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Abstract 
 

Genome wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) that 

are associated with a variety of common human diseases.  Due to the weak marginal effect of most disease-

associated SNPs, attention has recently turned to evaluating the combined effect of multiple disease-associated 

SNPs on the risk of disease.  Several recent multigenic studies show potential evidence of applying multigenic 

approaches in association studies of various diseases including lung cancer. But the question remains as to the 

best methodology to analyze single nucleotide polymorphisms in multiple genes. In this work, we consider four 

methods—logistic regression, logic regression, classification tree, and random forests—to compare results for 

identifying important genes or gene-gene and gene-environmental interactions. To evaluate the performance of 

four methods, the cross-validation misclassification error and areas under the curves are provided. We performed 

a simulation study and applied them to the data from a large-scale, population-based, case-control study.  Word 

Count: 150 
 

Keywords: SNP interactions, Logistic regression, Classification tree, Logic regression, Random Forests, Cross-

validation error, Area under the Curve  
 

Introduction 
 

Genome-wide association studies (GWA) have identified numerous single nucleotide polymorphisms (SNP) that 

are associated with a variety of common human diseases. For many diseases, multiple disease-associated SNPs 

have been discovered [Davis et al. 2010; Kathiresan et al. 2009; Meigs et al. 2008; Morrison et al. 2007]. The 

marginal effect of these disease-associated SNPs, however, is generally quite modest, and so individual disease-

associated SNPs are not very useful for predicting the risk of disease. Because of the weak marginal effect of 

most disease-associated SNPs, attention has recently turned to evaluating the combined effect of multiple disease-

associated SNPs on the risk of disease. As knowledge regarding genetic susceptibility to common diseases has 

increased, interactions among genetic variants, as well as gene-environmental interactions and epigenetic 

processes, are likely to play a significant role in determining susceptibility to the diseases. In the past, the majority 

of studies have been single-gene studies, which directly test the effects of only a single nucleotide polymorphism 

(SNP) in a candidate gene on disease development [Hook et al. 2011; Sobrin et al. 2011; Dong et al., 2008; Jo et 

al., 2008; Houlston et al., 2004].  
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More recently, researchers have acknowledged that lung cancer is a multigenic disease that is more likely 

associated with the combined effects of multiple genes, not a single gene effect. Several recent studies have 

shown the potential of applying multigenic approaches in association studies of various diseases [Scherer et al. 

2011; Heit et al. 2011; Cote et al., 2009; Kathiresan et a. 2008; Schwartz et al. 2007; Gerger et al. 2007;  

Imyanitov et al. 2004]. The question remains as to the best methodology to analyze SNPs in multiple genes. In 

this work, we consider four methods - logistic regression [Cote et al., 2009], classification tree [Brieman et al. 

1984], random forests [Breiman 2001], and logic regression [Ruczinski et al., 2003] - to compare the results for 

identifying important genes or gene-gene and gene-environmental interactions. Logistic regression models have 

been most popularly used in measuring the association between the susceptibility of a disease and genetic and/or 

environmental risk factors. However, traditional parametric statistical analyses become more difficult and often 

inefficient for investigating interactions because the number of polymorphisms leads to a dramatic increase in the 

number of interaction terms requiring a large study population and the need to address multiple comparisons.  
 

To deal with increasing amounts of information from SNPs, nonparametric methods offer a possible alternative. 

Classification and regression tree methods (CART) are the most commonly used nonparametric methods that 

require no distributional assumptions. CART uses tree building methods, a form of binary recursive partitioning, 

and classifies subjects or predicts the outcome by selecting the most important genetic and environmental risk 

factors available from the study population. This method is becoming more widely used in cancer research [Goel 

et1 al., 2009; Wang et al., 2007; Toschke et al., 2005; Lemon et al., 2003; Zhang et al. 2000]. Nonetheless, the 

tree models are highly unstable to small changes in the data, the major drawback of CART analysis. Due to the 

instability, each tree shows highly varied predictions, and interpretation can be severely affected by the random 

variability of the data. An alternative to solving the problem of instability is ensemble methods such as bagging, 

boosting, and random forests. The methods depend on many sets of trees rather than a single tree. In the random 

forest method, introduced by Breiman, each tree is built based on recursive partitioning, and the prediction is 

made on the average of an ensemble of trees rather than of a single tree. A growing number of applications of 

random forests indicate a wide range of application areas in cancer research [Wu et al., 2011; Rizk et al., 2010; 

Buness et al., 2009; Abrahantes et al., 2008]. A fourth method, logic regression, is an adaptive (generalized) 

regression methodology to find predictors that are Boolean (logical) combinations of the original predictors. Since 

Ruczinski [2003] proposed this approach, several studies have applied logic regression methods to identify 

important SNP interactions [Kooperberg et al., 2006, 2005, 2001; Ruczinski et al., 2004].  
 

The goal of these analyses is to provide a comprehensive comparison among four methods: logistic regression, 

classification tree method, random forests, and logic regression, and apply these methods to a moderate sized 

case-control study of lung cancer in women. The statistical analysis of interactions using these four methods is 

explained in the next section, and then model validation methods are discussed. To investigate advantages and 

disadvantages of those four methods, we conducted a simulation study involving the interaction effects among 

binary outcomes representing SNPs and environmental factors. Then we applied the methods to a case-control 

study to identify important, higher-order, multiplicative interactions for identifying lung cancer risk. The data 

used in this work came from a population-based study in metropolitan Detroit and were analyzed using four 

methods. To evaluate the performance of the four methods, we used cross-validation methods and areas under the 

curves. Finally, we discuss methodological and practical issues encountered when using these methods in a case-

control study setting.  
 

Materials and Methods 
 

Statistical Methods for Analysis of Interactions 
 

Assuming that we want to identify important main or interaction effects among genetic and environmental risk 

factors, when the response variable (Y ) is the disease phenotype to be predicted by multiple effects, ( kXX ,,1 K

), a traditional logistic regression model can be considered. The logistic model including both single factors and 

two-way interactions terms of genetic and environmental factors is,  
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where p is the probability that disease status = 1 for given values of the predictors. To find the most parsimonious 

model that explains the data, we performed a model building procedure by using forward selection that included 

both 7 environmental risk factors (age, BMI, pack-years of cigarette smoking, education, history of obstructive 

lung disease, family history of lung cancer, and hormone replacement therapy) and 11 candidate genotypes. To 

assess which single factor and interaction risk factors were important and whether the addition of genotype 

information into this model would improve the fit, we used the likelihood ratio test to calculate the statistical 

significance of nested models as new terms were added. Even though a logistic regression model is the most 

popular model to analyze the association between discrete responses and multiple predictor variables, the 

traditional logistic models have a few fundamental limitations in multigenic studies. First, when the number of 

main effects increases, the number of interaction terms shows a dramatic increase, which results in loss of power 

because of large degrees of freedom. Furthermore, the magnitude of the interaction effect in nonlinear models 

does not equal the marginal effect of the interaction term, and its statistical significance is not calculated by 

standard software. Analysis based on subsets of the predictors can be used to improve power because there are 

fewer degrees of freedom. A tree-based method and logic regression are alternatives to the traditional logistic 

regression analysis. Tree-based methods [Breiman et al. 1984] employ a multistage decision process that attempts 

to identify a strong relationship between input values (predictive variables) and target values (response variable).  
 

Unlike the logistic regression, tree-based methods do not assume a prespecified relationship between the response 

and predictors. A tree-based method generates primarily the classification tree on the predictor variables, which 

are constructed by recursively partitioning the data into successively more homogeneous subsets with respect to 

the variables of interest. The most discriminative variable is selected to partition the dataset into subsets, and 

partitioning is repeated until the nodes are homogeneous enough to be terminal. The output is a tree diagram with 

the branches determined by the splitting rules and a series of terminal nodes that contain the response frequency. 

The tree-building process leads to the terminal nodes (or leaves) when the nodes cannot be divided anymore and 

need to be pruned to avoid overfitting and to increase efficiency. The Gini criterion was used to express the 

decrease in the node impurity function. The Gini index is one of the most commonly used tree-building criteria 

with entropy (or information gain) to measure node impurity for categorical target values, especially for the 

categorical target values. The Gini index measures purity of categorical data, which equals 0 for a pure node. The 

Gini index can be obtained by Gini index = 1 - ∑
=

r

j

jP
1
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where jP is a relative frequency of class j in a node.  

 

The splitting process is repeated on each of the two resulting regions of the previous step and continues until the 

stopping rule stops the process. This large tree is pruned using cost-complexity pruning. The biggest drawback of 

a tree method is that they are instable for the small changes in observations. More accurate predictions can be 

obtained by combining many suitably chosen trees, or tree-based ensembles. Breiman [2001] proposed a random 

forest that is an ensemble method that fits many classifications of trees resampled by the bootstrap method and 

then combines the predictions from all the trees. Classification tree approaches use all predictors and all 

individuals to make a single tree, but random forests make a forest of many trees (ntree), which are based on a 

random selection of predictors (mtry) and individuals by using the bootstrap resampling method. Thus, random 

forests are an average of multiple classification trees. Error rates are computed for each observation by using the 

out-of-bag predictions and then averaged over all observations. Because the out-of-bag observations are not used 

in fitting the trees, the out-of-bag estimates are essentially cross-validated accuracy estimates. We want the 

smallest set of SNP-SNP and SNP-environment interactions to achieve good diagnostic ability.  
 

Variable importance finds the most relevant predictors. At each split of each tree, a variable contributed to the 

importance of the impurity measure. We accumulate the reduction of the impurity measure to find a measure of 

relative importance of the variables. We permute the predictor values of the OOB sample at every tree; the 

accumulation of resulting decrease in prediction accuracy over all trees is also a measure of importance. The 

variable importance of jX  in a tree t  is the difference of the number of correct predictions with between-

predictor variables including the original variable jX  and predictor variables including the permuted variable 

*j
X  for the out-of-bag observations. Let i  be the subject index, j  be the variable index, and 

)(tB  be the out-of-

bag observations for a tree t , with { }nteet ,,1 K∈ .  
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Then the variable importance of variable jX  in tree t  ( )()(

j

t
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is the prediction based on the variables including the original variable jX  for observation i , and 
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 is the prediction based on the variables including the permuted variable *j
X  for observation i . Then the 

variable importance of each variable is computed by averaging over all trees. Thus, the variable importance 

indicates how much the original association with the response is broken after randomly permuting the predictor

jX . The variable with higher variable importance indicates the more importance among variables used in 

random forests. Variable importance is used to find the smallest set of predictor variables to achieve good 

prediction ability [Strobl et al., 2009; Alvarez et al., 2005; Hastie et al. 2001]. Ruczinski [2003] proposed a 

logic regression that is an adaptive regression methodology that aims to find combinations of binary variables 

that are highly associated with an outcome. Let kXX ,,K be binary variables, and Y be a response variable. 

The logic regression model is of the form, 
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where )(⋅g  is a link function relating the response variable and the related covariates, pii ,,0, K=β  and 

qipi ,,1, K=+β  are regression parameters, iZ  are additional confounders, and iL  is a Boolean expression of the 

binary predictors jX s. The link function can be a linear regression for continuous outcomes and logit function 

for binary outcomes. An example of a Boolean expression is 43 XX ∧
,
 which indicates an interaction between 

two variables of X3 and X4, and ( ) ( )[ ]19321 XXXX ∩∪∩  , which expresses a combined information of two 

interactions: X1 and X2, and X3 and X19. Therefore, the logic regression is simply a combination of Boolean 

expressions. Logic regression uses a “simulated annealing algorithm” to try to find Boolean statements in the 

regression model that minimize the scoring function associated with the model type, estimating the regression 

coefficients simultaneously with the Boolean expressions. A score function that reflects the quality of the model is 

given for each regression model such as the residual sum of squares for linear regression and the binomial 

deviance for logistic regression. To find the best logic regression model, we need to perform model selection 

procedure using cross-validation or permutation tests.  
 

Model Validation  
 

Model assessment needs to be performed to validate the effectiveness of the four models that identified important 

single and combined variable effects, and compare their predictive power. We applied the hold-out method for the 

cross-validation. For k-fold cross-validation, the data are split into k approximately equal groups (typically 3 to 

10). Each of the k subsets of the data is left out in turn, the model is fit for the remaining data, and the results used 

to predict the outcome for the subset that has been left out. The cross-validation estimate of prediction error, 

)(θCV , is then calculated:  
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The notation of ),,( 1 ipii xxx L=  is a vector of predictors, iy  is a response, kC  is the indices of observations 

in the k th fold, and )),(,( θi

k

i xfyL
−

)
 is a loss function that measures the error between the observed values, 

iy , and the predicted values, ),( θi

k
xf

−
)

. The predicted values come from the data that removed the k th fold. 

Prediction error is usually taken as the squared difference between observed and predicted in a regression 

model, 
2))(()(,( xfyxfyL
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−= , and as 0-1 loss for classification models, )}({1))(,( xfyxfyL
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≠= .  
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Once prediction errors are obtained for all k subset groups, the total error is averaged as dividing by the 

number of groups [Tibshirani et al., 2009; Bouckaert et al., 2008; Efron et al., 1983]. For comparison purpose, 

areas under the curves (AUC) were computed for all four classifier methods. We used Statistical Analysis 

Software (SAS; V 9.2, Cary, North Carolina) and the R software (Version 2.12.1, www.r-project.org).  
 

Results 
 

Simulation Study 
 

A simulation study was performed to examine which mining method(s) shows better prediction among the four 

methods (logistic regression, logic regression, classification tree and random forests). We generated 10 binary 

predictors and a case-control disease status of 1000 unrelated subjects. Let 1021 ,,, XXX K  be predictors (SNPs or 

environmental factors) and Y  be an outcome. Predictor variables were generated from a Bernoulli distribution 

with a probability of 0.5 and were randomly associated with the outcome. Therefore, individual predictors were 

not statistically significant with the outcome. We further considered two interaction terms, 21 XX ∩  and

43 XX ∩ , that were highly associated with the outcome for finding better classification performance of the 

classifiers that are able to correctly identify important interactions. When the interactions are true, the disease 

status has the probability of 0.8 from a Bernoulli distribution.  We considered all single predictors and two-way 

interactions to find the best logistic model. The multiple logistic approach and stepwise selection procedure 

identified six single predictors ( 1084321 ,,,,, XXXXXX ) and four interactions ( 21 XX ∩ , 41 XX ∩ , 32 XX ∩ , 

and 43 XX ∩ ). The best logistic model is 
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With the above best fit model, we calculated the probabilities that a subject has a disease for given values of the 

predictors. The optimal decisions are based on the posterior class probabilities P(y|x). For binary classification 

problems, we can write these decisions as 1 if the logit of the probability that disease status = 1 is greater than 0, 

and 0 for otherwise. The cross-validation prediction error was 0.3481, and the AUC was 0.6836. The recursive 

partitioning algorithm was applied to grow the trees while the grown trees were pruned using a cross-validation 

technique. Once we built the unpruned trees by using the Gini index as a splitting criterion, then we found the 

complexity parameter to lead to an optimal tree size. The (10-fold) cross-validation error rates were used to prune 

the tree by using the standard “1 – SE” rule. Based on the rule, we set the threshold complexity parameter to 

0.018. Figure 1 is a plot of the relationship between the cost-complexity parameter (cp), cross-validation error (x-

val Relative Error), and tree size. Figure 2 is classification tree analysis of the simulated data set including genetic 

risk factors and environmental factors showing cut-off values for snp10, snp1, snp2, snp3, and snp4.  
 

The target variable is the disease rate, and the analysis produces seven terminals. The disease rate in the entire 

population was 48.6% (486/1000), and the first split is performed on snp10. This produces two subgroups with 

respective disease rate of 40.1% (227/566) and 59.7% (259/434). We investigated the subgroups with higher 

disease rate than the entire population. Among seven terminal nodes, only three were higher in disease rate than 

the entire population: the combination of snp10=1, snp1=0, snp3=1, and snp4=1 shows the highest disease rate 

(71.3%), the combination of snp10=0, snp1=1, and snp2=1 has the second highest disease rate (69.6%), and the 

combination of snp10=1 and snp1=1 shows 66.9% in disease rate. The tree method identified two important 

interactions of snp1 and snp2, and snp3 and snp4 with high disease rate. For this tree model, the cross-validation 

error is 0.3310, and AUC is 0.6853. The random forests method was performed to find the important variables 

based on (1) the size of variable importance and (2) out-of-bag error rates. The random forests perfectly identified 

four important variables of SNP1, SNP2, SNP3, and SNP4. As seen in Figure 3 (a), the importance values for all 

SNPs were calculated to assess the relevance of each variable over all trees of the ensemble. The plot showed the 

first four variables were more valuable than the other SNPs because the first four had the higher importance 

values (SNP1=28.6, SNP2=27.2, SNP3 = 27.3, and SNP4=26.7). The other six SNPs have importance values less 

than 20. Therefore, the random forests method exactly divides all SNPs into two groups.  
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Figure 3 (b) showed that the model including four variables of 
1X , 

2X , 3X , and 
4X  showed minimum out-of-

bag error rates of 0.288. The cross-validation error for the random forests method was 0.2224, the smallest among 

all four methods. The random forests method had the largest area under the curve of 0.8795. The logic regression 

model was executed to examine the identification ability of important interactions among generated 10 variables. 

We picked the parameters of simulated annealing with START=2 and END=-1 that found the best annealing 

parameters in R:{LogReg} package. With those parameters, the acceptance rate was over 90% and no acceptances 

were after log-temperature of -0.5. The logic regression identified a best model including a Boolean expression of 

)( 21 snpsnp ∩  or )( 43 snpsnp ∩  that minimized the scoring function. Simultaneously, the logic regression 

estimated the regression coefficients of the logic regression as follows: LY 81.1892.0 +−=  where Y is a disease 

status and L is a logic expression of )( 21 snpsnp ∩  or )( 43 snpsnp ∩ . Figure 4 shows the tree of the Boolean 

expression. The cross-validation error was 0.3220, which was slightly better than the logistic regression and 

classification tree methods. The area under the curve was 0.7110, which was larger than that for logistic 

regression and classification tree. Table I summarizes the cross-validation errors and the areas under the curves 

for all four models. As expected, the random forests method showed best performance with the smallest cross-

validation error and the largest AUC, the logic regression showed the second best method, classification tree was 

third, and the logistic regression showed the worst classification ability.  
 

Women’s Epidemiology of Lung Cancer Study 
 

Data: The case-control study design and description were described in detail elsewhere [Cote et al. 2009]. In 

summary, female lung cancer patients aged 18-74 who were diagnosed with  nonsmall-cell carcinoma in Wayne, 

Macomb, and Oakland counties between November 1, 2001, and October 31, 2005, were enrolled through the 

population-based Metropolitan Detroit Cancer Surveillance System (MDCSS), a participant in the National 

Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program. Control subjects were selected 

through random telephone dialing and were frequency matched to cases on race and 5-year age group. In total, 

1031 women (504 cases and 527 controls) were willing to complete a detailed, in-person interview and to provide 

DNA samples. Among the 1031 women, the largest subpopulation was white smokers: 177 controls and 339 cases 

(n=516). Eleven polymorphisms were considered, and all nonbinary polymorphisms were represented by a binary 

variable coding a dominant effect of these polymorphisms. Supplementary Table I details the distribution of 

genetic polymorphisms evaluated and the estimated ORs and adjusted ORs for white women who had ever 

smoked (n=516). Demographic and environmental data were also measured at baseline. The variables included in 

these analysis were age, pack-years of smoking, use of hormone replacement therapy (ever/never), family history 

of lung cancer in a first degree relative (yes/no), personal history of chronic obstructive lung disease (yes/no), 

education completed in years, and body mass index (BMI). For better comparison of logic regression with 

classification tree, random forests and logistic regression methods, binary variables were created for three 

continuous variables: body mass index, pack-years of cigarette smoking, and education in years. The results from 

CART analysis were used as respective cut-off values. Pack-years of cigarette smoking were divided in two with 

a cut-off of 18.5 packs per year, while body mass index and years of education were dichotomized at 25 and 14.5, 

respectively. Supplementary Table II shows demographic and environmental characteristics for white women who 

had ever smoked (N=516). 
 

Results: Two logistic regression, a logic regression and classification tree, and random forests methods were 

applied to identify a panel of genetic and environmental risk factors that are associated with lung cancer risk. Five 

models from four methods were developed: (1) a logistic regression model including single factors (no interaction 

effects, Model 1), (2) a logistic regression model including interaction terms (Model 2), (3) a classification tree 

model (Model 3), (4) a logic regression model (Model 4), and (5) random forest model (Model 5). The endpoint 

for all four methods was lung cancer status of study subjects, which had a value 1 for cases and 0 for controls. 

Predictor variables considered were 11 polymorphisms and 7 environmental risk factors.  
 

Logistic regression: Two logistic regression models were considered to select the best combination of risk factors 

using a stepwise variable selection procedure to identify important genetic and environmental risk factors 

associated with lung cancer. Single factors selected by stepwise logistic regression are listed in Table II (denoted 

by Model 1).  
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The factors were family history of lung cancer, history of chronic obstructive lung disease, pack-years of cigarette 

smoking, and body mass index as environmental risk factors associated with lung cancer and XRCC1 A/A 

genotype as the genetic risk factor associated with lung cancer. Model 1 revealed significant positive associations 

between lung cancer and (1) family history of lung cancer (OR=2.49 [1.37-4.51]), (2) history of chronic 

obstructive lung cancer (OR=2.01 [1.21-3.34]), (3) pack-years of cigarette smoking (OR=1.04 [1.03-1.05]), and 

(4) XRCC1 A/A genotype (OR=1.91 [1.01-3.60]). There was a negative association between body mass index and 

lung cancer (OR=0.93 [0.90-0.97]). Two SNPs in addition to XRCC1 A/A were selected in the final model, 

namely GSTM1 (P=0.14), and COMT A/G or G/G genotype (P=0.62) because the likelihood ratio test showed a 

better fit when these two variables were added into the final model. Interestingly, education years, history of 

chronic obstructive lung diseases, and hormone therapy use were not associated with lung cancer status. Model 2 

extended Model 1 by incorporating gene-gene, gene-environmental, or environmental-environmental interactions. 

Table III lists identified single and interaction genetic and environmental factors selected by a logistic stepwise 

selection method. The selected factors included (1) family history of lung cancer; history of chronic obstructive 

lung disease; education in years; pack-years of cigarette smoking; body mass index; GSTM1, GSTP1 A/A, or A/G 

genotype; and XRCC1 A/A genotype as single factors and (2) body mass index and education in years, pack-years 

of cigarette smoking and education in years, and body mass index and GSTM1 as two-way interaction factors. The 

-2 log-likelihood criteria for model fitting for both Model 1 and Model 2 were 517.8 and 488.5, respectively. The 

cross-validation errors are 0.255 for Model 1 and 0.2236 for Model 2 while AUC’s are 0.7948 and 0.8147 

respectively.   
 

Classification tree method: Classification tree method produced nine multiplicative interactions and identified 

four important multiplicative interactions (Figure 5). The target value was disease rate of lung cancer (number of 

cases/total number), and the overall disease rate was 65.7% (339/516). We believe that this disease rate was 

improved with appropriate further partitions, and a primary interest was to find the route that led to best disease 

rate. The classification tree analysis detected five environmental and genetic risk factors as important predictors 

associated with lung cancer: pack-years of cigarette, education years, body mass index, history of chronic 

obstructive lung disease, and CYP1B1 C/C genotype. Cigarette pack-years were the best predictor, and education 

was the second best predictor for lung cancer. For pack-years, the classification tree analysis yielded a split point 

(threshold) of 18.5 packs/year. This produced two subgroups with respective lung cancer disease rate of 24% 

(<18.5 pack-years) and 78% ( ≥18.5 pack-years). This latter subgroup was further partitioned on the basis of 

education, and the classification tree analysis yielded a split point (threshold) of 14.5 years of education. The 

resultant groups had lung cancer rates of 59% (education ≥14.5 years) and 81.5% (education <14.5 years). We 

verified the results produced by the classification tree method by using logistic regression models. Table IV 

shows results of multivariable logistic regression analyses for four effective pathways of genetic and 

environmental factors for lung cancer identification after adjusting for age, BMI, and family history of lung 

cancer. The P-values of all subgroup combinations except the third combination were statistically significant, 

indicating that the classification tree method for identifying important multiplicative interactions worked well. 

The lowest lung cancer disease rate (21%; n=102) was observed among of lighter smoking women (<18.5 pack-

years) and BMI >21.3, indicating that, for this subgroup, only 21% of White women who have ever smoked have 

lung cancer. This result corresponds to a (negative) likelihood ratio of 21%/66% = 0.32, indicating that the lung 

cancer risk in the entire study population was reduced to one-third among this subgroup. The cross-validation 

error is 0.2235 and AUC is 0.8159, which are slightly better than Model 2.  
 

Logic regression method: In order to determine best parameters of the simulated annealing algorithm, we 

examined the acceptance rates with different starting log-temperatures and looked at what level of ending 

temperature. We determined 3 as starting log-temperature and -1 as ending log-temperature. To find the best 

model, we used the cross-validation approach with 3 for the number of trees and 8 for the number of tree leaves. 

The cross-validation plot showed that the scores of ntree=1 and nleaves=6 resulted in the minimum score (data 

not shown). The logic regression identified a best model including a Boolean expression (Figure 6) of pack-years 

of cigarette smoking (packyrs) and (education level or CYP1b1 or history of chronic obstructive lung disease), 

and estimated the regression coefficient of logic regression as follows: 
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where Y is a disease status and L is the logic expression noted above. The cross-validation 

error was 0.2137, which was slightly better than two logistic regressions and classification 

tree method. The AUC was 0.8207, which was larger than that for logistic regression and classification tree 

methods.  
 

Random Forest: The random forests identified pack-years of cigarette smoking as the most important variable 

and education level as the second most important variable. Because our study did not have many variables, we 

applied 1000 for the number of trees and 5 for randomly preselected predictor variables for each split. The pack 

years variable was more than twice as high as education level. Education, history of chronic obstructive lung 

disease, BMI, GSTP1, and CYP1b1 were identified as relatively important variables. The interaction between 

pack-years of cigarette smoking and education was the second highest multifactor variable in significance; pack-

years was highest. Figure 7 shows the variable importance among single and multifactor variables. The top four 

single and multi-factors were the single factor of pack-years and three two-way interactions of pack-years and 

education, pack years and GSTP1, and pack-years and CYP1b1. The cross-validation error for random forests 

method was 0.1627, the smallest among all five models. The random forests method had the largest AUC 

(0.8267) as seen in Table V.  
 

Discussion 
 

This work aims to compare the effectiveness for identifying important genes or gene-gene and gene-

environmental interactions among four classification methods of logistic regression, classification tree, random 

forests, and logic regression models. We started with the assumption that a multigenic study increases the chance 

of detection of disease because it considers gene-gene interactions and gene-environmental interactions, and 

environmental-environmental interactions. Logistic regression models and a tree-based study are selected to 

perform this purpose since these are two of the most commonly used model building procedures. A logic 

regression model is also considered because it is a generalized regression model to produce the importance of 

interactions among disjointed pairs of risk factors. In addition to a classification tree which has been a popular 

nonparametric classifier in medical research during last a decade, random forests method is included because it is 

a generalized version of classification tree method by allowing multiple classification tree and averaging those 

results. An interesting in this study is to incorporate environmental factors into our three analysis models since it 

is reasonable to assume that inclusion of these factors would further improve the diagnostic ability.  
 

Table VI lists variables identified by each model. Throughout the five models, pack-years were the most 

dominant variable among both genetic and environmental risk factors. Education, chronic obstructive lung 

disease, and BMI were the second most dominant variables. GSTM1, CYP1b1, GSTP1, and XRCC1 were 

important polymorphisms as genetic risk factors. It is interesting that two logistic analyses identified GSTM1 and 

XRCC1 as important risk factors, but CART and random forests analyses identified only one polymorphism 

(CYP1b1) as an important risk factor. No genetic factors (GSTM1, XRCC1, or COMT) were identified by stepwise 

selection or by nonparametric methods. Based on our results, random forests showed the best performance while 

logic regression was second best. Classification tree method was slightly better than the two logistic analyses. For 

a model including single and two-way interactions, 64 degrees of freedoms were needed. Because each variable 

has around 10 samples, a model including two-way interactions is acceptable. However, 164 degrees of freedoms 

were necessary to consider three-way interaction terms, and we needed 329 degrees of freedoms for additional 

four-way interactions. It is not possible for a logistic model to include interactions equal to or less than four-way 

interactions because the number of variables exceeds the number of samples.  
 

In summary, logistic regression should not be used when the number of predictor variables is greater than the 

number of subjects, and a reduction of power results because the degrees of freedom increase dramatically 

including higher-order interactions in the model. The classification tree algorithm rapidly selects significant 

features resulting in a classification tree with binary split criteria, and enables automatic classification of lung 

cancer patients and control subjects on the basis of their individual genetic profile. Logic regression is a 

generalized regression methodology for predicting the outcome in classification and regression problems based on 

Boolean combinations of logic variables. Even though a logic regression is able to include continuous covariates, 

the predictors must be binary in order to be considered as a Boolean combination. This can be somewhat limiting 

when compared to other tree-based classifiers.  

LY 45.2133.1 +−=



International Journal of Applied Science and Technology                                                 Vol. 2 No. 7; August 2012 

276 

 

If a continuous variable is transformed into a dichotomous variable to apply logic regression, information about 

the variable be reduced, which might lead to loss of power in detecting important predictors. Nonetheless, several 

studies have shown that logic regression can be a good tool in identifying important SNP-SNP interactions 

[Kooperberg et al. 2005; Ruczinski et al, 2004]. As mentioned earlier, small changes in data lead to large changes 

in classification tree results, which produce instable results. Random forests method is an ensemble method, 

which reduces variability of trees by averaging multiple trees from bootstrapped data sets. Random forests have 

been widely applied in genetics and related disciplines within the past few years, because the approach applies to 

random subsets, which can be applicable with many more variables than observations (small subjects large 

predictor). This fact has added much to the popularity of random forests. Logistic regression analyses demonstrate 

the importance of each predictor to be able to explain the outcome variable. The odds ratios are a core statistic in 

logistic regression. Unfortunately, they do not provide information about relative priorities or importance among 

the predictive variables. Logic regression, classification tree, and random forests methods can answer this 

problem. In general, it is known that logistic regression and classification tree deliver very similar results with 

respect to the variables identified [Muller et al., 2008; Schwarzer et al., 2003]. Our work also supports this. All 

four methods have advantages and disadvantages in classification ability and practical applicability. Based on this 

study, random forests method shows best performance, but the complimentary application of four techniques 

seems to be an efficient procedure for better performance of analyzing and interpreting the results of multigenic 

studies.   
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Table 1: Resubmission errors, cross-validation errors and area under the curves from simulated data including 10 

SNPs and 1000 subjects using four different classifiers of logistic regression, classification trees, random forests, 

and logic regression. 
 

 Variables identified Resubmission 

Error 
Cross-

validation error 
AUC 
 

Logistic Regression snp1&snp2 
snp1&snp4 
snp2&snp3 
snp2&snp4 
snp3&snp4 

0.3350 0.3481 0.6836 

Classification Trees snp1&snp4&snp10 
snp1&snp2 
snp1&snp10 

0.3250 0.3257 0.6853 

Logic Regression snp1&snp2 
snp3&snp4  

0.2880 0.3220 0.7110 

Random Forests snp1&snp2 
snp3&snp4 

0.2200 0.2224 0.8795 

 

Table 2: Estimates of main effects for environmental and genetic risk factors from the most parsimonious model, 

white ever smoking women (Model 1). 

 

Table 3: Estimates of main and interaction effects for environmental and genetic risk factors from the most 

parsimonious model, white ever smoking women (Model 2) 

 

 

 OR (95% CI) p-value 

Age at diagnosis/interview 0.99 (0.98-1.02) 0.8972 
Family history of lung cancer 2.49 (1.37-4.51) 0.0026 
History of chronic obstructive lung disease 1.93 (1.19-3.12) 0.0068 
Pack years of cigarette smoking 1.04 (1.03-1.05) <0.0001 
Body mass index 0.93 (0.90-0.97) 0.0006 
XRCC1 A/A genotype 1.91 (1.01-3.60) 0.0474 
GSTM1 null 1.38 (0.90-2.12) 0.1402 
COMT A/G or G/G genotype 1.13 (0.70-1.82) 0.6197 

 OR (95% CI) p-value 

Family history of lung cancer 2.30 (1.24-4.27) 0.0083 
History of chronic obstructive lung disease 1.91 (1.12-3.26) 0.0169 
Pack years of cigarette smoking 1.02 (1.01-1.04) <.0001 
Body mass index (BMI) 0.71 (0.57-0.89) 0.0032 
Education 0.39 (0.23-0.65) 0.0003 
GSTM1 null 19.1 (1.91-191) 0.0121 
XRCC1 A/A genotype 1.94 (1.01-3.75) 0.0483 
GSTP1  A/A or A/G genotype 2.31 (1.15-4.64) 0.0181 
BMI and Education 1.02 (1.01-1.04) 0.0051 
BMI and GSTM1 0.91 (0.84-0.99) 0.0213 
Smoking and Education 1.004 (1.00-1.01) 0.0323 
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Table 4. Results of multivariable logistic regression analyses for four important combinations of genetic and 

environmental risk factors identified by classification tree methodsafter adjusting for age, BMI, family history of 

lung cancer, pack years of smoking, and obstructive lung disease history 
 

Node Subgroup Prevalence in 

percentage 

(case/total) 

Likelihood ratio 

over overall 

average 

prevalence 

p-value using 

logistic 

regression 

models * 
1 Packs in years greater than 18.5, 

education years less than 14.5, body 

mass index less than 29.26 

86%(213/248) 86%/66%=1.30 0.0004 

2 Packs in years greater than 18.5, 

education years greater than 14.5,  
CONDOBST=0, CYP1B1=1 or 2, body 

mass index greater than 25.28  

85% (11/13) 85%/66%=1.29 0.0079 

3 Packs in years greater than 18.5, 

education years greater than 14.5,  
CONDOBST=1 

81% (13/16) 81%/66%=1.23 0.3238 

4 Packs in years greater than 18.5, 

education years greater than 10.5 and 

less than 14.5, body mass index greater 

than 29.26  

76% (56/74) 76%/66%=1.15 0.0252 

* adjusted by age, BMI, family history of lung cancer  
 

Table 5: Cross-validation errors and area under the curves from five different models of two logistic regressions, 

classification trees, random forests, and logic regression. 
 

 Models Pathways Cross-

validation error 
AUC 
 

Model 1 Logistic Regression Single variables 0.2255 0.7948 

Model 2 Logistic Regression Two-way 

interactions 
0.2236 0.8147 

Model 3 Classification trees 
 

Multi-way 

interactions 
0.2235 0.8159 

Model 4 Logic Regression Multi-way 

interactions 
0.2137 0.8207 

Model 5 Random Forests Multi-way 

interactions 
0.0627 0.8267 

 

Table 6. Variable list identified by each model. 
 

 Environmental risk factors Genetic risk factors 

Mode

l 
bm

i 
packyr

s 
Famhis

t 
condobs

t 
educatio

n 
CYP1b

1 
GSTM

1 
GSTP

1 
CYP1A

1 
XRCC

1 
COM

T 
1 √ √ √ √   √   √ √ 
2 √ √ √ √ √  √ √  √  
3 √ √  √ √ √      
4  √  √ √ √   √   
5  √   √ √  √    
Model 1 (logistic regression with single factors), Model 2 (logistic regression with two-way interactions), Model 

3 (classification trees model), Model 4 (logic regression), and Model 5 (random forests method). 
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Figure 1. A plot of the relationship between the cost-complexity parameter (cp) and cross-validation error (x-val 

Relative Error), and tree size (size of tree). The dashed horizontal line represents one standard deviation of the 

minimum cross-validation error. 
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Figure 2.Classification tree analysis of simulated data set including genetic risk factors and environmental 

factorsshowing cut-off values for snp10, snp1, snp2, snp3, and snp4. The target variable is the prevalence and the 

analysis produces seven terminals. The prevalence in the entire population was 48.6% (486/1000), and the first 

split is performed on snp10. This produces two subgroups with respective prevalence of 40.1% (227/566) and 

59.7% (259/434).We investigated the subgroups with higher prevalence than the entire population. Among seven 

terminal nodes, only three were higher in prevalence than the entire population: the combination of snp10=1, 

snp1=0, snp3=1 and snp4=1 shows the highest prevalence (71.3%), the combination of snp10=0, snp1=1 and 

snp2=1 has the second highest prevalence (69.6%), the combination of snp10=1 and snp1=1 shows 66.9% in 

prevalence. 
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Figure 3.(a) Variable importance plot on all SNPs. The importance values for all SNPs were calculated to assess 

the relevance of each variable over all trees of the ensemble. The plot showed the first four variables were more 

valuable than the other SNPs because the first four had the higher importance values; (b) A plot of out-of-bag 

error rates against the number of variables used. The plot showed that the four variable models had the smallest 

error rate.  
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Figure 4.This is a logic tree of )( 21 snpsnp ∩ or )( 43 snpsnp ∩ , and the coefficient of the logic tree is 1.8126. 

 
Figure 5. Classification tree analysis of environmental and genetic risk factors for lung cancer showing cut-off 

values for cigarette packs a year, education years, body mass index, chronic obstructive disease history, and 

CYP1B1 C/G or G/G genotype. The target variable is the prevalence and the analysis produces nine terminals. 

The prevalence in the entire population was 65.7% (339/516), and the first split is performed on cigarette packs a 

year with a split point of 18.5 packs/year. This produces two subgroups with respective prevalence of 24% 

(29/119) and 78.1% (310/397). 
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Figure 6. The plot shows the tree of the Boolean expression, which includes a tree of cigarette smoking (packyrs) 

and (education level or CYP1b1 or history of chronic obstructive lung disease).  

 

 
 

Figure 7. The variable important among single and multi-factors variables. The left dashed line is a cut-off for top 

4 variable(s) in the variable important values, while the dashed right line indicates variables on top 14 in the 

variable importance. The single and multi-factors of top 4 variable important were a single factor of pack years of 

cigarette smoking, and three two-way interactions of pack years of cigarette smoking and education, pack years of 

cigarette smoking and GSTP1, and pack years of cigarette smoking and CYP1b1.  

 
 


