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Abstract 
 

We will introduce the methods by which we change the tangles into braids. We will explain these changes to 
convert tangles to braids. The matrices representing these changes will be discussed. 
 

Keyword: braids, tangles  
 

Introduction 
 

Conway developed tangle theory and invented a system of notation for tabulating knots, nowadays known as 

Conway notation. Tangle theory can be considered analogous to knot theory except instead of closed loop we use 
string whose end are nailed down. Tangles have been shown to be useful in studying DNA topology. Braid groups 

were introduced explicitly by Emil Artin in 1925, although (as Wilhelm Magnus pointed out in 1974) they were 

already implicit in Adolf Hurwitz's work on monodromy (1891). In fact, as Magnus says, Hurwitz gave the 

interpretation of a braid group as the fundamental group of a configuration space (cf. braid theory), an 
interpretation that was lost from view until it was rediscovered by Ralph Fox and Lee Neuwirth in 1962. 
 

Definition 1 
 

Let D be a unit cube, so D={(x,y,z):0<x,y,z<1} on the top face of cube place n points  a1,a2,…,an similarly place 

on bottom face b1,b2,…,bn, now join the points a1,a2,…,an with b1,b2,…,bn by arcs d1,d2,…,dn these arcs are 

disjoint and each di connects some a j to bk not connect aj to ak or bj to bk this called tangle[1]. 

 
 

2001 Mathematics Subject Classification, 51H10, 57H10 

*Mathematics Department, Faculty of science, Tanta University, Tanta, Egypt 

**Mathematics Department Faculty of science, Al-Azhar University, Egypt 

http://en.wikipedia.org/wiki/Emil_Artin
http://en.wikipedia.org/wiki/Wilhelm_Magnus
http://en.wikipedia.org/wiki/Adolf_Hurwitz
http://en.wikipedia.org/wiki/Monodromy
http://en.wikipedia.org/wiki/Braid_theory
http://en.wikipedia.org/wiki/Ralph_Fox
http://en.wikipedia.org/w/index.php?title=Lee_Neuwirth&action=edit&redlink=1


© Centre for Promoting Ideas, USA                                                                                 www.ijastnet.com 

130 

                                                                         

Definition 2   

Let M and N be two. Riemannian manifolds (not necessarily of the same dimension), a map ƒ: MN is said to be 

an isometric folding of M into N if, for piecewise geodesic path β: I M (I= [0, 1] R), the induced path ƒ0β: 

IN is piecewise geodesic and of the same length as β. If ƒ not preserve lengths then ƒ is topological 

folding[2,3,5,6].  

   

Definition 3 

Let M and N be two Riemannian manifolds of the same dimensions, then a map  g: MN is said to be an 

unfolding of M into N if, for every piecewise geodesic path β: IM (I= [0, 1] R), the induced path g0β: IN 

is piecewise geodesic but with length greater than that of β i.e.  x,yMd(x,y)  d(g(x),g(y))[3]. 

                  

Main Results: 

In this paper we will discuss how we can inter change the tangle to be abraid, also the local properties of the fiber 
will be discussed.  

 

 A braid is special case of tangle. 

 Any horizontal line must be intersecting with strings of braid at one point. 

 

 

Cases of converting tangle to braid:  

 

Case 1: 
Conversion due to unfolding of fiber: 

     
 

 

Fig (1-1) 

 
 Fig (1-2) 

       

 
  

                                      

 

X 
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Fig.(1-3) 

   

 
(4-1Fig ( 

 

 
Fig.  (1-5) 
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Case 2: 

Conversion due to change position of vertices. 

 

 
 

                                        
 

(1-2 )Fig. 

 

 
Fig. (2-2) 

 

 

 
Fig. (2-3) 
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If we have tangle of n fibers, one of them doesn't contain tangle, we can express the other fibers by it. 
                                                                                                                                                                        

   Example: 
 

 

                                                                                                              
   . 

Inner vertices of tangle: 
 Inner vertices of tangles either connected or disconnected.  

  

Tangle which its inner vertices are connected as previous figure, and another type as shown in the following 
figure.  

 

  
 

 

 We can be introduced simple graphs from this tangle   . For example, say if we want to cross from C to A 1 we 
have four ways these ways can be expressed by simple graph.Similarly if we want to cross from any vertex to 

another we have many ways these ways can be expressed it by graphs.  

 
 

We now are talking about graphs from C to A1. 

 

 

 

Inner vertices are connected 
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                                                                                                                                                First way:  
The graph of this way is:  

   

C---> C1--->B1--->A1 

 
G1(V1,E1) 

 

  

                                                                                                    

Second way is: 

 

 C--->B--->B1--->A1 
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G2(V2,E2) 

  

    

   Third way is: 

 

C--->B--->A--->A1 

                               

 

 

 G3(V3,E3) 
  

 

 

 

 :Furth way is 

C--->A--->A1 
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G4(V4,E4) 

 

 

 

 
 

 

Adjacency and incidence matrices: 

 

 
 

 

  , I [T]    =

0 1 1 0 0 1 0 0

1 1 0 0 0 0 1 0

1 0 1 0 0 0 0 1

0 0 0 0 1 1 0 0

0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 1

 
 
 
 
 
 
 
 
 

                    A [T] =        

0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

1 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0

 
 
 
 
 
 
 
 
 

                  

 
               

                                                 

  
 

A [G1] = 

0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

 
 
 
 
 
 

                      , I [G1] = 

0 0 1

1 0 0

1 1 0

0 1 1

 
 
 
 
 
 
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A [G2] = 

0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

 
 
 
 
 
 

, I[G2] =      

0 0 1

1 0 0

1 1 0

0 1 1

 
 
 
 
 
 

 

 

 
 

A [G3] = 

0 1 1 1

1 0 1 0

0 1 0 0

1 0 0 0

 
 
 
 
 
 

                 , I [G3] = 

0 1 1

1 1 0

1 0 0

0 0 1

 
 
 
 
 
 

 

 
 

  

 
 

                               

     I [G4] =   , A [G4] = 

 

  

Now we explain conversion from graph whose edges are tangle 
into graph whose edges are braids .This conversion may occur by 

changing the position of vertices or unfolding fibers. 

 
 

 

 
                             

                     
             

Now we study incidence and adjacency matrices. 

 

A [G] = , I [G] = 
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If we have a tangle consists of three fibers. Now we want to convert it into braid by changing on every fiber and 

studying the matrices on every change. 

 
 

 
     T 

 T1 
  

 

 
 

A [T] =     , I [T] = 

 
 

 

 

A [T1] =     , I [T1] = 

 

 
 

This tangle produced due to change of two fibers. Now We are studying the matrices of new tangle. 
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T2 

 
 

  

A [T2] =     , I [T2] = 

  

  

 
  

If we change on the third fiber, in this case we can say we convert the tangle into braid. 

 B 

  

 The matrices of the braid are: 
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 A [B] =     , I [B] = 

 

 
Now we represent the matrices of tangles and braids. We express the identity element of tangle which hasn’t any 

roll by 1
0
 and the tangle which has any number of rolls by 1

i
 where (i=1, 2, 3…).the identity element of tangle 

which has any number of curves by1rwhere (r=1, 2, 3…). 

 

 
 
 

, I [T] = A [T] = 

 

 
  

 

, I [T] = A [T] = 
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, I [T] = A [T] = 

 

 
 

 

 

 

, I [T] = A [T] = 
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, I [T] = A [T] = 

 

All these cases when we have one fiber. If we have n fiber then the identity element can be express by 1
s
 where 

(s=2, 3… n). 

 
 

, I [T] = A [T] = 
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A [T] =  , I [T] = 

   

Elementary tangles: 
Elementary tangles are: 

  
                     Operations on tangle: 

Tangles can be combined and modified by a unary operation a---> -a and there are 

three binary operations,sum,product,ramification, taking tangles a, b to new tangles 

a +b, ab, and (a, b).Here –a is the image of a under reflection NW-SE mirror, a+b is 

obtained by placing a and b side by side with a on the left and b on the right. 
ab is equivalent to (-a) +b, and finally a, b is equivalent to (-a) + (-b).  The resulting object a+ b is obtained by 

gluing NE of a to NW of b, and SE of a to SW of   b. 

Similarly product and ramification [4].        

 

 

     0 

 

 

      1 

 

      1- 
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Adjacency and incidence matrices: 

 

        , I[a] =           A[a] =     

                                                                                                                                                                               

 

 

        ,     I [a
-
] =A [a

-
] =  

 

 
 

  ,        I[b] =A[b] =  

 
 

  , I [a+b] = A [a+b] = 

 

 

  , I [a
-
+b] = A[ab] =A [a

-
+b] = 
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