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Abstract 
 

Despite substantial research on various aspects of velocity distributions in curved meander rivers, no systematic 

effort has yet been made to establish the relationship between the dominant meander wavelength, discharge and 

the velocity distributions. In this research the secondary current theory is used in investigating the wavelength of 

a meander when it just emerges in a river channel. Rate of meander growth and downstream migration velocity is 
also investigated. To achieve this, a small-perturbation stability analysis is developed for investigation of the role 

of the secondary current accompanying channel curvature in the initiation and early development of meanders in 

open channels. Equations of the transverse velocity profile are analyzed. Since the magnitude of the vertical 
velocity is negligible compared   to the transverse velocity in secondary currents, this study concentrates on the 

transverse velocity which is the radial component of the secondary current. This formulation leads to a linear 

differential equation which is solved for its orthogonal components which give the rates of meander growth and 
downstream migration. It is found that the amplitude of the meanders tends to increase and that the meanders 

migrate downstream.  
 

Keywords: Secondary flow; Dominant wavelength; Meander growth; Celerity 
 

Nomenclature 
 

b   Channel half –width 

rC   Correction factor  

F   Froude number 
 f  Darch-Weisbach friction factor 

H  Average water depth  

WH  Depth-width ratio 

k  Wave number  

L  Meander wavelength 

n  Manning’s roughness coefficient 

Q   Discharge  

dQ  Dominant discharge 

lQ  Lateral discharge  

 

_____________ 
 

*  Research sponsored by H.E.L.B-Kenya 
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R   Hydraulic radius,  

u   Depth-averaged longitudinal velocity 

*u   Shear velocity at the bottom 

GV   Rate of local displacement of the centroid of the elemental   

                              Control volume of length ds .  

x  Coordinate distance along the unperturbed channel axis 

  Positive dimensionless constant 

   Von Karman constant 

 

Introduction 
 

The meandering of the rivers has been a central concern in geology and civil engineering for many years, not only 

because channel migration has practical implication on the land, sediment budget and navigation, but also because 
explanation and prediction of meandering process has remained elusive. Allan (2009) argued that when flow 

enters a channel bed, a helical secondary current is set up that increases flow velocity and channel depth along the 

outer bank in proportion to bed curvature, which encourages bank erosion. The secondary current has an intrinsic 

downstream scale related to flow velocity and depth; this results in gradual increase in bend amplitude and 
propagation of the meandering pattern upstream and downstream. Alexander (2012) noted that flow through a 

bend involves balancing gravitational and frictional forces by additional centrifugal force. This force increases the 

water-surface elevation at the outer bank and decreases it near the inner bank thereby maintaining the pressure 
difference that drives the flow laterally. High-momentum water in the near surface region moves from the central 

region of the flow toward the outer bank where it descends downward. Low-momentum water in the near bed 

region moves from the outer bank toward the inner bank and upward. Peter and John (1984) used secondary 

current theory to prove that dominant meander wavelength is directly proportional to the square root of hydraulic 
radius, channel width and inversely proportional to channel roughness. Anderson (1967) emphasized on the 

importance of channel width, depth and Froude number in determining the dominant wavelength.  
 

Braudrick et al., (2009) argued that experimental meander migration is faster as compared to most natural 

channels. Channel migration that involves alluvial river meander and planform deformation is a major 
consideration in designing bridge crossings and other transportation facilities in affected areas. It causes the 

channel alignment and approach conditions present during construction to deteriorate as the downstream channel 

location changes.  
 

Ferro and Porto (2012) noted that identification of the value of dominant or bankfull discharge has been a subject 

of great challenge to scientists and engineers during the last decades. This is because the value is largely adopted 
for stream-management decisions like predicting stable slope upstream of grade-control structures, designing 

moderate to large sized hydraulic structures and forecasting flooding in a river channel. Mozaffari et al., (2011) 

noted that the presence of strong secondary currents and their interaction with the topography of the channel bed 

in river bends have significant effects on the distributions of longitudinal and transverse velocity and 
consequently the shear stress across the width and length of a bend. However there is no mathematical model that 

has utilized secondary current theory to relate channel topography (e.g. meander wavelength and meander 

amplitude) with velocity distributions (e.g. depth-averaged velocity, longitudinal surface velocity and bed shear 
velocity).  A mathematical model relating dominant wavelength with dominant discharge and velocity distribution 

has also not been obtained. Therefore the main purpose of this investigation is to address the above two issues. 
 

Analytical model 
 

A channel with a finite value of the radius of curvature is considered. The radius of curvature assumes an 
infinite value where the channel is straight. The analysis of flow in curved channels as  presented  herein  is  

restricted  to  subcritical  flow with hydrostatic pressure distribution and the channel depth is assumed to be much 

less than the width and the radius of curvature. This is mostly observed at the lower course of a river channel. In 

deriving the equation of motion, a differential element of fluid in polar coordinate system is used as shown in 
figure 1. 
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Figure 1; Transverse Velocity Profile in curved Channel 
 

Won and Young (2010) used force-momentum equations in polar cylindrical coordinates to relate the 

longitudinal velocity ( u ), transverse velocity ( v ), vertical velocity ( w ), the longitudinal slope ( S ), transverse 

water surface slope (Sr), transverse shear stress (τr), Longitudinal shear stress (τ s) and radius of curvature ( r ) as 

follows: 

su u u u uv
u v w gS

t s r z r z





   
      

    
                                                    (1) 

2

r
r

v v v v u
u v w gS

t s r z r z





   
     

    
                                                        (2) 

For steady flow, the time derivatives 
u

t




and 

v

t




in equations (1) and (2) can be dropped. Also second order terms

v
w

z




,

u
w

z




, 

v
v

r




, and

 

uv

r
 can be eliminated because v  and w are small compared with u . Substituting all 

these in equation (2), yields; 
2

r
r

v u
u gS

s r z






  

 
        (3) 

 

Equation (3) represents fluid motion in the transverse direction. The mechanism of secondary flow development 

can be described by each term of Eq. (3). The left-hand side in Eq. (3) is longitudinal variation of transverse 

velocity. In the right-hand side, the first term represents centrifugal acceleration, the second term represents the 

transverse water-surface slope and the third term represents the turbulent shear. From equation (3) the transverse 

water surface velocity ( sv ), longitudinal water surface velocity ( su ) and radius of curvature from centerline of the 

channel ( cr ) are related as; 

                                                                   (4) 

 

Baek et al., (2006) noted that;  

*2r
s

z H

u
v

z H

 





 



                                                                     (5) 

2

r

c

u
s

gr
                                                                                                 (6) 

Substituting (5) and (6) into (4), yields; 

                                                                  (7)  
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Henderson (1966) observed that;  

1su m

u m


                                                                                                   (8) 

Where m  is the friction term in steady flow which is defined as; 
1

6R
m

n g


                                                                                          (9) 

Substituting equation (8) into (7) and since 
sv  is a function of s  only, it yields; 

*2 1 (2 1)

( 1) ( 1)

s
s

c

dv m u u m
v

ds Hu m r m m

   
    

    
       (10)

  
 

Since meander initiate in a river channel at a very large value of radius of curvature (r), the transverse slope 

according to equation (6) is almost negligible and therefore the channel cross-section can be assumed to be 

rectangular when meander just forms in a river channel. The channel-alignment perturbation will be taken to be a 
migrating sinusoid as shown in the figure 3 
 

 
 

Figure 3: Sinusoidal Perturbation 

 
According to Peter and John (1984), the perturbation displacement from the convex bank to concave bank is 

given by;  

( , ) ( )sin ( )x t A t k x ct            (11) 

2
k

L


            (12) 

Peter and John (1984) observed that; 
2

2

1

c

d

r dx


             (13) 

Substituting (11) into (13) yields; 

21
sin ( )

c

k A k x ct
r
      (14) 

Substituting (14) into (10) yields; 
2

*2 (2 1)
sin ( )

( 1) ( 1)

s
s

dv m u k Au m
v k x ct

dx Hu m m m

  
   

         (15) 
Equation (15) is linear ordinary differential equation. The solution of this equation that is periodic and 

independent of the initial condition is: 

2 2

1
2 2 2 2 2 2 2 2

*

1
(2 )

sin

4 ( 1)

s

k Hu A
mv k x ct

k
m u k H u m




 
   

 
    

       (16) 

 Where  
*

( 1)
tan

2

Hu m k

m u






          (17) 
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The phase shift (  ) must vary between zero and pie because the primary flow is assumed to be stronger than the 

secondary current. The velocity of secondary current attains maximum when the phase shift is approximately 

equal to 0.5  . This happens when the inertial term is dominant over the friction term. The velocity of secondary 

current is in phase with the channel axis displacement when the phase shift is approximately equal to zero. Peter 

and John (1984), argued that as the control volume moves laterally in a curved river channel, the difference 

between the rates of these processes at the concave and convex banks is given by; 

l
G

dQ
V

ds
            (18) 

Since the channel centerline is curved, the centroid of the central volume is not at mid width of the channel, but is 

displaced toward the concave bank, the displacement being inversely proportional to the radius of the curvature. 

Peter and John (1984) argued that for a rectangular channel cross-section, the displacement is
3 c

b
r

 . They 

obtained the rate of lateral migration as; 
2 3

23
G

b
V

t t x

  
 
  

   (19) 

They also argued that the rate of differential erosion-deposition across the channel is proportional to the rate of a 

fictious lateral transport of sediment from the outer to the inner bank. Therefore; 

l
s

dQ
V

ds
    (20) 

Substitution of (20) into (18) yields; 

G sV v    (21) 

Substitution of (21) into (19) yields; 
2 3

23
s

b
v

t t x

 


 
 

  
   (22) 

Substitution of (11) and (16) into (22) and simplifying yields: 

2 2

12 2
2 2 2 2 2 2 2 2

*

1
2 sin

1
cot ( )

1 4 ( 1) sin ( )
3

k Hu k x ct
dA m k

kc k x ct
A dt b k

m u k H u m k x ct




   
     

     
 

        
 

   (23) 

Integrating equation (23) and simplifying it yields; 

2 2 2

1 1 12 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 22 2

* *

1 1
2 sin 2 (cos )

ln 1 ln sin ( )

1 4 ( 1) 1 4 ( 1)
3 3

kHu k Hu t
m m

A C k x ct
b k b k

m u k H u m C m u k H u m

   
    

     
        

    
                 

    

 (24) 

Equation (24) is satisfied if; 

2

12 2
2 2 2 2 2 2 2 2

*

1
2 sin

1 4 ( 1)
3

kHu
m

C
b k

m u k H u m

 
 

 
 

 
       

 

    (25) 

Therefore equation (24) reduces to;  

 2 2

1 12 2
2 2 2 2 2 2 2 2

*

1
2 cos

ln

1 4 ( 1)
3

k Hu t
m

A C
b k

m u k H u m

 
 

 
  

 
       

 

   (26) 

Since at 00, ,t A A  equation (26) simplifies; 

  2
*

0 2 2 2

2 2 1 sin
exp

( 1) 1 tan

m u
A A t

H m

 

 

   
   

   

   (27) 
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Where 
2 2 2 2

2 *

2 2 2

4

3 ( 1)

m u b

H u m






 and 

2 2 2
2

2 2 2 2 2 2 2

*

( 1)
sin

4 ( 1)

H u m

m u k H u m







  
 

Equation (27) therefore simplifies to; 

  
 

0

3 2 3 2

* 2 2 2
2 2 2 2 2 2 2 2 2 2 2*

*2

1
exp 8 2 1

4
( 1) 4 ( 1)

A A m t m u Hu
m u

H u m m u k H u m
k





 
 
   
  

      
  

 (28) 

The exponent in equation (28) is positive for all k. Therefore the amplitude of the sinusoidal perturbation 

increases exponentially with time. 
It is observed in equation (28) that the exponent tends to zero again for k=∞. However there is a dominant wave 

number for which the rate of growth is maximum. The dominant wave number for which the rate of growth is 

maximum is observed when 
2

0
A

t k




 
. Substituting this in (28) and simplifying yields.  

1

2tan 


  Where 0 <   ≤ π/2   (29) 

Substitution of (17), into (29) yields; 
1

2
*12

( 1)

m u
k

Hu m b

 
  

 

    (30) 

Equation (30) defines the dominant wave number. Substitution of (12) into (30) yields; 
1

2

*

2 ( 1)

3

bHu m
L

m u

 

  
 

    (31) 

Substitution of (10) into (31) yields; 
1

2

*3

sBHu
L

u

 

  
 

    (32) 

where 2B b . Since Q BHu equation (32) simplifies to; 
1

2

* 3

sQu
L

u u

 

  
 

    (33) 

Therefore the predicted/dominant meander wavelength as a function of dominant discharge is given by equation 
(33). Substitution of (30) into (17) and then (8) yields; 

1

2

*

3
tan w sH u

u


 
    

    (34) 

Making   the subject in (34) yields; 

1

2
1

*

3
tan w sH u

u
 

 
    

 where, 0
2

     (35) 

Substitution of (30), into (25) and after some algebraic manipulations yields; 

)1(

sin)12( 4






mm

mu
C


    (36) 

According to Won and Young (2010), 1

*( )m u u  while Francisco (2010) noted that 
* 0.354u u f  and therefore 

0.51.131m f  . Substituting all this in equation (36) yields. 

1884.0

sin)2884.0(
5.0

4






f

fu
C


    (37) 
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Equation (37) defines the migration velocity of the meander pattern which is also called the celerity (C).  

Substitution of (30) into (28) and after some algebraic manipulations, equation of the amplitude of the dominant 

wave is obtained as follows; 

 2 4

0 2 2

*

6 2 1 (cos )
exp

Hu m t
A A

m B u

 



    (38) 

Since 
0.51.131m f  equation (38) simplifies to; 

 2 1 4

0 exp 37.529 cos 2.262A A HuB f t     
 

   (39) 

 

Results and Discussion 

The foregoing analysis demonstrates that secondary currents produced by small periodic perturbations in the 
alignment of an otherwise straight channel can cause the amplitude of the perturbations to increase with time, and 

produce downstream migration of the resulting meanders. The stability analysis is linear and it’s therefore 

applicable only to small-amplitude meanders.  It’s observed from equation (32) that the predicted/dominant 
wavelength (L) at which meandering occurs is proportional to square root of the ratio of longitudinal surface 

velocity to bed shear velocity. This is the ratio at which meandering occurs and it therefore reduces as meandering 

process continues. This ratio can only be maximized if the shear velocity is minimized and longitudinal surface 
velocity is maximized. It is observed from equation (37) and (39) that channel roughness increases as meandering 

process continues. This is in agreement with the existing theory since more alternate bars and ripples which 

causes an increase in roughness forms as meandering process occurs. Hence there is a need to determine the ratio 

of longitudinal surface velocity to shear velocity at which meandering occurs. 
 

Several laboratory experiments have been conducted to determine the dominant wavelength (L). Based on 

equation (32) the flume experimental results obtained by Anderson et al., (1975) were used to determine the 
above ratio. This was done by rearranging equation (32) to get;     

2

*

2 3s

u BH

u L




     (40) 

Anderson et al., (1975) presented a data from 167 laboratory flume experiments which were carried out by nine 

groups of researchers. To determine the ratio *

s

u

u
the results from the same flume type (S-E) were used to avoid 

errors that might arise by using results from different flume types. The mean value was found to be 0.01. Hence 

*

100s
r

u
U

u
  .    

 Substituting the above mean in equation (32) and taking 0.4  (Helmut, 2012) yields; 

37.74KEL BH     (41) 

 Equation (41) gives the approximate predicted/dominant meander wavelength  KEL obtained from experimental 

flume data. 

Due to errors that occur in any experiment, simulations were carried out using MATLAB version 7.9 to 

determine again the ratio of 

*

s
r

u
U

u
  at which meander forms in a river channel. Using equation (32),  figures 3a 

and 3b were obtained for different values of channel breadth (B) and depth (H) 
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Figure 3a; Predicted Wavelength (L) against the Ratio of Longitudinal Surface Velocity to Shear Velocity; 
B=0.4917 and H=0.00809 

 

 
 

Figure 3b; Predicted Wavelength (L) against the Ratio of Longitudinal Surface Velocity to Shear Velocity; 

B=127.1 and H=8.2. 
 

It’s observed from figures 3a and 3b that the channel remains straight beyond point B. From B to A, meandering 
takes place. From A to O, braiding is observed. Meandering therefore forms in a river channel at a maximum 

value of rU being 200 and the minimum value being 100. The average value of rU at which meandering forms is 

therefore 150. Therefore river channel will remain straight when 200rU  , transition from straight to meandering 

occurs when150 200rU  , meandering occurs when 150rU   transition from meandering to braiding occurs 

when100 150rU  and braiding occurs when 100rU  . Therefore as rU  decreases, the channel pattern 

changes from straight to meandering and then from meandering to braiding.  
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This is because of the fact that 
rU can only reduce when 

*u increases and according to Francisco (2010) the 

friction factor will also increase. An increase in friction factor causes more resistance to the flow and hence 

deposition which leads to formation bars that forms braiding.    
 

Substitution of the average value of 
rU  (150) into equation (32) yields; 

46.23
AKSL BH      (42) 

Substitution of the maximum value of 
rU  (200) into equation (32) yields; 

53.38
MKSL BH     (43) 

 

There is need to determine the best model from the three obtained above for the purpose of predicting the 

meander wavelength small amplitude (laboratory experiments) meanders. The models will also be compared with 

what has been obtained by other researchers.  
 

For small amplitude meanders, models as obtained in equation (41), (42) and (43) were tested using the Anderson 
et al., (1975) experimental results given in table 2. This is summarized in table 1 below. The results are also 

compared with what was obtained by Hansen (1967), Anderson (1967) and Peter and John (1984). All results are 

compared with the observed meander wavelength (
mL ). To determine the most accurate model that can predict 

the meander wavelength for small amplitude meanders, figures 4and 5 are drawn using the results in table 1. 
 

Table 1:  Comparison of the Predicted and the Measured Experimental Wavelength 
 

Run Number M-1-2 M-1-3 M-1-5 117 118 119 126 

Width (cm) (B) 107 136 123 44.35 42.75 49.17 41.70 

 Depth (cm) (H) 1.50 1.77 1.75 .773 .789 .809 .957 

Froude No. (F) .227 .280 .314 .741 .852 .803 .572 

Pattern M M M M M M M 

Resistance(Chezy) 0.0974 0.0569 0.0481 0.0147 0.0102 0.0110 0.0182 

Sediment discharge - - - 1.40 2.50 1.44 0.57 

Observed Wave 

Length (
mL ) 

4.91 4.59 6.07 2.8 3.0 3.0 3.9 

156HL Hf   
1.03 2.09 2.45 3.54 5.19 4.94 3.54 

1

2 2AL HBC   
1.44 2.31 2.37 1.72 2.04 2.13 1.66 

72AL HBF  4.34 5.91 5.92 3.63 3.89 4.10 3.42 

120 0.5PJL RBf   
1.99 3.19 3.28 2.37 2.81 2.94 2.30 

37.74KEL BH  
4.78 5.86 5.54 2.21 2.20 2.38 2.38 

46.23
AKSL BH

 

5.86 7.17 6.78 2.71 2.68 2.92 2.92 

53.38
MKSL BH

 

6.76 8.28 7.83 3.12 3.10 3.37 3.37 

 

HL -Predicted wavelength by Hansen (1967). AL and 2AL -Predicted wavelength by Anderson (1967). PJL -

Predicted wavelength by Peter and John (1984). KEL ,
AKSL and

MKSL - Predicted wavelength by Kaguchwa, 

Kwanza and Gathia.  

To determine the most accurate model that can predict the meander wavelength for small amplitude meanders, 
ORIGIN software was used in drawing figures 4 and 5 using the results in table 1. 
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Figure 4: Dominant wavelength against depth for small amplitude meanders 
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Figure 5: Dominant wavelength against breadth for small amplitude meanders 

 

It’s observed from figure 4 and 5 that 46.23
AKSL BH

  
is the best model in estimating the dominant 

wavelength for small amplitude meanders and more so the laboratory experiments. However, a large deviation of 

the predicted wavelength (
AKSL ) and the measured wavelength  mL is observed in H1, H2 and H7 in figure 4 and 

also in B1, B2 and B7 in figure 5. The deviation in H7 and B7 is due to a sharp decrease in sediment discharge. 

The same could have caused the deviation in H1, H2, B1 and B7. Leopold et al., (1964), Solari et al., (2002) and 
Fagherazzi et al., (2004) noted that at smaller scale, channel meander bends are formed as a result of sediment 

transport processes.  

Substituting 
*

150su

u
  in equation (33) yields; 

46.23
A

d
KS

Q
L

u
           (44) 
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After evaluating the dominant wavelength, the dominant discharge can be evaluated using equation (44) for a 

given value of the average velocity. 

To obtain detailed information on how different flow parameters relate with one in determining whether meander 

growth dominates meander migration and vice versa, the ratio of meander growth rate  dA
dt

 to meander 

migration velocity (C) is calculated. 
Differentiating (38) with respect to t and dividing with (36) yields;  

*21

s

u AdA

C dt Hu


            (45) 

It’s observed from equation (45) that the ratio increases with decrease in depth and vice versa. Therefore shallow 

channels will exhibit a strong tendency to grow than to migrate. Very deep channels will exhibit a strong tendency 
to migrate than to grow. Very rough channels will exhibit a strong tendency to grow than to migrate while smooth 

channels will exhibit a strong tendency to migrate than to grow. 
 

Conclusions 
 

Analytical Models were developed to investigate the role of secondary flow in the initiation and early 

development of river meandering. The model 46.23
AKSL BH  is the best in estimating the dominant meander 

wavelength. Any discharge exceeding the calculated dominant discharge will automatically cause flooding. The 

obtained dominant wavelength, discharge, rate of meander growth and celerity models obtained in this research 
should be seriously considered by the engineers when constructing roads and bridges in a region of an unstable 

channel. The amplitude of a small sinusoidal perturbation in the alignment of an initially straight channel tends to 

increase exponentially with time. Analytical expressions were also developed for the rate of amplitude growth and 
the velocity of meander migration. Shallow channels were found to exhibit a strong tendency to grow than to 

migrate. Very deep channels will exhibit a strong tendency to migrate than to grow. Very rough channels will 

exhibit a strong tendency to grow than to migrate while smooth channels will exhibit a strong tendency to migrate 

than to grow. Although the models were generated for a small-perturbation analysis, they are found to be in good 
agreement with measured wavelengths of meandering river channels. The results of the analytical model are also 

in agreement with experimental data on meandering streams. It’s therefore noted that secondary currents play a 

major role in the initiation and development of meanders. The theory developed has provided a hydrodynamic 
explanation of meandering process. 
 

Appendices 
 

Experiments from Multi-Purpose Channel and Tilting Flume Experiment  
 

Table 2:  Experimental Results obtained from multi-purpose channel and tilting flume. 
 

Run Number M-1-2 M-1-3 M-1-5 117 118 119 126 

Width (cm) (B) 107 136 123 44.35 42.75 49.17 41.70 

 Depth (cm) (H) 1.50 1.77 1.75 .773 .789 .809 .957 

Froude No. (F) .227 .280 .314 .741 .852 .803 .572 

Resistance (Chezy) 0.0974 0.0569 0.0481 0.0147 0.0102 0.0110 0.0182 

Sediment discharge - - - 1.40 2.50 1.44 0.57 

Observed Wave 

Length (Lm) 

4.91 4.59 6.07 2.8 3.0 3.0 3.9 

 

Source: Anderson et al., (1975) 
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