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Abstract 
 

Earthquakes that have occurred worldwide during the period of 1896 to 2009 with magnitude of 8.0 or greater on 

the Richter scale are assumed to follow a Poisson process. Several autoregressive integrated moving average 

(ARIMA) models with different time steps are proposed to predict the occurrences of large scale earthquakes by 

fitting the model with a sequence of empirical recurrence rates (ERRs) time series. The last five or ten data points 

are used as prediction sets to check the predictive ability of the candidate models developed by the time series 

modeling techniques. For a full scale forecast, the best fitted model predicts a total number of 12 large scale 

earthquakes in the next 6 years worldwide. The application of ERR based ARIMA models to long-term earthquake 

prediction not only serves as a linking bridge between point processes and the classical time series but also 

extends the usage of statistical methods to a wide area of natural disaster predictions. 

 
 

Introduction 
 

On January 12, 2010, a 7.0 magnitude earthquake hit Port-au-Prince, Haiti. The earthquake lasted one minute, just 

enough time to kill thousands of people and destroy numerous buildings. According to the government’s estimate, 

200,000 people were killed, 250,000 were injured, and consequently, 1.5 million people became homeless. On 

February 27, 2010, a magnitude of 8.8 earthquake occurred off the coast of the Maule Region of Chile, which 

lasted 90 seconds. Six Chilean cities experienced intense vibrations. The earthquake triggered a tsunami which 

devastated several coastal towns in south-central Chile and damaged the port at Talcahuano. Large earthquake, as 

is pointed out in Mogi (1985), occurs unexpectedly and sometimes inflicts enormous damage, and earthquake 

prediction is not only an extremely fascinating topic in seismology but also its ultimate goal.  In recent years, 

tremendous progress has been made toward this goal in a wide range of research area of earthquake prediction and 

hazard assessment (e.g., Bakun et al. 2005, Felzer et al. 2003, Helmstetter et al. 2006, Hong and Guo 1995, 

Jackson and Kagan 2006, Kagan 1993, Savage and Cockerham 1987, and references therein).  
 

In this study, we use the earthquake data worldwide from 1896 to 2009 with magnitude greater than or equal to 

8.0 on the Richter scale and assume that they follow a Poisson process. We then construct a discrete time series 

based on the empirical recurrent rates (ERRs) of the assumed Poisson process, computed sequentially at 

equidistant time intervals during the observation period. The time-plot of the ERRs, referred to as the 

“fingerprint” or the ERR plot, offers the possibility of further insight into the data and provides a technical basis 

for model developments for the earthquake data. The three main objectives of this study are: (i) convert point 

process to ERR time series, (ii) fit the time series data into the ARIMA model (to be defined later), and (iii) 

develop methods to retrieve the counterparts of the predicted ERRs. 
 

Theory and Method 
 

Empirical Recurrence Rate (ERR) 
 

Let Ntt ,...,1  be the time of the N-ordered earthquakes during an observation period of )0,( 0t . If  0t  is adopted as 

the time origin and  h  as time step then { }z
l

, a discrete time series generated sequentially at equidistant time 

intervals ,
o

t h+  0 2 ,t h+ ,K 0t Nh+ (= 0 = present time), can be regarded as observations at times lhtt l += 0 , 

l=1, 2, …, N  for the earthquakes to be modeled.  
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A key parameter in the modeling is the recurrence rate of the targeted earthquake data. The time series based on 

the ERRs  (Ho 2008) is generated as follows: 
 

0 0total number of earthquakes in ( , )
,l

l

n t t lh
z

lh lh

+
= =     1, 2,..., .l N=    

Note that z
l
 evolves over time and is simply the maximum likelihood estimator (MLE) of the mean recurrence 

rate, if the underlying process observed in 0(t , )lt  is a homogeneous Poisson process. The time-plot of the ERRs, 

referred to as the “ERR plot”, offers the possibility of further insights into the data. Specifically, if we start at time  

T ,  the value ,
T k

z +  1k ≥  can be predicted based on the sample observations  1( , , )
T

z zK  of an ERR time series. 

In the traditional regression modeling, the observations are assumed to be independent and this is not a reasonable 

assumption for a process that evolves over time. Therefore the autoregressive integrated moving average 

(ARIMA) models are introduced. 
 

Arima Model  
 

Autoregressive integrated moving average (ARIMA) models, introduced by Box and Jenkins (1976), are 

mathematical models of persistence, or autocorrelation, in a time series. They can be expressed by a series of 

equations. One subset of ARIMA models is called autoregressive, or AR models. The name autoregressive refers 

to the regression on self. An AR model describes a time series as a linear function of its past values plus a noise 

term tε . The order of the AR model shows the number of past values involved. The simplest AR model is the 

first-order autoregressive, or AR (1) model. The equation for this model is given by:  
 

1t t t
X Xφ ε−= + ,   1, 2,...,t N= , 

where 
t

X  is a stationary mean zero time series and φ  is the first-order autoregressive coefficient. We can see that 

the AR (1) model has the form of a regression model in which tX  is regressed on its previous value, and the error 

term tε  is analogous to the regression residuals and represents a “white noise” (uncorrelated with mean 0 and 

variance 
2σ ) process.  

 

The moving average (MA) model is another form of ARIMA model in which the time series is described as a 

linear function of its prior errors plus a current error tε . The first-order moving average, or MA (1), model is 

given by:  

1t t t
X ε θε −= − ,   1, 2,...,t N= , 

where  tX   is a stationary mean zero time series, tε , 1−tε   are the error terms at time t  and 1−t , and  θ  is the 

first-order moving average coefficient. 
 

A general autoregressive moving average (ARMA) model, ARMA (p, q), is given by: 

1 1 1 1... ...
t t p t p t t q t q

X X Xφ φ ε θ ε θ ε− − − −− − − = + + + . 

 

The integrated ARMA (ARIMA) model is a broadening of the class of ARMA that includes differencing.  
 

Differencing is an important technique in data transformation, which attempts to de-trend to control 

autocorrelation and achieve stationary time series. The first order differencing is defined by: 

1 (1 )t t t tX X X B X−∇ = − = − , 

where B is the backshift operator. Consequently, the differencing of order  d   is denoted by: 

(1 )d d

t t
X B X∇ = − . 

 

Usually, single differencing is used to remove linear trend and double differencing is used to remove quadratic 

trend. We can eliminate seasonality and trend of period d  by introducing the lag- d differencing operator 
d

∇ :  

t

d

dtttd XBXXX )1( −=−=∇ − . 
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In general, ARIMA modeling involves three stages. The first stage is to identify a model by specifying the type of 

the model (AR, MA, ARMA, or ARIMA) and its order. Sometimes identification is done by looking at plots of 

the sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF). Sometimes it is 

done by an auto fit procedure – fitting many different possible model structures and orders and using a goodness-

of-fit statistic to select the best model. The second stage is to estimate the coefficients of the model by minimizing 

the sum of squared residuals. The final stage is model diagnostics. At this stage, it is crucial to check that the 

residuals of the candidate model are random and normally distributed and the estimated parameters are 

statistically significant. The fitting process is usually guided by the principle of parsimony, by which the best 

model is the one which has fewest parameters among all models that fit the data. 
 

Transformation and Data Splitting  
 

If the data set is large enough, it can be split into two sets: training sample and prediction set. Training sample is 

used to develop a model for prediction. Prediction set is used to evaluate the reasonableness and predictive ability 

of the selected model. This validation procedure named cross-validation is the statistical practice of splitting a 

sample of data into two subsets so that the analysis is initially performed on one subset and the other subset is 

retained for subsequent use in confirming and validating the initial analysis.  
 

In proving a fitted ARMA model meaningful, it must be at least plausible that the data are in fact a realization of 

an ARMA process and in particular a realization of a stationary process. A stationary time series is the one whose 

statistical properties such as mean, variance, autocorrelation, etc. are all constant over time. In order to obtain 

such stationary time series, we use a sequence of mathematical transformations, such as Box-Cox transformation, 

mean subtraction, and the differencing.  
 

For a sequence of observations  1 2,  ,...,
n

Y Y Y ,  the Box-Cox transformation  λf   is given by 










=

≠
−

=

0  ),log(

0  ,
1

)(

λ

λ
λ

λ

λ

y

y

yf  

 

This transformation is useful when the variability of the data increases or decreases with the level. By suitable 

choice of  λ , the variability can be made nearly constant. For instance, the variability of a set of positive data 

whose standard deviation increases linearly can be stabilized by choosing  0λ =  (Brockwell et al. 2002). 
 

Normally, the correct amount of differencing is the lowest order of differencing that yields a time series which 

fluctuates around a well-defined mean value and whose autocorrelation function (ACF) plot decays rapidly to 

zero, either from above or below.  Thus, at every stage of differencing, we check the plots of sample 

autocorrelation function (ACF) and the sample partial autocorrelation function (PACF) to see where the 

ACF/PACF “cuts off” the bounds 1.96 / n± . It is desirable to find a sample ACF that decays fairly rapidly. We 

say that a series is stationary if the sample ACF has very few significant spikes at very small lags and then cuts 

off drastically or dies down very quickly. If the sample ACF dies slowly, the series still has some trend. If ACF 

has periodicity, the series has seasonality and we should do some more differencing for the data. 
 

Model Diagnostics  
 

We check the residual ACF/PACF of the models and the randomness of the residuals. For large n, the sample 

autocorrelations of an independent and identically distributed (iid) sequence 1Y ,…,
n

Y  with zero mean and finite 

variance are approximately iid with normal distribution (0,1/ )N n . We test whether or not the observed residuals 

are consistent with iid noise by examining the sample correlations of the residuals and rejecting the iid noise 

hypothesis if more than two or three out of 40 fall outside the bounds  1.96 / n±  or if one falls far outside the 

bounds (Brockwell et al. 2002). 

 

Ljung-Box test, proposed by Ljung and Box (1978), is commonly used to check whether the residuals of a fitted 

model are iid in ARIMA modeling. It is based on the autocorrelation plot and it tests the overall independence 

based on a few of the time lags. Formally, the definition of Ljung-Box test is as follows. 
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:0H  The sequence data are iid 

:aH  The sequence data are not iid 

The test statistic is 
2

1

1 ˆ)()2()ˆ(ˆ
k

m

k

rknnnrQ ∑
=
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=
n

l
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n
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1

ˆˆˆˆ , the estimated autocorrelation 

at lag- k , n = sample size, m = number of lags being tested and naa ˆ,...,ˆ
1  are the residuals after a model has been 

fitted to a series nzz ,...,1 . If no model is being fitted,  naa ˆ,...,ˆ
1  are the “mean corrected” series of  nzz ,...,1 .  

 

For large n , the distribution of  )ˆ(ˆ rQ  is approximately 
2

qpm −−χ  under the null hypothesis, where  qp +  is the 

number of parameters of the fitted model. The hypothesis of iid is rejected if 
2

;1
ˆ

qpmQ −−−> αχ  at level α  and we 

say that the sequence data do have autocorrelations significantly different from zero and a new search for a fitted 

ARMA model for a mean-corrected data set will follow. 
 

Model Comparison  
 

We use AICC statistic (Akaike 1974), the bias-corrected version of AIC statistic, as an information criterion to 

select candidate models using the ITSM2000 package (Brockwell et al. 2002). Small value of AICC is indication 

of a good model, but it should be used only as rough guide. Final decisions between models are based on 

maximum likelihood estimation. Some other model-selection statistics, such as BIC statistic, are also available in 

ITSM2000. The BIC statistic (Schwarz 1978) is a Bayesian modification of the AIC statistic. It is evaluated at the 

same time and used in the same way as the AICC. Each information statistic is defined as: 
 

2

,

2

,

2

,

ˆlog 2

ˆlog 2 /( 1)

ˆlog log

p q

p q

p q

AIC N r
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ε
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ε

σ

σ

σ

= +

= + − −
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where 
2ˆ
εσ  is the maximum likelihood estimator of 

2

εσ , and 1++= qpr  is the number of parameters estimated 

in the model, including a constant term. The second term in all three equations is a penalty for increasing r. 

Hence, the best model is the model adequately describes data and has fewest parameters. 
 

The candidate ARIMA models are used to predict future values of the time series from the past values. The 

predicting function 1 1( ,..., )
t t t

z f z z ε−= +  has minimum mean square error. The first part of the equation 

)...,( 1,1 zzf t−  is a function of the past values of the series and the second part tε , called noise part, is a sequence 

of iid variables. Predictions of the original series are achieved by forecasting the residuals and then feeding them 

back into the inverted transformations. The best fitting model is selected based on the predictive ability of both 

the training sample and the prediction set. Finally, we combine the training sample and the prediction set as a full 

data set to forecast earthquakes for future occurrences. Note that the cumulated mean numbers inverted from the 

forecasted ERRs should be non-decreasing and sometimes need to be adjusted accordingly (e.g., Ho 2010). 
 

Application 
 

Data 
 

Earthquakes that have occurred worldwide during the period of 1896 to 2009 with Magnitude M 8.0≥  on the 

Richter scale are obtained from the U.S. Geological Survey (http://www.usgs.gov/). The data set contains 55 

earthquakes from the time origin 18960 =t  to the present time 0 (year 2009). (Table A1).   
 

A dot plot is first constructed to observe any possible trends presented by the data (Figure 1). We then count the 

number of earthquakes at a pre-chosen time step and calculate the lz  values to do further analysis.  
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Figure 1. Dot plot of large earthquakes worldwide between 1896 and 2009. 
      
Three ERR plots with three different time-steps are shown in Figure 2. Since there are 55 large earthquakes in 114 

years, approximately one in every two years, we first choose 2h =  years as the time-step.  

 
Figure 2. ERR plots with different time-steps h: (a) 1h = year, (b) 2h = years, (c) 3h = years. 

 

Arima Modeling with Time Step Set at Two Years  
 

We use the ITSM2000 software to model the ERR data with time step 2h =  years. The data set, containing 57 

lags in total, is split into two sets: training sample and prediction set. Specifically, the training sample is the 

original data set excluding the last 5 ERRs, which is the prediction set (Figure 3). The size of a prediction set is 

quite flexible as long as it fits a common goal of model selection. We focus on the training sample and plot the 

sample ACF and PACF to capture possible trend and seasonality of the data (Figure 4). From the plot of sample 

ACF, we found that the spikes die slowly and have periodicity. This indicates that the underlying process 

described by the data is not stationary and differencing is necessary.  
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Figure 3. Training sample and prediction set with 2h =  years. Each lag corresponds to 2 years. 

 

 
Figure 4. Sample ACF and sample PACF of the original training set with 2h =  years. 

 

 
Figure 5. Sample ACF and sample PACF of the twice-differenced training sample with 2h =  years. 

 

We find that it is sufficient to produce a series with no apparent trend by applying the differencing operator ∇  , 

twice at lag-1, to the training sample (Figure 5). We then subtract the sample mean from each observation of the 

twice-differenced series to generate a “mean-corrected” series. The sample ACF and PACF plots as well as the 

AICC statistics for several ARMA(p,q) with 0 , 5p q≤ ≤  suggest that model MA(3) is appropriate for the mean-

corrected and twice-differenced data tX  (the ACF is cutting off at lag 3 and the PACF is tailing off). The 

estimated (MLE) model is:  
 

1 2 30.2475 0.1471 0.4985
t t t t t

X ε ε ε ε− − −= − + −  
 

with 
2ˆ 0.00224.σ =  Recall that 

2σ̂  is the MLE of 
2σ , the variance of the white noise process 

t
ε , and the unit 

of the time series is presented as an annual rate. A set of diagnostic plots (Figure 6) for the MA(3) model is 

produced by the ITSM2000 package, consisting of the plot of the residuals and its ACF and PACF. The AICC 

statistic is -153.367 and the Ljung-Box test is not significant ( p-value 0.96067= ), indicating that the residuals 

are approximately white noise. The numerical values of the actual ERRs and mean numbers of occurrences in the 

prediction set are compared with their predicted counterparts and are listed in Table 1.  
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Figure 6. (a) time-plot, (b) sample ACF, and (c) sample PACF for the residuals of the MA (3) model fitted to the 

mean-corrected and twice-differenced training sample. 
 

Table 1. The numerical values of the actual ERRs and mean numbers versus the predicted ERRs and mean 

numbers based on the proposed MA (3) model. 
 

Year 
Annual ERR  Mean number 

Actual Prediction  Actual Prediction 

2000-2001 0.415094 0.41238  2 1.71228 

2002-2003 0.416667 0.43368  1 2.83744 

2004-2005 0.436364 0.46318  3 5.9498 

2006-2007 0.482143 0.49771  6 7.74352 

2008-2009 0.482456 0.53728  1 7.24992 

 

 For a causal model (Brockwell et al. 2002), the ITSM2000 package calculates the ratios of 

(estimated coefficients) /(1.96 standard error)× . If the ratio is greater than 1 in absolute value, we conclude (at 

level 0.05) that the corresponding coefficient in the model may not be zero (Brockwell et al. 2002) and a subset 

model comes up after dropping the non-significant coefficients. In our case, the ratios for the proposed MA(3) 

model are -0.892166,  0.444319,  and -2.217303 respectively and the subset MA(3) model is 

30.5136
t t t

X ε ε −= −   

where 155AICC = −  and p-value 0.828=  for the Ljung-Box test. The values predicted by the subset model are 

very similar to those by the original MA(3) model and we choose the original MA(3) model for full data 

forecasting.  
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Full-Data Forcasting  
 

We re-estimate the coefficients of the MA(3) model by using the full ERR time series to forecast the number of 

earthquakes in the future. This yields the best-fitted MA (3) model for the mean-corrected and twice-differenced 

(at lag 1) data (same as before). The estimated (MLE) model is:  
 

1 2 30.2708 0.1450 0.5025
t t t t t

X ε ε ε ε− − −= − + −  
 

with the estimated white noise variance
2ˆ 0.002100σ = . The ratios, defined in last section, for the fitted model 

are -1.030746,  0.448350  and -2.236312 , which leads to a subset MA (3) model: 
 

1 30.2213 0.4597
t t t t

X ε ε ε− −= − − ,    with  
2ˆ 0.002137σ =  

 

Even though the AICC statistic and the p-value of the Ljung-Box test of the subset MA(3) model 

( 174.738AICC = − , p-value 0.97676= ) are a little bit better than MA(3) model  
 

(  -173.294AICC = , p-value  0.96568= ), there is no big difference and we will keep both of them. The 

predictions of the next ten years, from 2010 to 2019, are shown in Table 2.  
 

Table 2. The predicted ERRs and mean numbers using the MA(3) and the subset MA(3). 
 

Year 
Full model ERR  Mean number 

MA (3) Subset MA (3)  MA (3) Subset MA (3) 

2010-2011 0.50365 0.49733  3.4234 2.69028 

2012-2013 0.50785 0.50620  1.5029 2.04132 

2014-2015 0.54365 0.54526  5.3117 5.69960 

2016-2017 0.58401 0.58886  6.01122 6.40972 

2018-2019 0.62891 0.63702  6.73562 7.14956 
        
The predicted mean numbers of occurrences in Table 1 are roughly close to the actual numbers except for 

the last two year period for which the model predicted 7 large scale earthquakes while there was only one 

happened during that time. One possible reason could be due to the use of the two-year time step, which 

reduced the sample size from 114 to 57 and, in general, models generated on larger data sets have better 

performance. This suggests us to find a model by adjusting the time step to one year. 
 

Arima Modeling with Time Step Set at One Year   
 

The data set, after choosing the time step 1h =  year, contains 114 lags in total and is split into the training sample 

with 104 lags and the prediction set with 10 lags (Figure 7). The plots of sample ACF and PACF on the training 

sample (Figure 8) indicate that the series is not stationary and differencing is needed. Upon applying the same 

approach as we did for the case of two-year time step to the mean-corrected and twice-differenced (at lag 4 and 1 

respectively) training data (contains 104 ERRs) we find the best fitted model ARMA(5, 5). Specifically, the 

estimated (MLE) model is: 
 

1 2 3 4 5

1 2 3 4 5

0.1717 0.1597 0.5383 0.08758 0.4073

0.2547 0.4622 0.2237 0.2444 0.6749

t t t t t t t

t t t t t

X X X X X X ε

ε ε ε ε ε

− − − − −

− − − − −

= − + + − − +

+ + − − −
 

 

with 
2ˆ 0.00108,σ =   362.268AICC = , and p-value 0.86584= .  
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Figure 7. Training sample and prediction set of data set with  1h = , each lag corresponds to 1 year. 

 
Figure 8. Sample ACF and sample PACF of the training sample with 1h =  year. 

 

Moreover, the best fitted model by using the complete ERR time series (contains 114 ERRs) for the mean-

corrected and twice-differenced data is also an ARMA(5,5) and the estimated (MLE) model is:  
 

1 2 3 4 5

1 2 3 4 5

0.1766 0.1507 0.5407 0.08186 0.4143

0.2635 0.4700 0.2179 0.2439 0.6681

t t t t t t t

t t t t t

X X X X X X ε

ε ε ε ε ε

− − − − −

− − − − −

= − + + − − +

+ + − − −
 

with 
2ˆ 0.00099.σ =  Unfortunately, all of the subset ARMA(5, 5) models neither pass model diagnostic tests nor 

outperform the ARMA(5, 5). The forecasting results for the model based on the training sample are summarized 

in Table 3. It turns out that, by comparing the results in Table 3 with those in Table 1, the predictive ability of the 

model improved significantly when the time step h  equals 1 year. Finally, the predictions of large scale 

earthquakes for the next ten years are shown in Table 4. 
 

Table 3. The numerical values of the actual ERRs and mean numbers versus the predicted ERRs and mean 

numbers based on the proposed ARMA (5, 5).  
 

Year 
Annual ERR  Mean number  

Actual Prediction  Actual Prediction 

2000 0.40952381 0.41519  1 1.59495 

2001 0.41509434 0.4218  1 1.11585 

2002 0.41121495 0.43678  0 2.02466 

2003 0.41666667 0.44336  1 1.14742 

2004 0.43119266 0.46441  2 2.73781 

2005 0.43636364 0.47262  1 1.36751 

2006 0.45045045 0.49327  2 2.76477 

2007 0.48214286 0.50355  4 1.64463 

2008 0.47787611 0.52445  0 2.86525 

2009 0.48245614 0.53609  1 1.85141 

 

 

 

 

 



© Centre for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

73 

 

Table 4. Predictions of large earthquakes using the full data forecasting model ARMA(5,5). 
 

Year Full model ERR Mean number 

2010 0.4976 2.224 

2011 0.50603 1.47548 

2012 0.50149 0 (adjusted) 

2013 0.53084 3.96479 

2014 0.54151 1.80057 

2015 0.5598 2.73631 

2016 0.57991 2.99311 

2017 0.60608 3.77265 

2018 0.62047 2.37605 

2019 0.65601 5.02743 

 

Conclusions 
 

A method of predicting future occurrences of large scale earthquakes by using time series modeling technique is 

presented in this study. A total of 114 documented earthquakes with magnitude greater than or equal to 8.0 on the 

Richter scale occurred during 1896 to 2009. We assume these occurrences follow a Poisson process and 

fingerprint them with a sequence of ERR time series. The data set is split into a training sample and a prediction 

set for which the prediction set is used as a holdout sample to check the predictive ability of the candidate model 

developed by the training sample. Model validation results are successful for the proposed method. The best fitted 

model for time step 2h =  years is a subset MA(3) model  and for 1h =  year is an ARMA(5,5). For a full scaled 

prediction, the MA(3) model predicts a total of about 10 occurrences for the next six years and 12 for the 

ARMA(5,5) model. Our two candidate models, MA(3) and ARMA(5,5), forecast a mean number of about 24 and 

19 occurrences for the prediction set while the actual number of events is 13. Therefore, we conclude that the 

ARMA(5,5) model is the best fitted model overall. The application of ARIMA models for long-term earthquake 

prediction is a natural extension of the methodologies developed for the volcanic risk assessment studies (Ho 

2008, 2010). An important observation is that the modeling technique presented in this study will not only further 

facilitate the research in the areas of natural disaster predictions such as prediction of occurrences of dust storms 

and hurricanes but can also be extended to monitor the occurrence rates of cancer, genetic mutation, teen 

pregnancy, etc.  
 

Although our model can predict future occurrences of large scale earthquakes, further studies should be carried 

out to improve model accuracy by quantifying the error bounds/confidence limits on the forecast. 
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Appendix 
 

Table A1. Large earthquakes worldwide since 1896 ( 0.8≥M ) 
 

Date Location Magnitude 

06/15/1896 Sanriku, Japan 8.5 

06/12/1897 Assam, India 8.3 

09/10/1899 Yakutat Bay, Alaska 8 

08/11/1903 Southern Greece  8.3 

07/09/1905 Mongolia  8.4 

01/31/1906 Off the Coast of Esmeraldas, Ecuador 8.8 

08/17/1906 Valparaiso, Chile  8.2 

10/21/1907 Qaratog, Tajikistan  8 

12/12/1908 Off the Coast of Central Peru 8.2 

06/05/1920 Taiwan region  8 

11/11/1922 Chile-Argentina Border 8.5 

02/03/1923 Kamchatka  8.5 

08/10/1931 Xinjiang, China  8 

06/03/1932 Jalisco, Mexico  8.1 

03/02/1933 Sanriku, Japan 8.4 

01/15/1934 Bihar, India - Nepal 8.1 

02/01/1938 Banda Sea, Indonesia 8.5 

11/10/1938 Shumagin Islands, Alaska 8.2 

05/24/1940 Callao, Peru  8.2 

08/24/1942 Off the coast of central Peru 8.2 

04/06/1943 Illapel - Salamanca, Chile 8.2 

12/07/1944 Tonankai, Japan 8.1 

11/27/1945 Makran Coast, Pakistan  8 

04/01/1946 Unimak Island, Alaska 8.1 

08/04/1946 Samana, Dominican Republic 8 

12/20/1946 Nankaido, Japan 8.1 

08/22/1949 Queen Charlotte Island, British Columbia,Canada 8.1 

08/15/1950 Assam - Tibet  8.6 

11/04/1952 Kamchatka 9 

03/09/1957 Andreanof Islands, Alaska 8.6 

12/04/1957 Gobi-Altay, Mongolia 8.1 

11/06/1958 Kuril Islands  8.3 

05/22/1960 Chile 9.5 

10/13/1963 Kuril Islands  8.5 

03/28/1964 Prince William Sound, Alaska 9.2 

02/04/1965 Rat Island, Alaska 8.7 

10/17/1966 Near the Coast of Peru 8.1 

07/31/1970 Colombia 8 

10/03/1974 Near the Coast of Central Peru 8.1 

09/19/1985 Michoacan, Mexico 8 

06/09/1994 Bolivia 8.2 

03/25/1998 Balleny Islands Region 8.1 

11/16/2000 New Ireland Region, Papua New Guinea 8 

06/23/2001 Near the Coast of Peru 8.4 

09/25/2003 Hokkaido, Japan Region 8.3 

12/23/2004 North of Macquarie Island 8.1 

12/26/2004 Sumatra-Andaman Islands 9.1 

03/28/2005 Northern Sumatra, Indonesia 8.6 

05/03/2006 Tonga 8 

11/15/2006 Kuril Islands 8.3 

01/13/2007 East of the Kuril Islands 8.1 

04/01/2007 Solomon Islands 8.1 

08/15/2007 Near the Coast of Central Peru 8 

09/12/2007 Southern Sumatra, Indonesia 8.5 

09/29/2009 Samoa Islands region 8.1 



© Centre for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

75 

 

References 
 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans: Aut. Contr. AC 19, 203-217. 

Bakun, W. H., Aagaard, B., and Dost, B., 2005. Implication for Prediction and Hazard Assessment From the 2004 

Parkfield Earthquake. Nature 437, 969-974.  

Box, G. E. P., and Jenkins, G. M., 1976. Time Series Analysis: Forecasting and Control. Holden-Day, San 
Francisco. 

Brockwell, P. J., and Davis, R. A., 2002. Introduction to Time Series and Forecasting. 2nd Edition. Springer-
Verlag, New York. 

Felzer, K. R., Abercrombie, R. E., and Ekstrom, G., 2003. Secondary Aftershocks and Their Importance for 

Aftershock Forecasting. Bulletin of the Seismological Society of America 93, 1433-1448. 

Helmstetter, A., Kagan, Y. Y., and Jackson D. D., 2006. Comparison of short-term and long-term earthquake 

forecast models for southern California. Bulletin of the Seismological Society of America 96, 90-106. 

Ho, C.-H., 2008. Empirical recurrent rate time series for volcanism: application to Avachinsky volcano, Russia. 
Volcanol Geotherm Res. 173, 15-25. 

Ho, C.-H., 2010. Hazard area and recurrence rate time series for determining the probability of volcanic 

disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA. 

Bulletin of Volcanology 72, 205-219. 

Hong, L.-L., and Guo, S.-W., 1995. Nonstationary Poisson Model for Earthquake Occurrences. Bulletin of the 

Seismological of America  85, 814-824. 

Jackson, D. D., and Kagan, Y. Y., 2006. The 2004 Parkfield Earthquake, the 1985 Prediction, and Characteristic 
Earthquakes: Lessons for the Future. Bulletin of the Seismological Society of America 96, 397-409. 

Kagan, Y. Y., 1993. Statistics of Characteristic Earthquakes. Bulletin of the Seismological Society of America 83, 

7-24. 

Ljung, G. M., and Box, G. E. P., 1978. On A Measure of Lack of Fit in Time Series Models. Biometrika 65, 297-
303. 

Mogi, K., 1985. Earthquake Prediction. Academic Press Japan, Inc., Tokyo. 

Savage, J. C., and Cockerham, R. S., 1987. Quasi-Periodic Occurrence of Earthquakes in the 1978-1986 Bishop-

Mammoth Lakes Sequence, Eastern California. Bulletin of the Seismological Society of America 77, 

1347-1358. 

Schwarz, G., 1978. Estimating the dimensions of a model. Annals of Statistics 6(2), 461-464. 

 


