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Abstract 
 

In this paper a Glial Ratio (g-ratio) mix hybrids of 67% Sigmoid and 33% Radial functions (HSCR-BFgr) based 
on Particle swarm optimisation with the highest survivability of all possible routing redundancies, reliability, 

efficiency, fault tolerant with minimum fitness error is proposed for underground rescue operation. Nonlinear 

weights of cosine and sine were imposed on the   g-ratio hybrids. In addition we introduced a nonlinear weight 

with the g-ratio on the Gaussian RBF. The performance of the Hybrid with negative cosine weight (HSCR-BF-

grcos) was the best among the various g-ratio hybrids as compared to Gaussian with the same nonlinear weight. 

The hybrid with negative nonlinear cosine weight yielded the best results with an optimised error of 0.011. The 

proposed Nonlinear Hybrid Algorithm has better capability of approximation to underlying functions with a fast 
learning speed, high scalability, robusticity and is competitive to the Gaussian with the same nonlinear weight.  
 

Key words: Hybrid Neural Networks, Rescue Operation, Particle Swarm Optimization, Glial Ratio (g-ratio), 

wireless sensor network, Gaussian Radial Basis Function, nonlinear weight.  
 

1. Introduction 
 

The discipline of neural networks originates from an understanding of the human brain. The brain cells are 

generic term for the neurons and glial cells. The body's actions and reactions are monitored and regulated by the 

brain. Continually the brain receives sensory information, rapidly analyzes this data and then respond, controlling 

body actions and functions. The brain is known to be divided into left and right cerebral hemispheres, i.e. the 
neocortex which is the center of higher-order thinking, learning and memory; and the cerebellum which is 

responsible for the balance, posture, coordination and motor control (movement).  
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To coordinate motor control, there are 3x10

10
 different types of neurons with each neuron connecting to about 10

4
 

synapses. Neurons are nerve cells that process and transmit information through the nervous system while glial 

cells provide support, protection, and nutrition to the neurons (Valdez & Melin, 2008), (Halgren, 1994) (Fischl, 
2004). Real-world network analysis is complex as it consists of millions of nodes connected by numerous set of 

edges that make it difficult to analyze and comprehend.  The emergence of wireless sensor networks (WSNs) and 

artificial neural networks (ANN) has improved the ability to analyze such complex structures. The ANN often 

referred to as neural networks (NN), is a mathematical or computational model based on biological neural 
networks. It consists of an interconnected group of artificial neurons and process information using a 

connectionist approach to computation (Ferna´ndez-Navarro, Herva´s-Martı´nez, Sanchez-Monedero, & Gutie´ 

rrez, (2011)) (Ferna´ndez-Navarro, Herva  ́ s-Martı´nez, A., Pen˜a-Barraga´n, & Lo´ pez-Granados, 2012) and 
(Soh, et al., 2010).  
 

In most cases an ANN is an adaptive system that changes its structure based on external or internal information 

flowing through the network during the learning phase. The topology of a neural network can be recurrent i.e. 
with feedback from the output or feed-forward where the data flows from the input to the output units with no 

feedback connections (Munoz & Ramosy, 2007). The sigmoid basis function (SBF) and radial basis function 

(RBF) are the most commonly used algorithms in neural training. According to biological theory, the RBF, 

related to brain memory function uses radial basis function as activation function (Neruda & Kudova, 2005). The 
output of the network is a linear combination of radial basis function of the input and neural parameters. Radial 

basis function networks have many uses, including function approximation, time series prediction, classification, 

and system control. The structure supports the academic school of connectionist and the idea was first formulated 
by (Broomhead & Lowe, 1988). SBF a mathematical function having an "S" shape (sigmoid curve), is related to 

brain reasoning and the structure favors the computational believers, often, sigmoid function refers to the special 

case of the logistic function.  
 

Another example is the Gompertz curve which is used in modeling systems that saturate at large values of input, 

e.g. the ogee curve used in spillway of dams  (Broomhead & Lowe, 1988). A wide variety of sigmoid functions 

have been used as activation functions of neurons, including the logistic and hyperbolic tangent weight functions. 

Sigmoid curves are also common in statistics such as integrals and logistic distribution, normal distribution, and 
Student's probability density functions. In our opinion, SBF offers nonlinear effects for large input value, RBF 

provide nonlinear effect at small input value. A nonlinear hybrid of both will result in more nonlinear blending 

across the entire region. Wireless sensor networks (WSN) gather and process data from the environments and 
make possible many applications such as environment monitoring, support logistics, health care and emergency 

response systems as well as military operations. Transmitting data wirelessly impact significant benefits to those 

investigating buildings, thus allowing them to deploy sensors and monitor from a remote location. Multi-hop 
transmission in wireless sensor networks conforms to the underground tunnel structure and provides more 

scalability for communication system construction in rescue situations.  
 

A significant discovery in the field of complex networks has shown that a large number of complex networks 

including the internet, are scale-free and their connectivity distribution is described by the power-law of the form 

( )k k  
, such that it allows for a few nodes of very high degree to exist make it difficult for random attack. A 

scale-free wireless network topology was therefore used (Jang, Healy, & Mirosław, 2008) (Pan, Tsai, TsengTsai, 

& Tseng, 2006), and (Kumar, Sukumar, & Nageswari, 2013). However large scale networks such as WSN are 

usually associated with the challenge of scalability (Goh & Mandic, 2007), in terms of hardware requirements 

such as memory, central processing unit (CPU) or time, execution, consensus problems associated with  
distributed algorithm and parallel programming. These problems have been addressed using techniques of 

localization, routing-free and range-free in sensor networks by (Li & Qin, 2013), (Li, Wang, & Li, 2013) and 

neural network predictive models in both sigmoid and radial basis functions (Leblecioglu & Halici, 1997) as well 
as distributed estimation control fields such as multiple redundant manipulators and task execution (Li, Chen, Liu, 

Li, & Liang, 2012), (Li, Cui, Li, Liu, & Lou, 2012).  To this end, we model the incident location as a pure random 

event, and calculate the probability that communication chain through particular rock layers to the ground is not 
broken, and let neural network memorize the complicated relationship; such that when real accident happens, the 

neural network resident in the robot is used to predict the probability based on the rock layer it sees instantly. If 

the result is positive, the robot waits to receive the rescue signal; otherwise it he moves deeper to the next layer 

and repeats the procedure. 
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Since the brain's function is a combination of the left and the right cerebral hemispheres one could be justified to 

combine some percentages of the Radial and Sigmoid transfer functions neural networks in an attempt to come 

out with a routing topology that is reliable, efficient, and fault tolerant in the application of the underground 
rescue system using wireless sensor networks (Chen, Chuah, & Zhao, 2008), (Rajpal, Shishodia, & Sekhon, 2006)  

This paper proposes a nonlinear Hybrid Neural Networks using Radial and Sigmoid transfer functions in 

underground communication, based on particle swarm optimisation. 
 

Section 2 explains the preliminaries to the study and generates the routing path that have the highest survival 
probability the neural training. Section 3 discusses the network optimization model based on the nonlinear weight 

on the compact radial basis function. Section 4 shows the simulation results of the various hybrids and compare 

the best with the Gaussian or general RBF (GRBF) and section 5 gives a summary of the findings.  

 

2.  Preliminaries                                                                                                                          
 

2.1.1 Sensor Deployment 
 

Topological deployment of sensor nodes affects the performance of the routing protocol [20, 21] The ratio of 
communication range to sensing range as well as the distance between sensor nodes, can affect the network 

topology.  
 

Let   be the sensor sequence for the deployment of total sensors T=xyz= LRC, such that  

 

 1

,2 ( ( 1)*(1 ( 1) ) / 2 ) 1: ,  1: ,  1:

( ,3) ( ( 1)*(1 ( 1) ) / 2 )

togJ

togK

For t t

t R j for i L j R k C

node t C k

node

  



          


     

 (1) 

     / /      /      .togJ ceil t C R and togK ceil t C check source and destination node respectively   

       , , 1,1,1, 1, 2,1, , ...,, ,  
th th th

i j k i j k   for level 1, row 1, column 1], [ level 1, row 2 column 1], […], and [i
th

 level, j
th

 

row, and k
th
 column], respectively. Therefore for a T=TxT, in an underground mine with dimensions of L=3, R=2 

and C=1 for depth (level), row (length), and width (column) respectively with ‘pm’ a sensor apart, implies 

minimum of 6 sensor nodes will have to be deployed.  
 

2.1.2     Communication  
 

Through-The-Earth (TTE) Communication system transmits voice and data through solid earth, rock, and 

concrete and is suitable for challenging underground environments such as mines, tunnels, and subways. There 
were stationary sensor nodes monitoring carbon mono-oxide, temperature, etc. as well as mobile sensors (humans 

and vehicles) distributed uniformly. Both stationary and mobile sensor nodes were connected to either the Access 

Point (AP) and/or Access Point Heads (AP Heads) based on transmission range requirements (Chen, Chuah, & 
Zhao, 2008). The AP Heads serve as cluster leaders and are located in areas where the rock is relatively soft or 

better signal penetration. This will ensure that nodes are able to transmit the information they receive from APs 

and sensor nodes. The APs are connected to other APs or TTE. The TTE is dropped through a drilled hole down 
300 metres apart based on the rock type. The depth and rock type determine the required number of TTEs needed. 

Next the DATA-mule is discharged to carry items such as food, water and equipments to the miners underground 

and return with underground information to rescue team.                                                                                                                 
 

2.1.3 Signal/Transmission Reach 
 

Major challenges of sensor networks include battery constraints and energy efficiency to prolong the network 
lifetime, underground characteristics, transmission range and topology design, among others. Several routing 

approach for safety evacuation have been proposed by (Simplício, Barreto, Margi, & Carvalho, 2010), (Li, Li, & 

Yang, 2011), (Tan, Huang, Wu, & Cai, 2011), (Ren, Huang, Cheng, Zhao, & Zhang, 2013), (Ahuja, Ravindra, 
Orlin, Pallottino, & M.), (Liu & Luo, 2012), and (Shi & Wang, 2007). These were developed depending on 

specific emergency situations and management requirements. Transmitting data wirelessly impact significant 

benefits to those investigating buildings, and allowing them to deploy sensors and monitor from a remote location 

(Jang, Healy, & Mirosław, 2008), (Pan, Tsai, TsengTsai, & Tseng, 2006).  



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

91 

 
To effectively gain the needed results, researchers have come out with a number of techniques to address the 

problem of topology control (TC). These include localization of nodes and time; error and path-loss; transmission 

range and total load each node experiences; and energy conservation which is very crucial in optimizing 
efficiency and minimizing cost in wireless sensor networks (Feng, Xiao, & Cui, 2011) (Zarifzadeh, Nayyeri, & 

Yazdan, 2008) (Sausen, Spohn, & Perkusich, 2010).  Minimizing transmission range of wireless sensor networks 

is vital to the efficient routing of the network. This is because the amount of communication energy that each 

sensor consumes is highly related to its transmission range (Chen, Chuah, & Zhao, 2008). The nodes signal reach 

  was defined as the integration of the change of the minimum and maximum signal reach, taking into 

consideration the number of cases ( ) of the rock structure β, from the range 0.7 0.9  , where 0.7 is the 

soft-rock and 0.9 is the hardest rock.   is the rock hardness,   is the signal reach for a node, 

max and min   are minimum and maximum signal reach respectively.  The node signal reach is calculated as 

max

0.7 0.9min
min dr

 
  

  
            (2) 

where       and  ,   ,   ,  ,  min maxmin L min Row Col max L max Row Col     

For a connection to be made the absolute difference between i,j should be less than the node signal reach-  . 

The connection Matrix was given as  ( , ) 1,    k i j if i j    ║ ║  Otherwise 0;  

The relationship between rock hardness and the signal reach is a complicated nonlinear function, which is related 

to the skin depth of the rock with alternating currents concentrated in the outer region of a conductor (skin depth) 

by opposing internal magnetic fields, as follows:  
 

Skin depth =  2 / * *     

ρ  =  material conductivity,  ω =  frequency,  σ  =  magnetic permeability,   = frequency,  

The signal (B-field) is attenuated by cube of distance (d), and B = (k)d
3 

Signal Reach (distance) = 3 * skin Depth 
 

Table 1 identifies 6 common rocks found in mines in relation to hardness or softness of each rock. 
 

A routing path was modeled using a number of TxT size matrices namely the connection matrix   ( k ), routing 

matrix ( r ), explosion matrix ( x ), failed matrix ( )f , hope matrix ( )h , optimized matrix ( )o  and the exit 

matrix ( ).e  The hardware survival rate vector ( )H and the survival rate vector of each miner ( )v  were also 

generated, ( ) ( ).h H   A sensor node is named by its 3-D integer (x,y,z) coordinates, where 

1 ,1 ,1x R y C z L       for * *T R C L  being total number of nodes. If the node (a,b,c) is connected with 

node (d,e,f) then the element on     1 * * 1 *
th

a C L b L c     row and column is 1, otherwise 0 and routing was limited 

to total multiple-points connections available. In arriving at the final optimized vector for transmission, each 

matrix was generated  times.  

The 
M

M  
r k

is even






 


  , M representing the maximum point-to- multi-point connection was imposed on it 

such that M   is even allowing bidirectional communication, and i, j were checking source and destination nodes 

respectively.  1,    (M / 2)  0;   , 1: ,r if i j otherwise for i j T               (4)     

2.1.4    Hardware, software and Network Fault Tolerant considerations 
 

Network security is a critical issues in wireless sensor networks as  it significantly affects the efficiency of the 
communication and many key management schemes and fault diagnosis had been proposed to mitigate this 

constraint  (Zarifzadeh, Nayyeri, & Yazdan, 2008), and (Riaz, et al., (2008),  (Wang, Zhou, Liu, & Wu, 2012).  In 

an event of accident ( ) occurring, the routing path would be affected by (1  ) where   is any random value 

within β, that would cause explosion on r  matrix and result in  xf   such that,  

(1 )x r   ;    ( , ) 1 ( , ) )i j if xf i Lj          (5) 
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( , ) 0 ( , ) )i j if xf i Hj     else ( , ) /if x Hj    for ( L  or )H representing the lower and higher 

accident impact thresholds respectively. Elements 0, 1, and 2 in x  imply the link(s) were not affected, element 

3, 4, 5, 6, represent a probability for the links been able to transmit data while any figure above 7 means the link is 

totally dead. Region 1, indicates that links are not affected, region 2 gives the probability of  link available and the 

last region indicates the link is completely down (Figure 1). The matrices   ,  ,  , ,  i k r x h      for n  , with 

dimensions of L=3, R=2 and C=1 for depth (level), row (length), and width (column) respectively were generated  
as follows:  
 

   

1     1     1

1     2     1

2     2     1

2     1     1

3     1     1

3     2     1

Seq

 
 
 
 

  
 
 
  
                  

    0    0    0    0    0    0

    0    0    0    0    0    0

    0    0    0    0    0    0

    0    0    0    0    0    0

    0    0    0    0    0    0

    0    0    0    0    0    0

i

 
 
 
 
 
 
 
 
               

1     1     1     1     0     0

1     1     1     0     0     0

0     1     1     1     0     0

0     0     1     1     1     0

0     0     0     1     1     1

0     0     0     1     1     1

k

 


















      

    

1     1     1     0     0     0

1     1     1     0     0     0

0     1     1     1     0     0

0     0     1     1     1     0

0     0     0     1     1     1

0     0     0     1     1     1

r

 


















        

0     1     2     2     0     0

1     5     1     2     0     0

0     8     1     5     9     1

1     1     5     1     1    17

1     1     4    11    0     2

4     4    19    5    3     0

x

 
 
 





 








             

1 1 1 1 1 1

1 .6 1 1 1 1

1 0 1 .6 0 1

1 1 .6 1 1 0

1 1 .75 0 1 1

.75 .75 0 .6 1 1

f

 
 
 
 
 
 
 
  
   

         1=transmission path                explosion sizes     
 

Element ‘0’ on f  depicts a connection while ‘1’ means availability of connection and represent the connection 

to the fixed sink node(s) along the edge, or the emergency connection to the mobile data mule(s). A new set of 

routing path ( h ) and exit matrix ( e ) for transmission was calculated as   

    * r anh f e ed N                    (6) 
 

The mathematical objective here was to find an optimized routing matrix o  that has the maximum survivability. 

The exit matrix e  described the success rate from each node to the sink(s), e  assumes Ne  exits are available 

with an error margin . In most practical applications, more than one sinks are used, and sink node is either 

through the fiber or TTE.  It is important to note that, in real rescue situations the software and hardware 

including radio frequency identification (RFID) may fail as a result of the effect from ,x  a matrix s  was used 

to describe software or relational database management system (RDBMS) failure rate including bugs or attacks as 

 
1

1 " ", ,T,TGeometric fail
T r

s
andom


  

    
  

       (7) 

 

     

1 1 1 0 0 0

1 .6 1 0 0 0

0 0 1 .6 0 0

0 0 .6 1 1 0

0 0 0 0 1 1

0 0 0 .6 1 1

h

 
 
 
 
 
 
 
  
 


  

.8 .8 .8 0 0 0

.8 .48 .8 0 0 0

0 0 .8 .48 0 0

0 0 .48 .8 .8 0

0 0 0 0 .8 .8

0 0 0 .48 .8 .8

o

 
 
 
 
 
 
 

 





     

1.44 1.44 1.44 0 0 0

1.44 .864 1.44 0 0 0

0 0 1.44 .864 0 0

0 0 .864 1.44 1.44 0

0 0 0 0 1.44 1.44

0 0 0 .864 1.44 1.44

e

 
 
 
 
 
 
 
  
 

              

  

To obtain the final survival vector ( )R  it was assumed each miner will have an RFID; a vector  I  was used to 

describe its failure rate, including risks of running out of battery and another vector H for the hardware failure 

rate.  

 
1

1  * ' ', ,1,TI Geometric fail
T r


  

    
  

          (8) 
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T = total number of nodes,  r  is a random number generated from the vector T   
 

:  0 ;   :  Tr T random    

1 1 1 1
:  0;   1 :  1- 1

T r T T r T
  

 
 is the minimum, therefore for T=N nodes, we have 

 1 1 1
1 1 for  node is dead, 1  node is alife 

N N

N N N

 
       

 1, [ ]) ;  for ( [ ]) pH min I e M            (9) 

 The survival rate of each miner was ( v ). To ensure that a reliable system is in place for emergencies the final 

survival rate vector ( R ) was calculated. 

* ;  * ;  and v s e R v s R R         ,        (10) 
 

      

.8333 .8889 .9091 .8333 .8571 .8333

.8889 .8333 .8750 .8571 .8750 .8333

.8571 .9167 .8750 .9091 .8889 .8333

.8750 .8571 .8571 .8571 .8571 .8333

.8333 .8333 .8571 .8333 .8889 .9000

.9167 .8333 .9091 .8333 .8889 .8571

s

 
 
 
 

  



 




    

RFID

0.8571 0.8750 0.8571 0.8889 0.8571 0.8333

 survival rate of , hardware and 

0.6236 0.4976 0.6851 

of each miner 

 

 0.9286 0.6086

0.5409 0.4281 0.8834 0.5850 0.8134 0.51

 

63

 

1

The

vectors were displayed as

I

H

R











    
 

Optimization was done numerically using Matlab simulation tool to find the optimum set of routing table through 

particle swarm search for rescue operation as discussed in the preliminaries using dimensions of L=3,R=2, and 

C=1. R is only one case of the 6 vectors, and R is the average of all the 6, 6 represent cases of rock types.  
 

3.   The Network Optimization Model  
 

Having found the optimum set of routing table that has the highest survival probability of communicating with, 

and rescuing miners, it is important to train the neurons such that the initial error will be minimized and more 
importantly the model must be reliable (Goh & Mandic, 2007). The topology of a neural network can be recurrent 

or with feedback contained in the network from the output back to the input and the feed-forward where the data 

flow from the input to the output units. The data processing can extend over several layers of units, but no 
feedback connections are present, that is, connections extending from the outputs units to inputs units in the same 

layer or previous layers. Many researchers have come out with neural network predictive models in both sigmoid 

and radial basis functions,  (Munoz & Ramosy, 2007) and Castano, Fernandez-Navarro, Gutierrez and Hervas-

Martinez [2012] with applications such as nonlinear transformation, (Leblecioglu & Halici, 1997) extreme 
learning machine  and predicting accuracy in gene classification among others (Ferna´ndez-Navarro, Herva´s-

Martı´nez, Sanchez-Monedero, & Gutie  ́rrez, (2011)). An optimized vector R was generated as the optimum set 

of transmission routing table that has the highest survival probability for data transmission Eq. 10.   
 

2 2

1 1 1

1,  for 1  and 1
N

i i i

RiSi Si SiSi i s k R
  

                 ( 11 ) 

 

R, S1, S2 are number of neurons at input, hidden and output layers respectively.  

PN is the position of the nth particle. 
 

 , 2 ,..., ,  and ( ) ( , )Wi SiR W SiR Wm SmR Pi R i j K Wi i k        

1 2
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(

) 2

There are two thresholds S B

Hidden B i j P RS S S S B i j P RS S S S



     
 

 

3.1 Artificial Neural networks (ANN) 
 

Artificial Neural networks (ANN) are learning algorithm used to minimize the error between the neural network 

output and desired output. This is important where relationships exist between weights within the hidden and 

output layers, and among weights of more hidden layers.  In addition other parameters including Mean Iteration, 

Standard variation, Standard deviation and convergent time (in sections) were evaluated.  
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The architecture of the learning algorithm, and the activation functions were included in neural networks. Neurons 

are trained to process store, recognize, and retrieve patterns or database entries to solve combinatorial 

optimization problems. After encoding the particles, the fitness function was then determined. The goodness of 
the fit was diagnosed using mean squared error (MSE) as  
 

2

, ,

1 1

1
( )

n s

j i j i

j i

MSE Y y
ns  

 
                 ( 12 ) 

 

where n is number of samples, s is the number of neurons at output layer, Yj,i is the ideal value of j
th
 sample at i

th
 

output and yj,i is the actual value of j
th

 sample at i
th
 output.  The sigmoid Basis function was given as  

 

( . )

log ( ), .

1
log ( . )

1 e W P B

sig R R W P B

sig W P B
 

  



             ( 13 ) 
 

Neuron function S(sigmoid) is logsig, W is weight matrix，P is input vector，B is threshold  and the generalised 

Gaussian function as 

   2r
r e 





           (14) 

 

However this involves additional square operation and poses computation burden. We therefore proposed a 

Compact Radial Basis function based on the Gaussian Radial Basis function and Helens’ definition (Zhang, 

Genton, & Liu, 2004) expressed as  

(exp(-abs(R)), .

(exp(-abs(( . )))

R W P B

W P B

  


   

  (exp(-abs  (R))out 
         (15) 

 

W is weight matrix， is an input vector B is threshold.  The focus was to improve on the radial basis function for 

the mine application.  

From Helen’s definition (Zhang, Genton, & Liu, 2004) an example of the RBF kernels can be stated as, a function 

ψ : [0, )   such that    , ' 'k x x x x   where , 
, 'x x 

 and . 'x x denotes the Euclidean norm with 

 
2

'

2
, ' exp

x x
k x x



 


 
 
 

.  she argued that the global support for RBF radials or kernels has resulted in dense 

Gram matrices that can affect large datasets and therefore constructed the following two equations 

     , ' ' , '
, ,

k x x x x k x x
C v C v

   and  
'

' 1
,

v
x x

x x
C v

C
 


  

  
  
  

where 
1

0, ,
2

d
C V


   and the dot 

 
+

is the positive part.  The function  C  is a sparsifying operator, which thresholds all the entries satisfying 

 'x x C   to zeros in the Gram matrix. The new kernel resulting from this construction preserves positive 

definiteness. This means that given  any pair of inputs x and x' where x = x' the shrinkage (the smaller C) is 

imposed on the function value,  , 'k x x ; the result is that the Gram matrices K and KC,ν can be either very 

similar or quite different, depending on the choice of C. 
 

3.2  The Proposed Hybrid 
 

1.   The nonlinear weight g-ratio (HSCR-BF-gr)  

As part of the nervous system, oligodendrocytes are closely related to nerve cells, and provide supporting roles for 

neurons. The activity of the axons of the neurons depends crucially on myelin sheaths, which reduce ion leakage 

and decrease the capacitance of the cell membrane. Myelin also increases impulse speed, as saltatory propagation 
of action potentials occurs at the nodes in between cells.  
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Oligodendrocytes provide the same functionality as the insulation on a household electrical wire. Furthermore, 

impulse speed of myelinated axons increases linearly with the axon diameter. The insulation must be proportional 

to the diameter of the fiber inside. The optimal g-ratio of axon diameter divided by the total fiber diameter (which 
includes the myelin) is 0.55 to 0.72  (Kumar, Sukumar, & Nageswari, 2013).  In our  proposed model the weight 

of 0.67 was considered for SBF which is the g-ratio for our splenium, and the RBF occupied the rest.  Other g-

ratio hybrids were considered.  From Eq. 16, 17 and 18 the nonlinear weight of [ cos(R)] or *[ sin(R)] were 

imposed on the CRBF with g-ratio (HSCR-BFgr)  as     (1 ) )( *[ cos(R)]Rexp       before combining with the 

SBF 

HSCR-BFgr:         log ) (( (1 ) )R RY out sig exp             (16) 

HSCR-BF-grcos:      (1 )( ))  *[ cos(  ( R)]log )( ex Rpi Rs gY out        (17) 

HSGR-BF+grcos:      (1 )( ))  *[ cos(  ( R)]log )( ex Rpi Rs gY out        (18) 

HSCR-BF-grsin:       (1 )( ))  *[ sin(  ( R)]log )( ex Rpi Rs gY out        (19) 

HSGR-BF+grsin:      (1 )( ))  *[ sin(  ( R)]log )( ex Rpi Rs gY out        (20) 

HSCR-BF-Egrcos:     (1 )( ))  *[ cos(  ( R)]log )( ex Rpi Rs gY out        (21) 

 

where  values of  50% and  67% were used.  The nonlinear weight of [ cos(R)]  were imposed on the Gaussian 

RBF (GRBF) as well before combined with the SBF as    
 

     (1 )( )^2)  *[ cos( (R)]log )( exp RRsigY out          (22) 
 

The first and second derivatives were introduced to check the nonlinearity of each hybrid    based on Eq. 17-20.  
To examine the Memory and Time Efficiency of the Algorithm, the 2nd order polynomial was  used to assess the 

Performance among the Parameters  i.e. CPU Usage, Memory and Time Efficiency, the 5th order was used for the 

assessment of the individual parameters within a particular Hybrid while the 6th order was used for  Performance 
among hybrids and given as follows: 
 

2
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   



     

       


         (23) 

where x is time (seconds),   is the co-efficient of the polynomial  
 

4.  Particle Swarm Optimization 
 

Particle swarm optimization (PSO), an evolutionary algorithm, is a population based stochastic optimization 

technique. The idea was conceived by an American researcher and social psychologist James Kennedy in the 

1950s. The theory is inspired by social behavior of bird flocking or fish schooling.  The method falls within the 
category of Swarm Intelligence methods for Solving Global Optimization problems. Literature has shown that the 

PSO is an effective alternative to the established evolutionary algorithms (GA). It is also established that PSO is 

easily applicable to real world complex problems with discrete, continuous and non-linear design parameters and 
retains the conceptual simplicity of GA (Kennedy & Eberhart, 1995),  (Eberhart, Eberhart, & Shi, 2001). Each 

particle within the swarm is given an initial random position and an initial speed of propagation. The position of 

the particle represents a solution to the problem as described in a matrix τ, where M and N represent the number 
of particles in the simulation and the number of dimensions of the problem respectively (Malhotra & Negi, 2013), 

(Gies & Rahmat-Samii, 2003). A random position representing a possible solution to the problem, with an initial 

associated velocity representing a function of the distance from the particle’s current position to the previous 

position of good fitness value were given.  A velocity matrix  Vel  with the same dimensions as matrix x  

described this. 
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While moving in the search space, particles commit to memory the position of the best solution they have found. 

At each iteration of the algorithm, each particle moves with a speed that is a weighted sum of three components: 

the old speed, a speed component that drives the particles towards the location in the search space, where it 
previously found the best solution so far, and a speed component that drives the particle towards the location in 

the search space where the neighbour particles found the best solution so far (Gies & Rahmat-Samii, 2003), 

(Rajpal, Shishodia, & Sekhon, 2006). The personal best position can be represented by an NxN matrix ( best
 ) and 

the global best position is an N-dimensional vector 
bestG :  
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All particles move towards the personal and the global best, with τ, best , Vel  and   bestG   containing all the 

required information by the particle swarm algorithm. These matrices are updated on each successive iteration.  

   1 1 2 2  

    

mn mn c r mn mm c r n mn

mn mn

V V pbest X gbest X

X V

       


     (24)           

γc1 and γc2  are constants set to 1.3 and 2 respectively and 1r  2r are random numbers.  
 

4. 1   Adaptive mutation according to threshold  
 

To prevent particles from not converging or converging at local minimum, an adaptive mutation according to 

threshold was introduced. Particles positions were updated with new value only when the new value is greater 

than the previous value. 20% of particles of those obtaining lower values were made to mutate for faster 
convergence (Ansong, Yao, & Huang, 2013). The input layer takes the final survival vector (Eq. 10), with a 

number of hidden layers and an output layer. The feed-forward neural network was used. The structure of 

Adaptive Mutation PSO (AMPSO) with threshold was used Figure 3, (Peng & Pan, 2011) and (Pantazis & 
Alevizakou, 2013).  
 

5.  Results and Discussion 
 

5.1    The final survival vector 

The  0.5409    0.4281    0.8834    0.585    0.8130    0.5163R    from Eq 10 is the routing path with maximum survival probability 

for a total of 6 nodes deployed. It describes the success rate from each node to the sink(s). In most practical 
applications, more than one sinks are used, and sink node is either through the fiber or TTE connection.  The size 

of the vector depends on the dimensions of the field.  The elements  0.5409    0.4281    0.8834    0.585    0.8130    0.5163R   

represent the probability of 54%, 43%, 88%, 59%, 81% and 52% success of each node transmitting data to and 

from its source or destination. It assists decision makers as to whether to send data through one or more nodes, or 

send each message twice.  The total nodes used for the simulation was 300 with underground mine dimensions of 
L=10, R=6 and C=5 for depth (level), row (length), and width (column) respectively with ‘pm’ a sensor apart, 

pm=100, M =4, and Ne =2. The PSO training used swarm size of 20, maximum position was set to 100, max 

velocity =1, number of neurons = 6 and maximum number of iteration =250. The thresholds  L  and H  were 

3 and 6 respectively,  =6 cases-thus each matrix and vectors were run 6 times before neural training.  
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The top half of each figure (Figure 4) indicates the optimized error or the final error after the neural training and 

the bottom half reveals model survival probability. The survival probability indicates that the model survived 

between 90-100% where rock cases was relatively soft ( 0.7 ). The survival probability declines as the rock 

becomes harder and approaches 0.8. At the hardest rock of 0.9, the survival probability fell between 72- 84% for 

the entire hybrids. In view of this the AP heads had to be deployed at a location where the rock is relatively soft 

for maximum signal strength. Each computer simulation incorporated all the 6 different cases of rock 
hardness/softness to produced the matrices. Figure 4 (a-e) represent different scenarios of SBF and CRBF Hybrids 

with the [ cos(R)]  [ sin(R)]  nonlinear weights while (4f) represent the SBF and Gaussian Hybrids for [ cos(R)]  

nonlinear weight.  Detailed location analysis or the scalability of the model in relation to survival probability 

range, robot location and different rock types are recorded in Tables 5.  
 

5.2   Training results 
 

Figure 4 again discusses the G-ratio of 67% splenium for SBF and 33% CRBF hybrids (HSCR-BFgr) with 

negative and positive nonlinear weights of cosine  a) HSCR-BF-grcos,  b) HSCR-BF+grcos). From the training the 

HSCR-BF-grcos had a steady and compact routing path which was consistent through  all rock layers, with initial 

survival probability between 87.7%-100% in soft layers declining to  69.5%-87.4% at harder rock layers. The 
HSCR-BF+grcos  was more dispersed with 87.9% -97.8% at the soft rock and 71.9%-88.9% at the hard rock layers.  

the positive and negative nonlinear weights with sine c) HSCR-BF-grsin, d) HSCR-BF+grsin) showed, HSCR-BF-grsin 

streamed well at both the initial and middle stages from 87.9%-98.5% at soft rock layers and 66.5% -0.83.6% at 
hard rock layers with a steady and compact routing path. The HSCR-BF+grsin was also consistent through the first 

four rock layers  with initial survival probability between 90%-100% in soft layers declining to  71% -85.4% at 

harder rock layers, with lessened transmitting probability through the last two layers. This could hamper rescue 
mission due to battery drain or collision from traffic congestion.  
 

However it could be used in areas where routing conditions are much better such as rescue situations on surface.  

The survival probability of the negative nonlinear weight Gaussian hybrids e) HSGR-BF-Ggrcos is compact both at 

the initial (i.e. 87.3%-99.6%) and latter stages (70.98%-83.2%). The f) HSCR-BF-Egrcos,  was similar to that of sine 
with a narrowed transmission part at the last two stages of rock type.  The final errors read from the fitness 

function of Figures 4 indicated an average optimised errors of 0.011, 0.0121, 0.01208, 0.0129,  0.216 and 0.0117  

from (Figures 6-11,calculated) for HSCR-BF-grcos, HSCR-BF-grsin, HSCR-BF+grsin, HSCR-BF+grcos,  HSCR-BF-Egrcos, 
and HSGR-BF-Ggrcos, respectively as against the target error of 0.01.  Earlier results for the optimised error of SBF 

and CRBF were 0.018 and 0.011 respectively [39]. Subsequently an equal g-ratio of both SBF and CRBF with 

nonlinear weight of negative cosine was performed resulting in an optimised  error 0.0216.  At the initial positions 
(Figure 5a) particles were sensitive to inputs as they moved quickly in the search space towards the target using 

more of the SBF but as particles peaked closer to the target they became less sensitive and  more CRBF were used 

to keep the error at minimum for accuracy. Figure 5(b-e) further indicated the regions in which most of the 

nonlinear occurred as follows;   (b) HSCR-BF-grcos at region A and B, (c) HSCR-BF+grcos  at  C and D, (d)   HSCR-
BF-grsin at E and F and  (e)  HSCR-BF+grsin  at G and H respectively.  
 

5.3  Performance of Parameters of the Various  Hybrids  
 

The trend of the various parameters of each hybrid were analysed. Each hybrid was run 10 times and the average 

performance were recorded. The 6th order polynomial was used to assess the performance trend of all the 
parameters i.e. mean iteration (MI), standard variance (Std Var),  standard deviation (Std Dev), and Convergent 

time (Conver. Time) for each hybrid (Figures 6-11)  and  (Table 3). The  performance of HSCR-BF-grcos was the 

best with R² of 0.9613, 0.9074, 0.8745, 0.9452 and 0.5730 for final error (F.ERR), standard deviation (Std Dev),  
standard variance (Std Var), mean iteration (MI), and convergent time (Conver. Time) respectively (Table 3). The 

HSCR-BF+grcos, the HSCR-BF-grsin  HSCR-BF+grsin followed in decreasing order of performance. It must be noted 

that detailed work on SBF, CRBF and GRBF, with regards to  scalability, memory usage and the central 
processing time has been carried by (Ansong, Yao, & Huang, 2013) and a minimum error of 0.011 for CRBF as 

against 0.012 and 0.0168 for GRBF and SBF respectively. However the  performance of HSCR-BF-grcos has 

proving to be more enhanced as compared with the previous work despite the same optimised error.  The 

scalability of the Algorithm, CPU Usage and Time Efficiency (Figure 12-13) was examined using 5th order 
polynomial and performance among the hybrids using 2nd order polynomial (Table 4).  
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The relationship between the various hybrids with respect to the central processing Unit (CPU), was profiled for 

different runs to assess its scalability (Table 5). The proposed hybrid has better usage of CPU time and memory 

and optimised all its parameters with  higher R²of 1. 
 

5.3 Conclusion 
 

In summary, we made the following contributions: first we used the mix of SBF and CRBF  (HSCR-BF) to 

present several hybrids with different G-ratio nonlinear weights of cosine and sine functions on the CRBF. We 
have discussed the performances of the Proposed G-ratio nonlinear weight hybrids (HSCR-BF) with their 

corresponding errors as  0.011, 0.013, 0.01208, 0.0128,  and 0.216 for HSCR-BF-grcos, HSCR-BF+grcos, HSCR-BF-

grsin, HSCR-BF+grsin,  HSCR-BF-Egrcos respectively as compared to 0.0117 for the Gaussian HSGR-BF+grcos. The 

CPU time, Memory usage and  assessment among the various hybrids examined yielded R
2
 values of 1. HSCR-

BF-grcos among the other hybrids  indicated a better performance of individual parameters. The proposed Nonlinear 

Hybrid Algorithm with Particle swarm optimisation has better capability of approximation to underlying functions 

with a fast learning speed, high scalability and robusticity and is competitive to the Gaussian with the same 
nonlinear weight. Further investigation into the hybrids will be made as part of our future work.  
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Table 1  Nomenclature 
 

Nomenclature 

HSCR-BFg/HSGR-BFg -  G-ratio Hybrid of SBF with CRBF/GRBF 
HSCR-BF-grcos:   -  G-ratio Hybrid of SBF and CRBF with negative nonlinear cosine weight 

HSCR-BF+grcos   - G-ratio Hybrid of SBF and CRBF with positive nonlinear cosine weight  

HSCR-BF-grsin    - G-ratio Hybrid of SBF and CRBF with negative nonlinear sine weight 
HSCR-BF+grsin   - G-ratio Hybrid of SBF and CRBF with positive nonlinear sine weight 

HSGR-BF-Egrcos - Equal G-ratio Hybrid of SBF and CRBF with negative nonlinear cosine weight  

HSGR-BF-Ggrcos -G-ratio Hybrid of SBF and GRBF with positive nonlinear cosine weight  
 

Table 2:  Common rocks found in typical mines in relation to hardness or softness 
 

Nonlinear mapping Mica Coal Granite Feldspar Quartz Mineral 

Softness 0.70 0.80 0.83 0.86 0.875 0.90 

Hardness 2 3 5 6 7 9 

Distance 750 m 470 m 390 m 315 m 278 78 m 

 

 
Figure 1: Impact on Transmission link after accident 

 

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The Impact of The Accident

L
in

k
 A

v
a
ila

b
ilt

y

THE CURVE OF TRANSMISSION LINK AFTER ACCIDENT 

The higher the impact 

the lower the link availability

  Region 3

Links are completely dead

  

  Region 1

Links are not affected 

 
  Region 2

Indicate Probability of link 

being able to transmit data

  



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

101 

 

   
Figure 2: The structure of Adaptive          Figure 3 The structure AMPSO for CRBF, Mutation PSO (AMPSO) 

PSO with threshold                         GRBF and SBF neural transfer functions 
 

        
  (a)  HSCR-BF-grcos                       (b) HSCR-BF+grcos         (c)  HSCR-BF-grsin   
 

          
        (d) HSCR-BF+grsin                e) 50% each HSCR-BF-Egrcos         f)  HSGR-BF-Ggrcos   
 

Figure 4: Hybrid of SBF and CRBF (HSCR-BF) with nonlinear weights of on the g-ratio for (a) HSCR-BF-grcos , 
(b) HSCR-BF+grcos , (c)  HSCR-BF-grsin , (d) HSCR-BF+grsin,  e) 50% each HSCR-BF-Egrcos  and   f)  HSGR-BF-Ggrcos         
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Figure 5 (a) Nonlinear weighted curves for optimized error-HSCR-BF-grcos, HSCR-BF+grcos,  HSCR-BF-grsin, 

HSCR-BF+grsin 

 

   
  b) HSCR-BF-grcos   c)   HSCR-BF+grcos 
 

 
  d)    HSCR-BF-grsin    e)    HSCR-BF+grsin   
 

Figure 5 Nonlinear weighted curves for optimized error-HSCR-BF-grcos,HSCR- BF+grcos,  HSCR-BF-grsin, HSCR-
 BF+grsin  indicating the most nonlinear regions. 

 
 

 
Figure 6   Relationship  Among Parameters: G-ratio with Negative Cosine weight  (HSCR-BF-grcos) 
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Figure 7:  Relationship  Among Parameters: G-ratio with Positive Cosine weight  (HSCR-BF+grcos) 

 

 

           
 

Figure 8:   Relationship  Among Parameters: G-ratio with Negative Sine weight  (HSCR-BF-grsin) 
 

 

           
Figure 9:  Relationship  Among Parameters: G-ratio with Positive Sine weight  (HSCR-BF+grsin) 
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     Figure 10 Relationship  Among Parameters: Equal G-ratio with Negative Cosine weight  (HSCR-BF+Egrcos) 

 
 

      
      Figure 11   Relationship  Among Parameters: Gaussian G-ratio with Negative Cosine weight (HSCR-BF-Ggrcos) 
 

         
 

Figure 12  CP U Time and Memory Usage 
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Figure 13  Usage Trend CPU and Memory in G-ratio Nonlinear Hybrids 

 
 

Table 3  Future trend Among Parameters of the G-ratio Hybrids with Nonlinear Weights of Cosine and 

Sine/Gaussian 
  B6 B5 B4 B3 B2 B1 B0 R² 

HSCR-BF-grcos                          

Final Error  -6E-06x  0.0002x - 0.002x 0.0105x - 0.0261x  0.0247x 0.0096 0.9613 

SD Deviation -2E-06x 6E-05x - 0.0007x 0.0037x 0.0037x 0.0199x 0.0213 0.9074 

SD Variance -0.0319x 1.1009x  - 14.859x4  99.403x - 340.75x 541.93x -239.26 0.8745 

Mean Iteration  -0.0136x  0.4876x  - 6.8685x  48.084x - 173.25x   292.09x -137.27 0.9452 

Conv. Time  -0.0679x 2.2183x  - 28.083x 174.03x - 546.16x 790.03x -268.9 0.5730 

HSCR-BF+grcos                 

Final Error 2E-06x  - 7E-05x  0.001x  - 0.0066x 0.0228x  - 0.0365x  0.0323 0.9655 

SD Deviation  -7E06x   0.0002x  - 0.003x   0.0185x  - 0.059x   0.0898x  -0.0147 0.8594 

SD Variance -0.0226x 0.7192x  - 9.0162x 57.009x - 190.97x 310.14x -132.19 0.6407 

Mean Iteration -0.0187x  0.6173x - 8.0103x  51.844x -175.02  286.11x -141.55 0.6405 

Conv. Time 0.0015x - 0.0923x 2.9023x - 26.944x  101.4x  - 161.69x 210.7 0.6108 

HSCR-BF-grsin                 

Final Error 8E-06x  - 0.0003x  0.0036x  - 0.0235x 0.0745x - 0.1044x 0.0624 0.7439 

 

SD Deviation 5E-06x - 0.0002x 0.0024x - 0.0156x 0.0503x  - 0.0745x 0.0716 0.3282 

SD Variance  0.034x  - 1.1149x  14.194x  - 88.688x  281.44x - 419.61x 272.6 0.3126 

Mean Iteration  0.0246x  - 0.8196x 10.555x  - 65.793x  202.22x  - 275.56x 162.12 0.2651 

Conv. Time  -0.0023x 0.0857x - 1.3349x  10.953x  - 47.325x 94.044x  -49.55 0.7512 

HSCR-BF+grsin                 

Final Error 8E-06x  - 0.0003x 0.0036x  - 0.0227x 0.0706x - 0.0994x 0.0588 0.7481 

SD Deviation  -4E-06x 0.0001x - 0.0016x 0.0101x  - 0.0311x 0.044x 0.0077 0.4402 

SD Variance 0.03x  - 0.9298x 11.028x4 - 61.998x  164x - 166.01x 70.317 0.5661 

Mean Iteration  -0.0045x  0.0988x   - 0.5152x  - 2.8464x  35.023x  - 103.58x 122.32 0.3865 

Conv. Time 0.0516x - 1.8653x 26.746x - 192x  714.08x  - 1274.3x 853.57 0.9000 

HSGR-BF-Ggrcos                 

Final Error 9E-06x - 0.0003x 0.0037x - 0.0225x 0.0666x - 0.0832x 0.0403 0.5892 

SD Deviation 0.0002x - 0.0061x 0.0865x - 0.6012x 2.0837x  - 3.2299x 1.718 0.4696 

SD Variance  0.0255x - 0.8207x  10.247x   - 62.406x 190.23x - 258.14x  136.84 0.4424 

Mean Iteration  0.0148x  - 0.4608x 5.474x  - 31.31x 88.816x  - 112.6x 63.645 0.5954 

Conv. Time -0.0578x 1.7373x - 19.957x 111.01x  - 314.81x 431.93x - 99.9 0.9777 
 

 

Table 4   Performance among the Parameters and among the Hybrids 
 

  B5 B4 B3 B2 B1 B0 R² 

 Performance among the Parameters  

CPU TIME 24.22x - 424.1x 2819x  - 8865x 13079x -6538.3 1 

MEM ALLOC  952.5x - 15880x  97684x - 272822x  345809x -153080 1 

PEAK MEM -1115x 18867x  - 119242x  346975x - 454393x 211572 1 
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 Performance among the Hybrids  

HSCR-BF-grcos     -1284.8x   6423.7x - 5044.5 1 

HSCR-BF-grsin    -3297.6x 14312x - 10314 1 

HSCR-BF+grcos    -6833.9x  31521x - 24127 1 

HSCR-BF+grsin    -25338x  102245x - 76319 1 

HSCR-BF-Egrcos    -9058x 44322x - 35028 1 

HSGR-BF+grcos    -24789x 99886x - 74687 1 

 

 

Table 5: Scalability of model to survival probability range, robot location and rock type 
 

SBF AND CRBF G-ratio Hybrid with negative nonlinear cosine weight (HSCR-BF-grcos)      

Location Mica Coal Granite Feldspar Quartz Mineral 

(10,6,5) 0.8769-1 0.9008-0.9911 0.8402-0.9943 0.8025-0.9776 0.7386-0.9376 0.695-0.874 

(10,5,4) 0.8534-0.9793 0.8426-0.9961 0.8435-0.9342 0.7752-0.9717 0.7423-0.9402 0.6591-0.8552 

(6,5,4) 0.8729-0.9849 0.8576-0.9156 0.8483-0.9756 0.7868-0.9684 0.714-0.942 0.6194-0.8043 

(3,1,10) 0.7712-0.9233 0.6991-0.8349 0.4848-0.7066 0.4778-0.6731 0.4547-0.6120 0.3536-0.5146 

SBF AND CRBF G-ratio Hybrid with positive nonlinear cosine weight (HSCR-BF+grcos)      

Location Mica Coal Granite Feldspar Quartz Mineral 

(10,6,5) 0.8792-0.9782 0.8734-0.9765 0.8702-0.9782 0.7876-0.7593 0.7688-0.9581 0.7196-0.8886 

(10,5,4) 0.8945-1 0.8864-0.9974 0.8619-0.9988 0.8142-0.9649 0.8242-0.9364 0.8005-0.8922 

(6,5,4) 0.901-0.9924 0.8216-0.989 0.8803-0.9666 0.8234-0.9637 0.8286-0.9049 0.6428-0.8296 

(3,1,10) 0.7686-0.8818 0.6934-0.8258 0.6923-0.8644 0.5816-0.6106 0.5304-0.6477 0.4441-0.6011 

SBF AND CRBF G-ratio Hybrid with negative nonlinear sine weight (HSCR-BF-grsin)      

Location Mica Coal Granite Feldspar Quartz Mineral 

(10,6,5) 0.8794-0.9847- 0.8706-0.9777 0.8498-0.9846 0.8068-0.9956 0.777-0.9617 0.6653-0.836 

(10,5,4) 0.9079-0.9962 0.8492-0.9962 0.8278-0.9919 0.8324-0.9601 0.7583-0.9189 0.7428-0.8379 

(6,5,4) 0.9241-0.9699 0.8646-1 0.913-0.975 0.8339-0.9242 0.8231-0.8585 0.8268-0.8303 

(3,1,10) 0.716-0.8726 0.6555-0.7793 0.698-0.7628 0.6154-0.7529 0.4617-0.5766 0.419-0.4919 

SBF AND CRBF G-ratio Hybrid with positive nonlinear sine weight (HSCR-BF+grsin)      

Location Mica Coal Granite Feldspar Quartz Mineral 

(10,6,5) 0.9014-0.1000 0.875-1.00 0.8349-0.9964 0.8221-0.961 0.8292-0.9121 0.7098-0.8495 

(10,5,4) 0.8921-1000 0.8864-09974 0-8619-0.9988 0.8142-0.9649 0.8242-0.9364 0.8005-0.8922 

(6,5,4) 0.901-0.9924 0.6305-0.9894 0.880-0.9666 0.8234-0.9637 0.8286-0.9049 0.6428-0.8296 

(3,1,10) 0.6917-0.8046 0.6212-0.7269 0.6618-0.7145 0.5535-0.6961 0.6612-0.7163 0.3934-0.45 

One-Half of SBF AND CRBF G-ratio Hybrid with negative nonlinear cosine weight (HSCR-BF-Egrcos)      

Location Mica Coal Granite Feldspar Quartz Mineral 

(10,6,5) 0.9025-0.975 0.888-0.9817 0.8516-0.9883 0.833-0.9412 0.7852-0.9262 0.8554-0.6922 

(10,5,4) 0.9012-1 0.885-1 0.8289-1 0.8207-0.9352 0.7545-0.8675 0.774-0.8516 

(6,5,4) 0.8813-0.9874 0.8665-0.9833 0.8716-0.9896 0.828-0.9402 0.7853-0.8912 0.7008-0.8379 

(3,1,10) 0.755-0.9489 0.726-0.8184 0.6086-0.7573 0.6463-0.7646 0.5534-0.6696 0.4192-0.5389 

SBF AND GRBF G-ratio Hybrid with negative nonlinear cosine weight (HSGR-BF-Ggrcos)      

Location Mica Coal Granite Feldspar Quartz Mineral 

(10,6,5) 0.8904-0.9856 0.8994-0.9827 0.829-0.9947 0.8226-0.9502 0.8271-0.9245 0.7005-0.86 

(10,5,4) 0.9012-1 0.8855-1 0.8289-0.9996 0.8207-0.9352 0.736-0.8625 0.774  -0.8516 

(6,5,4) 0.8813-0.9874 0.8665-0.9833 0.8718-0.9896 0.828-0.9402 0.7853-0.8912 0.7008-0.8379 

(3,1,10) 0.755-0.9489 0.726-0.8184 0.6086-0.7573 0.6463-0.7646 0.5534-0.6696 0.4192-0.5389 

 

 


