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Abstract

Right tail risk is very important in risk management theory, since it represent the small probability and severity
losses event. There are many researches on this topic. This paper focuses on how to estimate and evaluate the
right tail risk. The different distributions will be considered. Some numerical examples to illustrate the results will
be given.
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1. Introduction

The right tail of a distribution is the part of the distribution corresponding to large values of a random variable. In
real life, it means the small probability that have the greatest loss. So it has the great impact on the total loss. Any
random variables have the higher probabilities to larger values are said to be heavier-tailed.

One of classification methods of the random variable which only take positive weather to be heavy-tailed
distribution or not is determined by the kth raw moment

E(xX) = [xXf (x)dx
0
In general agree, if all positive moments exist, the distribution has a light tail, otherwise have heavier tail.

Tail distribution may have great impact on the total loss, therefore many researchers have been done excellent job
in this field. See Ahn and Shyamalkumar (2011), Zhu and Li (2012), McNeil, Frey, and Embrechts, (2005),
Resnick (2007), and Klugman (2008).

In this paper we are going to discuss risk measurements and tail distributions. We are going to consider mixtures
of uniform distribution and also other mixture of the important distribution. In fact, determine the risk
measurement of Mixture distribution is really challenging and the numerical evaluation is very hard. Therefore we
are going to consider some special cases.

2. Basic Risk Measurements and Background

Many risk measurements have been introduced. Value-at-Risk (VaR) is one of them. VaR used to evaluate
exposure to risk, it can be treat as the amount of capital required to ensure with a give degree of certainty, that
enterprise doesn’t become insolvent. Mathematical definition as follows,

Let X be a loss random variable with a cumulative distribution F, (x) . Then the VaR of a random variable X is
100pth percentile of the distribution of X . Use X  denote the 100pth percentile of distribution of X , we have
VaR, =X, or

Fy(VaR,(x)) = F(X,) = p or

P(X >VaR, (X)) =S,(X,)=1-p

Where S, (X) is the survival function, in order to make sure uniqueness we may use more general definition,

VaR, =inf{x e R,F(x) > p}

Another important risk measurement related to Value-at-Risk which is called Tail-Value-at Risk (TVaR, TCE) or

Conditional Tail Expectation (CTE). It is the expected value of loss given that an event outside of a given
probability level has occurred.
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Mathematical definition as follows,

Let X be a loss random variable, the Tail-Value-at-Risk of X at 100p% level, denoted by TVaR (x), and defined
by,

TVaR (x) =E(X | X >VaR))

©

j xf (X)dx

VaR,

“1-F(VaR))
If this quantity is finite, the by integral by parts and change variable, we can easily show that

j[VaRu (x)du

TVaR (x) ==+

00 =
Therefore, Tail-Value-at-Risk can be explained as average of all VaR values above level p. In other words,
TVaR tell us information about the tail of the distributions.

We also can rewrite TVaR as follows,

T(x—VaRp)f(x)dx

VaR,

TVaR, (x) =VaR, + 1 p
Ahn and Shyamalkumar (2011) consider the larger sample behavior of the CTE and VaR, they introduce
functions F and F’ satisfies vary complex assumptions, then pointed that for the quantile estimator,

E_.(L(X)I X)) -(1-a)?
Q. (0 F"F) = (F) — N[ 0,5 (L(X) (ga,;)( )-(1-a)
F2(5.)
They also had the result for CTE estimator, which as follows
Var.. (L(X)1 . (X)X =¢,))
(1-a)’
Zhu and Li (2012) considered the Multivariate Tail Conditional Expectation (TVaR ), and introduced the a strictly
increasing homogeneous function with v (cx) = cy (x) for ¢ > 0. Then they had the first results

J,asn—mo

Jn(C,(n,F",F)—c, (F)—> N(O, J as N — oo

E(X, [y (X)>VaR, (y (X)) o a"fl ES{Z/’S(T(;))VaRp(z//(X)) ,as p—1,

They also gave another result under the certain condition,

[ 9.00dx
E(X,[S>t) =2 fhet
s [a.6¢12)dx

tlog

3. Mixture Uniform Distribution and Other Mixture Distributions.
At first, we consider the simple example. Let F(x)be probability distribution of the equal mixture of the uniform
distributions of U (0,1), U (2,3), and U (4,5) . Then the probability density function is given as the following
1/3 0<x<1
f(x)=41/3 2<x<3
1/3 4<x<5
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It is not hard to find the probability cumulative distribution,

0 x<0
x/3 0<x<1
1/3 1<x<2
F(x)=41/3+(x-2)/3 2<x<3
21/3 3<x<4
2/3+(x—4)/3 4<x<5
1 Xx<5

For p =2/3, then we can easily to find value-at-risk

VaR, (X) = inf{x eR,F(x) 2%} =3

and the tail value-at-risk

1
jVaRu(x)du
TVaR (x) =+
»(X) 1 p
1
I(3u+2)du
=2 =45

1.2
3

Theorem 3.1 Letx <X, <---<x,, and F(x)is the probability distribution of the equal mixture of uniform

distributions U (x,,x, +1) , U(X,, X, +1), ---,U(x,,X, +1). For any p =i, 0<J<n. Then the value-at-risk is
n

given by
VaR (x) =x; +1
and the tail value-at-risk is given by

TVaR, (x) = - n J {nz—nJ +%(ixkﬂ

k=J+1

Proof: Since the probability distribution is equal mixture of uniform distributions, so the probability density
function is given by

(09 =23 1]

where I{E}denotes the indicator function of set E . Then we can find F(x)is the piecewise function and
nontrivial pieces are given by

J
— X, +1<X< X,
F(x)={ D ,J=12,---,n-2
3 XX X, <X<X
n n J+1 J+2

Therefore, for any p = i 0<J<n.
n

VaR, (X) = inf{XE R,F(x)z%}: X, +1
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and

j[VaRu (x)du

TVaR, () = *— ;

1 o (K+1)/n

= (nu—Kk+Xx,,,)du
58, Toweven.

> \

This finish the proof.

Our simple example is the special case of the theorem 3.1 whenn=3,J=2, x,=0, x,=2, and x,=4.
According to theorem for p=2/3,
VaR, (X) =x; +1=X,+1=3

and
8- 2+1( )} =45

TVaR, (x) = 3 [ =3

3-2
The results exactly same as the simple example results.

Theorem 3.2 Let x, <y, <X, <Y, <---<X <Y, , and F(x)is probability distribution of mixture of uniform
distributionsU (x,,y,) , U(X,,Y,), ---,U(X,,y,). Thatis,

n n h
FO)=>k, +x| {[x.y.]}, where >’k =1, and0<k, <1. Forany p=> k., O<h<n. Then the value-at-risk
i i i i=1 i=1

is given by
VaRp (X) = yh

and the tail value-at- risk is given by

2(1_ ) |%:1 (

Proof: Based on the probability density function, the cumulative probability distribution F(x) is the piecewise
function and nontrivial pieces are given as follows

TVaR, (x) =

h
zkizp Yo SX<Xy
FX)=4¢4 ™ ,h=12--n-2

h 1
z k kh+1 . Xh+1 X< Xh+2
h+1 Xh+1

h

Therefore, forany p=> k, 0<h<n.
i=1

VaRp (X) = yh

and

j[VaRu (x)du

TVaR =E
) =
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J+

S
n-1 i-L _
e N [T R
1- PIT kJ+1
2k
= L (Zn:ki(xi—'—yi)J
2(1_ p) i=h+1
This finish the proof.
One of the special cases of Theorem 3.2 is, whenk, =k, =--- =k, =i, Y, =X +1, where i=12,---,n,and h=1J.
n

h
Then p=>k, =%

i=1

TVaR, (x) = 1J (il(xi+xi+1)J
2(1_H) iz N

_ n n—J+£ Zxk
n-J| 2n n\ 5%

This is the Theorem 3.2.

Now we consider another simple example. Let F(x)be the probability distribution of equal probability mixture
of two triangular distribution T(L1) and T(31) . The general triangular distribution T(y;b) is given by the

following definition
The probability density function is

x—(y-b
% y-b<x<y

+b)—x
f,(X)= % y<x<y+b
0 otherwise

Therefore the density function of equal probability mixture of two triangular distribution T (1;,1) and T (3;1) is given
by

x/2 0<x<1

1-x/2 1<x<2

f(x)=9x/2-1 2<x<3

2—-x/2 3<x<4

0 otherwise

and it is not hard to find the cumulative probability distribution is given by

0 x<0
X’ 14 0<x<1
1/2-(2-x)?/4 1<x<2
FOO=11/24(x=22/4  2<x<3
1-(4-x)*14 3<x<4
1 X>4
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Let p= % then we can easily to find value-at-risk

VaR, (x) = inf{XG R,F(x) 2%}: 2

and the tail value-at-risk

Theorem 3.3 Lety, <y, <
distribution T (y,;1) , T(y,:),--

j[VaRu (x)du

TVaR =E
) =

3/4

j(2+2(u 05)°5)du+.|.(4+2(1 u)**)du

— 12 3/4

1
_o(2, 7)1
3 6) 3

VaR (x) =y, +1
and the tail value-at-risk is given by

TvaRp(X)=nEJ{2(n J) (Zykﬂ

k=J+1

--<y,, and F(x)is the probability distribution of the equal mixture of triangular

T(y,1). Forany p= i 0<J <n. Then the value-at-risk is given by
n

Proof: The triangular probability density function of T(y;;1) is given by

fy,;l(x) =

X_(yi_l) yi_lsxsyi
(y, +1)—x y, <x<y +1
0 otherwise

and the corresponding cumulative function is given by

F () =

0 x<y, -1
2
—[X_(ﬁ_l)] y,—1<x<y,
2
1_—[(yi+;)—x] Y. <X<y +1
1 X2y +1

Therefore the mixture density probability function if f(x)=

F(x)

=Y F0

Therefore, for any p = i 0<J<n.
n

VaR, (x) = inf{x eR,F(x) 2%} =y, +1

Z f,.(x)and the mixture cumulative function is

i=1
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and
1
jVaRu(x)du
TVaR (Xx) =
00 =2
n-1 K/n+l/2n 0.5 K/n+l/n 0.5
=LZ .[ yk+1—1+\/ﬁ(u—EJ du+ .[ yk1+1+x/_(w—uJ du
1_i K=J  K/n n K/n+l/2n

(g 2] . 2]
b

This finish the proof.

Our simple example is the special case of the theorem 3.3 whenn=2,J =1, y, =1, and y, =3. According to
theorem 3.3 for p=1/2,

VaRp(x) =y, +1=y,+1=4

And

TvaR, () =27 28D 2|

The results exactly same as the simple example results.

Theorem 3.4 Let y <y, <---<y, ; b>0,i=12---,n; y +b <y, -b ,i=12--,n-1 (this condition

guarantees that triangular distribution are not overlap) and F(x)is the probability distribution of the mixture of

triangular distribution T(y;;b,) , T(y,;b,) , -~ T(y,;b,) . That is f(x):ZkiT(yi,bi) , Where Zkizl,
i=1 i=

h

and0<k, <1.Forany p= Zki , 0<h<n. Then the value-at-risk is given by
i=1

VaR, (x) =inf {xe R,F(x)> p}=Yy, +b,

and the tail value-at- risk is given by

TVaR, (x) = - )Z Sy, + = b)

Proof: Based on the probability density function, the cumulative probability distribution F(x) is the piecewise
function and nontrivial pieces are given as follows

h
Zki =P X< Yha _bh+1
i=1
h _ _ 2
F(X): Zki+kh+1 (X (y;j)z bh+1)) Vo — bh+1<X<yh1 , h:]_,2,...,n_2
i=1 i
\ +b, ., —X)?
Z ki + kh+1 - kh+1 % Yoa SXS Yyt bh+1
i=1 ;
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h
Therefore, forany p=> k, 0<h<n.
i=1

VaR, (x)=inf {xe R,F(x)> p}=y, +h,

and
1
[VaRr, (xdu
TVaR (x) =2
) =
ZkkT &,
n-1 i=1 . )
:% J. (yJ+1 —bJ+1 + \/Ele (u —iki)0.5du + J. (yJ+1 + bJ+1 _ \/Ekbjﬂ (lekl _u)o.sdu
. } y = J i=1
P ;k. J+1 ;kl+% .
_ 1 Z (v, by )k, , bk, ], Z (v, +b, )k, Bk,
1_ p J=h+ 2 3 J=h+ 2 3
1 . 2
=—— > k,(y, +=b,)
(1_ p) J:Zh;l A 3 ?

This finish the proof.

One of the special cases of Theorem 3.4 is, whenk, =k, =---=kK, =i, b, =1, where i=12,---,n, and h=1J.
n

h
Then p=>k, =%

1 1 2
TVaRp(x) = (Z—(yi +—D
(1_‘:1) i n 3

on |12(n=-J3) 1( Y
ﬁ{ n +;(§ka

This is the result of Theorem 3.3.

Example 1: Now let’s consider the Pareto distribution. Consider the equal probability mixture of two Pareto
distributions with parameters o =2, 0 =1a =2,0 =2 respectively. Then we can easily find the mixture
cumulative function

0 x<1
1 1
F(X)=< =——— 1<x<2
) 2 2x°
—iz X=2
2X

Forany 0< psg
VaR, (x)=(@1-2p)™*
For any §< p<l

N3

VaR, (x) = Tg(l— p)

8
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Forany 0< psg

1
jVaRu(x)du
TVaR, (x) =2 =
3/8 1\/5
—05 -0.5
.[(1—2u) du+3.[8ﬁ(1—u) du
- -
=ﬁ[2+4/1—2p]

Example 2: We may also consider more general case of the Pareto distribution. Consider the equal probability
mixture of two Pareto distributions with parameters o >1, 6 =1; o >1,0 = 2 respectively. Then we also can find
the mixture cumulative function

0 x<1
F(x)= 11 1<x<2
2 2x“
1-1*2 X>2
2X°

1 1
Forany O<p<—-
y p 2 2a+1

VaR, (x)=(1-2p) ™

1 1
Forany ————<p«<l1
y 2 2a+1 p

VaR, (x) = (1+2°}'“ (2—2p) ¥

1 1
Forany O<p<—-—
y p 2 2a+1
1
jVaRu(x)du
TVaR_(x) =L
00 =

1/2-1/2%* 1
.[(1— 2u) ™ du + .[(1+ 2‘”)”“ (2-2u)V“du
P

1/2-1/2*"

1-p

_ 1 ( a J{l+(l_2p)1/a+1i|
1-pla-1 2

The first example is the special case of the second example when a = 2. We may get the result

TVaR, (x) =ﬁ[2+1/1—2p]
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Theorem 3.5 Let F(x) is the probability distribution of the equal mixture of n Pareto distribution with

parametersa >1, 6, =1, a>1, 6,=2;---;a>1 6, =n; respectively.

For anyh—u< p SK—M :k=1,2,---,n, the value-at-risk is given by
n nk* n n(k +1)*

VaR, (x) = (1427 +---+k* J'* (k—np)

and the tail value-at-risk is given by

TVaR, (x) :ﬁ(n(aa_l)J{(H 2% 4y ka)lla (k—np) ¥ + (k+1+ 2)(n - k)}

Proof: Based on the probability density function of the Pareto distribution, the cumulative probability distribution
F(x) is the piecewise function and nontrivial pieces are given as follows

F(x)=—-—"""""2 wherek <x<k+1land k=12,---,n-1;
n

The last piece is given by

F(x) =1—1+2+—'&"+n,wherex2n .
nx

kK 1+2%+---+k” kK 1+2%+---+k" .
< < @ O

For any —— < 1k =12,---,n, we set up equation
yn nk* P n n(k +1)* Ped
k 1+2%+---+k”

F(x)=— " ==p
n nx

Then solve the equation, we may have the value-at-risk is given by
VaR, (x) = (1+2% +---+k* J'“ (k—np)

Since the cumulative probability distribution is piecewise function, therefore the integral is the sum of the
integration of those pieces. The first piece and last piece are different from all middle pieces, so

k 142% +-+k*

n  n(k+)*

[@+2 e k) (k=nu) ¥ du

The First Piece = P 7
:L o (]_+2‘X+...+k“)1/a(k_np)’1/“+l_u
1-p\n(a-1) (k +1)“
1 L2

n  n(l+1)*
j(1+ 2% oo+ 1) (1 —nu) ¥ du
142744l

The Middle Pieces ="

1-p

_ 1 a 1+2% +-+-+1 14_ 1 . ’Where|:k+1,2,...,n—l;
1-pla-1 n 1% (D"

10
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1
.[(1+ 2+ +n")*(n—nu) ™ du
427 4-4n”

The Last Pieces = —"1™"

1-p

1 a \1+2°+---+n” 1
a-1

T1- p n ne*
Therefore, the tail value at risk can be found by

jVaRu (x)du

TVaR, (x) = ;

1 a la 1+2% +---+k”
- 1 2a . ka k_ —1/a+1_—
l—p(n(a—l)j{( #2 ke ) (k+1)** }

&1 (o \1+2% 4417 1 1
+,_Zk;11—pka—1j n {l“ (|+1>“'1}

1 a \1+2°+---+n% 1
+
1-p n n“*

1 o a a We /a+l .
oo

I1=k+1

_L a a e Y ian , (K+1+n)(n=K)
_1—p(n(a—1)J{(l+2 +ot k) (k= np) et ) }

a-1

This proved the theorem.

Example 2 is the special case of the Theorem 3.5 whenn=2,k =1, therefore for 0< p <%—% ,
VaR, (x)=(1-2p) ™

and

TVaRp(x) :1 1 ( a J|:1+ (1—2p)1/a+1i|
pla-1 2

The results exactly same as the example 2 results.

Theorem 3.6: Let F(x) is the probability distribution of the equal mixture of n Pareto distribution with

parameters o >1, 6, >0, a>1 6,>0; ---;a>1 6, >0, respectively, and 6, <6,<---<6, , then for
k 0°+60°+---+6° k 0°+0%+---+06° o

any ——— L Lops——— L — : k=12,---,n, the value-at-risk is given by
n no, n no.,

VaR, () = (67 + 6% +---+ 6 “ (k—np) ™ and the tail value-at-risk is given by

TVaR, (x) =~ _1 ; (n(a‘”_ 1)}{(9;‘ +07 40" f'“ (k—np) ¥ + I;e, }

11
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Proof: Based on the probability density function of the Pareto distribution, the cumulative probability distribution
F(x) is the piecewise function and nontrivial pieces are given as follows

k 0°+0%+---+0°

a

F(x)= , whereg, <x<6, ,and k=12,---,n-1;

n nx
The last piece is given by

0 +0" +---+0°

F(x)=1- - ", wherex>6,
nx

k 0°+60°+---+6° k 0°+60"+---+06° )
For any — —— o Laps——— L :k=12,---,n, we set up equation

n no, n no.,

k 0°+60°+---+0°
Fg=——————=p

n nx

Then solve the equation, we may have the value-at-risk is given by
VaR, () = (67 + 67 +---+ 0 ' (k= np)

By the similar method in Theorem 3.5, we have the following;

a 0" +0% +---+0°
The 1° Piece:i @ {(9a+‘9f+"'+9f)u (k —np) Yot — 2 . k}

1-pn(a-1)| o}
The Middle Pieces = ! ( a ng A 11— 11 ,
1-pla-1 n o' 07
where =k +1,2,---,n-1;
0°+0%+---+0°
The Last Pieces = ! g — - 171
l1-pla-1 n 0

Therefore, the tail value at risk can be found by

jVaRu (x)du

TVaR, (x) = ;

u 0" +0% +---+0°
1 «a (6% +6° +-- 407 J“ (k—npy Ve - 2% T
1-pn(e-1| * = ‘ O

G 1 (o \0I+07+-407 1 1
+21—F’W—J n {9 0.0:11}

I=k+1

1 a 0 +0"+--+07 1
+1_ a-1
p n 0
1 o la -
=— 0° +0°“+---+0° ) “(k—np) Y+ ) 9
l_p(n(a_l)j{(l 02 =) Z.}

I=k+1

a-1

This proved the theorem.

When we substitute 6, =k fork =1,2,---,n, we will get the result of Theorem 3.5.

Theorem 3.7: Let F(x)is the probability distribution of the arbitrary mixture of n Pareto distribution with
parametersa >1, 6, >0; a>1, 6,>0; ---;a>1 6, >0; respectively, andf, <0, <---<0, .

12
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That is F(x) = Z k.F, (x), where Z ki=1,and0<k, <1, and F,(x) is the cumulative probability distribution of the
i=1 i=1

Pareto witha >1,6, >0; where i=12,---,n. Then for ankaj—kg - +k9 <p<2k —Jlo—;rkg

=1 i+l

i=12,---,n-1, the value-at-risk is given by
VaR (x) = (kO +k,0% +--+k o7 f'“ Ok, — p)
j=1

and the tail value-at-risk is given by

TVaR, (X) —i— (k6" +k,67 +- +k0“)”“(2k p)*“(“1+2k]91
p a— 1 j=1 j=i+l
Proof: By the similar method of Theorem 3.6, we can prove the results. The Theorem 3.6 is the special case of
Theorem 3.7 when k =k, =---=k, 1 and i=k .
n
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