
gluons to the energy density in the model of Ref. [14].  
 

 
FIG.19:  Values of Im CV (P0 , T )/P2

0, obtained in Ref. [7], are shown for values of T /Tc  =1.2 [ solid line ], T /Tc  
=1.5 [ dashed line ], T /Tc  = 2.0 [ dotted line ], T /Tc  = 3.0 [ dot-dashed line ], T /Tc  = 4.0 [ double dot-dashed 
line ], and T /Tc  = 5.88 [ short dashed line ]. Here we use GV (T ) = GV [1 − 0.17 (T /Tc) ] with Tc = 0.150 GeV and 

GV  = 11.46 GeV−2. 
 

V. Excitations Of The Quark-Gluon Plasma At Finite Tempera- Ture 
 

In this section we consider temperatures greater than Tc and present the hadronic correlation functions calculated 
using the formalism of Ref. [7].  (We will not attempt to review that formalism here, but only present some our 
results.)  For example, in Fig. 19 we show the correlation function in the vector-isovector channel. The position of 
the peaks may be moved by making small modifications of the coupling constant GV (T), whose temperature 
dependence is not well known. For the coupling constant that we have used for T = Tc = 1:2, we find a peak in the 
spectral function at about 600 MeV. (Here the value used for GV is equal to 0.8 times the value of GV for T = 0. 
See the Appendices for the definition of GV.) 
 

Vi.  Discussion 
 

We may return to a consideration of Fig. 1. We have suggested that the large peak at about 750 MeV represents 
the observation of the “prompt" leptons which are emitted for t ≥1 fm/c when the system is in a deconfined mode. 
(We have argued that the elevated temperature and density is sufficient to deconfine the system at the earliest 
stage of the collision.)  As the system moves into the confined phase for t ≥1 fm/c we see that the curve for S = 
QB, seen in Fig. 17, changes its character, becoming constant for t > 1.5 fm/c.  
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That is suggestive of the formation of a confined phase in which we may discuss the validity of Brown-Rho 
scaling. (We remark that the peaks seen in Figs.14, 15 and 16 do not represent bound-state mesons. Such mesons 
are deconfined at the elevated temperature and densities.) 
 

We suggest that in the confined phase, the system generates the secondary peak seen in Fig.1 at about 0.4-0.5 
GeV. That is roughly in accord with the dashed curve representing Eq. (1.3). We also may suggest that the dashed 
curve peaks at a somewhat too low an energy since Eq. (1.3) leads to m* = 0 at T = Tc which we believe 
overemphasizes the effect of temperature. (See Figs. 11-13 of Section III.) 
 

If the interpretation of the NA60 data given in this work is correct, we may argue that the measurement of lepton 
pairs from vector-isovector states (resonances or bound states) can give us a detailed picture of the evolution of 
the deconfined system to the confined mode.  Recent work by Ruppert, Renk and Müller contains a discussion of 
the width of the rho meson in a nuclear medium using QCD sum rules [26]. They are particularly concerned with 
how the width of the rho mass in the medium will affect the Brown-Rho scaling law 

 
which is the more recent form of the scaling law [27,28] than that given in Ref. [1].  
 

The widths of the rho in matter were calculated and presented in Fig. 2 of Ref. [26]. For the parameter set 
corresponding to the work of Hatsuda and Lee, the predicted width is approximately 300 MeV at ρ/ρNM   = 1.5. 
That is close to the width we may read from Fig. 1, when we consider the first peak in that figure at about 450-
500 MeV.  Therefore, our interpretation of the data is not incompatible with the analysis of Ref. [26].  Additional 
studies of the rho meson in matter may be found in Ref. [29]. Finally, we note that Brown and Rho have recently 
discussed the NA60 data and the validity BR scaling in Refs. [30, 31]. 
 

An experiment which describes the in-medium modification of the  meson [37] provides support for BR scaling 
and the argument put forth in the present work.  Ref. [37] reports upon the photo-production of the  mesons on 
nuclei. They result for the  mass in matter may be put into the form m* = mω (1 − 0.14/0) where 0 is the 
density of nuclear matter in the notation of Ref. [37].  We remark that since the experiment does not involve the 
creation of high temperature matter and a quark-gluon plasma, one does not expect to see the large peak seen in 
Fig. 1 which we have ascribed to excitations of the quark-gluon plasma with the quantum numbers of the rho 
meson. 
 

Appendix A: A Model Of Confinement 
 

There are several models of confinement in use.  One approach is particularly suited to Euclidean-space 
calculations of hadron properties.  In that case one constructs a model of the quark propagator by solving the 
Schwinger-Dyson equation.  By appropriate choice of the interaction one can construct a propagator that has no 
on-mass-shell poles when the propagator is continued into Minkowski space.  Such calculations have recently 
been reviewed by Roberts and Schmidt [32]. In the past, we have performed calculations of the quark and gluon 
propagators in Euclidean space and in Minkowski space. These calculations give rise to propagators which did not 
have on-mass-shell poles [33-36].  However, for our studies of meson spectra, which included a description of 
radial excitations, we found it useful to work in Minkowski space. 
 

The construction of our covariant confinement model has been described in a number of works. In all our work 
we have made use of Lorentz-vector confinement, so that the Lagrangian of our model exhibits chiral symmetry. 
We begin with the form V C (r) = κrexp [−µr] and obtain the momentum-space potential via Fourier 
transformation.  Thus, 

 
With the matrix form 
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Appropriate to Lorentz-vector confinement. The potential of Eq. (A1) is used in the meson rest frame. We may 
write a covariant version of  by introducing the four vectors 

 
and 
 
  

Thus, we 
have 
 

 
 

Originally, the parameter µ = 0.010 GeV was introduced to simplify our momentum-space calculations. However, 
in the light of the following discussion, we can remark that µ may be interpreted as describing screening effects as 
they affect the confining potential [25].  In our work, we found that the use of κ= 0.055 GeV2 gave very good 
results for meson spectra. 
 

The potential V C (r) = κr exp[−µr] has a maximum at r = 1/µ, at which point the value is Vmax  = κ/µe = 
2.023 GeV. If we consider pseudoscalar mesons, which have L = 0, the continuum of the model starts at Econt = m1 
+ m2 + Vmax, so that for m1  = m2  = mu  = md = 0.364 GeV. It is also worth noting that the potential goes to 
zero for very large r. Thus, there are scattering states whose lowest energy would be m1 + m2. However, barrier 
penetration plays no role in our work. The bound states in the interior of the potential do not communicate with 
these scattering states to any significant degree. It is not difficult to construct a computer program that picks out 
the bound states from all the states found upon diagonalizing the random-phase-approximation Hamiltonian. 
 

Appendix B: Density And Temperature Dependence Of The Confining Field 
 

In part, our study of the confining interaction has been stimulated by the results presented in Ref. [25] for the 
temperature-dependent potential, V (r), in the case dynamical quarks are present. We reproduce some of the 
results of that work in Fig. 20. There, the filled symbols represent the results for T/Tc = 0.68, 0.80, 0.88 and 0.94 
when dynamical quarks are present.  This figure represents definite evidence of “string breaking”, since the force 
between the quarks appears to approach zero for r > 1 fm. This is not evidence for deconfinement, which is found 
for T = Tc.  Rather, it represents the creation of a second pair, so that one has two mesons after string breaking.  
Some clear evidence for string breaking at zero temperature and finite density is reported in Ref. [25]. 

 
FIG. 20: A comparison of quenched (open symbols) and unquenched results (filled symbols) for the interquark 
potential at finite temperature [25]. The dotted line is the zero temperature quenched potential. Here, the symbols 
for T = 0.80Tc [open triangle], T = 0.88Tc [open circle], T = 0.80Tc [open square], represent the quenched results. 
The results with dynamical fermions are given at T = 0.68Tc [solid downward-pointing triangle], T = 0.80Tc 
[solid upward-pointing triangle], T = 0.88Tc [solid circle], and T = 0.94Tc [solid square]. 
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In order to study deconfinement in our generalized NJL model, we need to specify the interquark potential at 
finite density. In that case we had used V C (r) = r exp [-µr] for zero matter density. For the model we study 
in this work, we write 
V C (r, ρ) = κr exp [-µ(ρ)r] (B1) 
 

and put 

 
 

with ρC = 2.25ρN M   and µ0  = 0.010 GeV.  With this modification our results for meson spectra in the vacuum 
are unchanged.  Other forms than that given in Eqs. (B1) and (B2) may be used. However, in this work we limit our 
analysis to the model described by these equations. The corresponding potentials for our model of Lorentz-vector 
confinement are shown in Fig. 21 for several values of ρ/ρN M. In the case of finite temperature we make use of the 

potentials V c(r, T ) shown in Fig. 22. 

 
FIG. 21: Values of V (r, ρ) are shown, where V (r, ρ) = κr exp[−µ(ρ)r] and µ(ρ) = µ0/[1 − (ρ/ρC )2]. Here ρC = 
2.25ρNM and µ0 = 0.010 GeV. The values of ρ/ρNM are 0.0 [solid line], 0.50 [dotted line], 1.0 [dashed line], 1.50 
[dashed-dotted line], 1.75 [dashed-dotted-dotted line], 2.0 [short-dashed line], and 2.1 [small dotted line]. 
 

 
FIG. 22: The potential V 

C (r, T ) is shown for T /Tc = 0 [solid line], T /Tc = 0.4 [dotted line], T /Tc = 0.6 [dashed 
line], T/Tc  = 0.8 [dashed-dotted line], T/Tc  = 0.9 [short dashes], T/Tc  = 1.0 [dashed- (double) dotted line]. 

Here, V 
C (r, T ) = κr exp[−µ(T)r], with µ(T) = 0.01GeV/[1−0.7(T/Tc)2] and κ = 0.055 GeV2. 
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