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Abstract 
 

The Bangkok metropolitan area (BMA) is one of the regions experiencing rapid urbanization that has resulted in 
remarkable the urban thermal environment problems, which will be sure to influence the regional climate, 

environment, and socio-economic development. In this study, LANDSAT Thematic Mapper (TM) imagery from 

1994, 2000 and 2009, were utilized to assess urban area thermal characteristics by investigating the relationships 

between the land surface temperature (LST) and the Normalized Difference Vegetation Index (NDVI). It was 

found that average surface temperature (MeanS.D.) in the BMA was about 26.015.89˚C in 1994, but this 

difference jumped to 37.762.84˚C in 2000 and further to 39.792.91˚C in 2009, respectively. This could lead to 

an intensified urban thermal effect in the urban areas. Overall, remote sensing technology was effective 
approaches for aiming at environment monitoring and analyzing urban growth patterns and evaluating their 

impacts on urban climates. 
 

Keywords: Urban heat island (UHI); Land surface temperature (LST); Normalized Difference Vegetation Index 

(NDVI); Landsat Thematic Mapper (TM) 
 

1. Introduction 
 

Urbanization transforms the natural landscape to anthropogenic urban land and changes surface physical 
characteristics. Of these effects, one of the most important is surface temperature variation. Land surface 

temperature is very important to the study of urban climates (Voogt&Oke, 2003). It modifies the air temperature 

of the atmospheric boundary layer and is a key component in the surface energy balance. Change in urban land 
surface temperature can have significant effects on local weather and climate (Kalnay&Cai, 2003; Landsberg, 

1981). By covering the landscape with buildings, roads, parking lots, and other paved surfaces, urban areas 

usually have higher solar radiation absorption and a greater thermal conductivity and capacity for releasing heat 

stored during the day at night. This procedure generally leads to a modified climate that is warmer than the 
surrounding rural areas and is referred to as an urban heat island (UHI) (Voogt&Oke, 2003). The higher 

temperatures in urban heat islands increase air conditioning demands, raise pollution levels, and may modify 

precipitation patterns. As a result, the magnitude and pattern of UHI effects have been major concerns of many 
urban climatology studies. 
 

UHI have long been studied by ground-based observations taken from fixed thermometer networks or by traverses 

with thermometers mounted on vehicles. With the advent of thermal remote sensing technology, remote 
observation of UHI became possible using satellite and aircraft platforms and has provided new avenues for the 

observation of UHI, to perform land cover classifications and as input for models of urban surface atmosphere 

exchange. Voogt and Oke (2003) suggested three major applications of thermal remote sensing to the study of 
urban climates. Two of them focus on examining relations either between spatial structure of urban thermal 

patterns and urban surface characteristics or between atmospheric and surface heat islands; the third is centered on 

studying urban surface energy balances by coupling urban climate models with remotely sensed data. Our study 
addresses the first application area.  
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Rao (1972) was the first to demonstrate that urban areas could be identified from the analyses of thermal infrared 
data acquired by a satellite. Gallo et al. (1995) reviewed and represented a satellite perspective on the assessment 

of UHI. Studies on the UHI phenomenon using satellite derived land surface temperature (LST) measurements 

have been conducted primarily using NOAA AVHRR data (Gallo & Owen, 1998a,b; Streutker, 2002) for 
regional-scale urban temperature mapping. Recently, Landsat Thermatic Mapper (TM) and Enhanced Thermatic 

Mapper Plus (ETM+) thermal infrared (TIR) data with 120 m and 60 m spatial resolutions, respectively, have also 

been utilized for local-scale studies of UHI (Chen,Wang, & Li, 2002; Weng, 2001). Research on LST showed that 

the partitioning of sensible and latent heat fluxes and thus surface radiant temperature response was a function of 
varying surface soil water content and vegetation cover (Owen et al., 1998). This finding encourages research on 

the relationship between LST and vegetation abundance (e.g. Gallo & Owen, 1998a,b; Weng, 2001; Weng et al., 

2004). 
 

UHI intensity is related to patterns of land use/cover changes (LUCC), e.g. the composition of vegetation, water 
and built-up and their changes. Hawkins et al. (2004) studied the effect of rural variability in calculating the urban 

heat island effect. Qualitative studies on the relationship between land use/cover pattern (LUCP) and LST will 

help us in land use planning. It is known that various vegetation indices obtained from remote sensing images can 

be used in the assessment of vegetation cover qualitatively and quantitatively (Tian & Xiangjun, 1998). 
Relationships between various vegetation indices and percent vegetation cover have been established by using 

regression analysis (Purevdorj, Tateishi, Ishiyama, & Honda, 1998), such as Ratio Vegetation Index (RVI), 

Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI) and Perpendicular 
Vegetation Index (PVI). The NDVI has been used for the estimation of vegetation productivity and rainfall in 

semiarid areas (Chen et al., 2004; Wang et al., 2004). It is possible that the utilization of LST and NDVI could 

represent land-cover types quantitatively so that the relationships between NDVI and temperature can be 
established in UHI studies. 
 

The purpose of our study is to examine the changes in land use/cover pattern in a rapidly changing area of the  
Bangkok Metropolitan Area (BMA) in relation to urbanization since the 1994 and then to investigate the impact 

of such changes on the intensity and spatial pattern of the UHI effect in BMA. We used NDVI indices to extract 

land use/cover information from remote sensing images of different time periods and then analyzed the surface 
temperature retrieved from the thermal infrared band. The specific objectives of this research are: (1) to derive 

brightness temperature from the Landsat TM thermal band for the period 1994, 2000 and 2009; (2) to examine the 

spatial pattern of the land use/cover index values and their changes over the study period; (3) to investigate the 

relationship between brightness temperature and land use/ cover pattern (LUCP) in the BMA ; and (4) to 
quantitatively study the relationship between the intensity of UHI and LUCP and how it has changed over time. 

 

2.The Study Area 
 

Bangkok is the capital of Thailand and is among the larger cities in Asia, with an estimated unofficial population 
well in excess of 10 million people. As an economic magnet, Bangkok’s population is continually increasing 

through in-migration from the Thai countryside. This rapid rise in population, capital investment, factories and 

employees in Bangkok city have caused the community numbers to increase leading to the development of road 

networks, real estate developments, land value and advanced technologies which has resulted in expansion of the 
city to the surrounding areas (Fig.1). This rapid urbanization has led to several environmental problems such as 

air pollution, water pollution, land subsidence as well as the effect of urban heat island.  
 

Furthermore, as cities continue to grow in both population and physical size, these urban–rural differences in 

temperature also increase as reported by long-term temperature records. Boonjawat et al. (2000) found an increase 

of 1.23 ˚C in lowest air temperature in the UHI of Bangkok for the last 50 years and the peak temperature of 
metropolitan such as Bangkok can be higher than the surroundings by 3.5 ˚C is detected during clear and clam 

night in dry season. Increased temperatures due to the UHI effect may increase water consumption and energy use 

in urban areas and lead to alterations to biotic communities (White, Nemani, Thornton, &Running,2002). 
Kiattiporn et al. (2008) found an increase in 1˚C of the temperature will result in an increase of 6.79% electricity 

consumption in BMA. Excess heat may also affect the comfort of urban dwellers and lead to greater health risks 

(Poumadere, Mays, LeMer,&Blong,2005).  
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In addition, higher temperatures in urban areas increase the production of ground level ozone which has direct 

consequences for human health (Akbari, Rosenfeld, Taha,&Gartland, 1996; Akbarietal., 2001). It is, therefore, 

analyzing patterns of UHI in BMA and its relationship with urban surface characteristics is significant to 

understand in order to lessen the ever worsening urban climate problem in the region. 
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Fig.1. Location of the Bangkok Metropolitan Area (BMA), Thailand 

 

3. Methods 
 

3.1. Image pre-processing 
 

Landsat data from two different years were obtained. Landsat thematic mapper (TM) images acquired on March 
5

th
, 1994, February 18

th
, 2000 and April 25

th
, 2009 were geo-referenced to a common UTM coordinate system 

based on the rectified high resolution QuickBird image, aerial photograph and the 1:50,000 scale topographic 

maps. Using the radiometric correction method of Schroeder et al. (2006), the original digital numbers of bands 
1–5 and 7 images were converted to at-satellite radiance, at satellite reflectance, and further converted to surface 

reflectance. While bands 1 through 5 and band 7 are at a spatial resolution of 30 m., the thermal infrared band 

(band 6) comes at an original spatial resolution of 120 m. for Landsat 5 TM images.  
 

3.2. Image classification 
 

In order to examine the impacts of human activities on regional scale, a land cover classification is necessary for 

detection of LULC during the rapid urbanization since the 1994s. In this study, the Landsat Thematic Mapper 

(TM) data acquired on 1994, 2000 and 2009 were used. The categories include: (1) urban or built-up area, (2) 
vegetated areas (including the forest, farmland, and shrub), (3) water bodies (mainly including rivers, creeks, 

ponds, and lakes) and (4) Other (bare land).  
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This study requires the detection of fine changes in surface reflectances, radiometric correction became necessary. 
A supervised signature extraction with the maximum likelihood algorithm was employed to classify the Landsat 

images. Both statistical and graphical analyses of feature selection were conducted, and bands 2 (green), 3 (red), 

and 4 (near infrared) were found to be most effective in discriminating each categories and thus used for 
classification. Training site data were collected by means of on-screen selection of polygonal training data 

method, was chosen for each image to ensure that all spectral classes constituting each land use and land cover 

category were adequately represented in the training statistics. The accuracy of the three classified maps was 

checked with a stratified random sampling method, by which 50 samples were selected for each land use and land 
cover category. The reference data was collected from field survey or from existing land use and cover maps that 

have been field-checked. Largescale aerial photos were also employed as reference data in accuracy assessment 

when necessary. 
 

3.3. Derivation of LST and NDVI  from Landsat TM imageries 
 

3.3.1. Derivation of land surface temperature 
 

LST is the radiative skin temperature of the land surface, which plays an important role in the physics of the land 

surface through the process of energy and water exchanges with the atmosphere. The derivation of LST from 
satellite thermal data requires several procedures: sensor radiometric calibrations, atmospheric and surface 

emissivity corrections, characterization of spatial variability in land-cover, etc. As the near-surface atmospheric 

water vapour content varies over time due to seasonality and inter-annual variability of the atmospheric 

conditions, it is inappropriate to directly compare temperature values represented by the LST between multiple 
periods. Therefore the focus here is on the UHI intensity and its spatial patterns across the study region. UHI 

intensity is estimated as the difference between the peak temperatures (LST) of the urban area and the 

background non-urban temperatures (Chen et al., 2006). This UHI effect can be determined for the individual 
thermal images and then compared between two or more periods. However, before we compute UHI effect, we 

must first derive the LST based on methods for ETM+ images. 
 

As described above the Landsat TM thermal infrared band (10.4–12.5 m) data were used to derive the LST. 
Yuan and Bauer (2005) proposed a method of deriving LST in three steps: Firstly, the digital numbers (DNs) of 

band 6 are converted to radiation luminance or top-of-atmospheric (TOA) radiance ( L , mW/(cm
2
 sr·m) using 

(Eq. [1]) (Chander & Markham, 2003): 
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Where DN is the pixel digital number for band 6, maxQCAL = 255 is Maximum quantized calibrated pixel value 

corresponding to maxL , minQCAL = 0 is Minimum quantized calibrated pixel value corresponding to minL , maxL  = 

17.04 (mW/cm
2
sr·m) is spectral at-sensor radiance that is scaled to maxQCAL and minL = 0 (mW/cm

2
sr·m) is 

spectral at-sensor radiance that is scaled to minQCAL . 
 

Secondly, the radiance was converted to surface temperature using the Landsat specific estimate of the Planck 

curve (Eq. [2]) (Chander & Markham, 2003): 
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Where kT  is the temperature in Kelvin ( K ), 1K  is the prelaunch calibration of constant 1 in unit of W/(m
2
 

sr·m) and 2K  is the prelaunch calibration constant 2 in Kelvin. For Landsat TM, 1K  is about 607.76 W/(m
2
 

sr·m) and 2K  is about 1260.56 W/(m
2
 sr·m) with atmospheric correction (Barsi et al., 2003).  The final 

apparent surface temperature on Celsius (˚C) can be calculated the following equation: 
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15.273 kc TT                           [3] 

  

Where cT  is the temperature in Celsius (˚C), kT  is the temperature in Kelvin ( K ).  
 

3.3.2. Derivation of normalized difference vegetation index 
 

Normalized difference vegetation index (NDVI) may be used as an indicator of biomass and greenness (Myneni et 

al., 2001; Chen and Brutsaert, 1998). When standardized, it may also be used as a method for comparing 

vegetation greenness between satellite images (Gillies et al., 1997; Weng and Lo, 2001). The index value is 
sensitive to the presence of vegetation on the Earth’s land surface, and is also highly correlated with climatic 

variables, such as precipitation (Schmidt and Karnieli, 2000). In this study, NDVI were used to examine the 

relationship between LST and greenness. NDVI were calculated as the ratio between measured reflectance in the 

red and near infrared (NIR) spectral bands of the images using the following formula: 
 

redNIR

redNIR

RR

RR
NDVI




                    [4] 

 

Where NIRR  and redR  are spectral reflectance in Landsat TM red (band3) and near-infrared (band4) bands. 

Calculations of NDVI for a given pixel always result in a number that ranges from minus one (-1) to plus one 

(+1); however, no green leaves gives a value close to zero. A zero means no vegetation and close to +1 (0.8 - 0.9) 

indicates the highest possible density of green leaves. 
 

These indices could be used to classify different land use/cover types (e.g., vegetation, water, built-up), Index 

value ranges for these land-cover types are not constant, which will have little changes in different regions or in 
different conditions of atmosphere and precipitation. Sometimes, several indices are integrated to differentiate 

different land use/cover types. 
 

4. Result and Discussion 
 

4.1. Land use/cover patterns and changes  in BMA 
 

In Bangkok, the expansion of urban land use is characterized by unplanned, sprawl and ineffectively regulated. 

Such a rapid growth in terms of population and economic activities took place in horizontal manner to the 

provinces surrounding Bangkok, causing degradation of agricultural areas. Agricultural land was converted to 

urban uses as Bangkok expanded along three major transport corridors to the southwest, southeast and north of 
the city. Three dates of fraction images were classified into three thematic maps. Figs. 2 show the classified maps.  

Conversion of other LULC types into urban/built-up land was further illustrated in Table 1 breaks down LULC 

changes. In the Bangkok Metropolitan Area (BMA) (1,576.10 sq. km.), urban/built-up land increased by almost 
three times from 1994 to 2009, which grew from 15% in 1994, to 33% in 2000, leveling out in 2009 to 42% of the 

total area (Fig.2). In contrast, a pronounced decrease in the vegetated area was discovered from 1994 (72%), 2000 

(49%) and 2009 (40%), respectively. This decrease was also evident between 1994 and 2000, when vegetated area 

was further shrunk by 353.57 sq.km. or about 22% of the total area, was converted to other land use.  
 

Most of the urban expansion resulted from the conversion of agricultural land, most of which involved land under 
rice cultivation. Urbanization negatively impacts the environment mainly by the production of pollution, the 

modification of the physical and chemical properties of the atmosphere. It is well-known that the progressive 

replacement of natural surfaces by built surfaces, through urbanization, constitutes the main cause of UHI 

formation. Natural surfaces are often composed of vegetation and moisture-trapping soils. Therefore, they utilize 
a relatively large proportion of the absorbed radiation in the evapotranspiration process and release water vapour 

that contributes to cool the air in their vicinity. In contrast, built surfaces are composed of a high percentage of 

non-reflective and water-resistant construction materials. As consequence, they tend to absorb a significant 
proportion of the incident radiation, which is released as heat, have been recognized as additional causes of the 

UHI effect. 
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Fig.2. Changes in LULC composition from 1994 to 2009 

 

Table.1 Land use/cover statistics (area in sq.km, percentage of the total study area) in BMA from 1994, 

2000 and 2009 
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Vegetated area

Built-up area

Area (Sq.km.)

1994
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2009

LULC Types  Year    Changes   

  1994 2000 2009  1994-2000 2000-2009 1994-2009 

Built-up area 

 
 

233.33 

(14.80%) 

519.87 

(32.98%) 

657.29 

(41.70%) 
 

286.54 

(18.18%) 

137.43 

(8.72%) 

423.96 

(26.90%) 

Vegetated area 

 
 

1,131.08 

(71.76%) 

777.52 

(49.33%) 

636.01 

(40.35%) 
 

-353.57 

(-22.43%) 

-141.51 

(-8.98) 

-495.07 

(-31.41%) 

Water bodies 

 
 

177.69  

(11.27%) 

207.36 

(13.16%) 

167.95 

(10.66%) 
 

29.67 

(1.88%) 

-39.40 

(-2.50%) 

-9.73 

(-0.62%) 

Other 
(bare land) 

 
34.00 
(2.16%) 

71.36 
(4.53%) 

114.84 
(7.29%) 

 
37.36 
(2.37%) 

43.48 
(2.76%) 

80.84 
(5.13%) 
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Figs.3. Land use/cover change in the study area from 1994 to 2009 

 

4.2 The impact of land use/cover changes on LST 
 

The digital remote sensing method provides not only a measure of the magnitude of surface temperatures of the 
entire metropolitan area, but also the spatial extent of the surface heat island effects. In this study, we selected 

three Landsat images, i.e., the Landsat 5 TM images on Mar. 5, 1994 (the early summer), Feb. 18, 2000 (the late 

winter) and Apr. 25, 2009 (the summer), respectively. It was found that average surface temperature (Mean 
S.D.) in the BMA was about 26.01  5.89˚C degree in 1994, but this difference jumped to 37.76  2.84˚C in 2000 
and further to 39.79  2.91˚C in 2009, respectively.  Figs. 4 show the increasing extent of LST over the study 

period. In 1994, the areas with higher surface radiant temperature were mainly located in the central urban area 

and the major district such as; Don Mueang airport district, Khlong Toei port district, also known as Bangkok 
Port was Thailand's major port for sea transportation of cargo, with a typical strip shaped associated with the 

traffic road systems. Within the urban central area, numerous sub-centers of LST with higher surface radiant 

temperature were mainly located in the old and recently developed downtowns at middle section of the Chao 
Phraya River.  
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The intensity of urban heat island was defined as the difference between average temperature of UHI area and that 
of rural area. The intensities of UHI for three dates were listed in Table 1. General patterns of UHI with a 

maximum LST difference of 8.16 ˚C between urban and rural areas in 1994, the difference jumped to 10.89 ˚C in 

2000 and further to 11.50 ˚C in 2009 and the changes were 2.76 ˚C and 0.61 ˚C for 1994–2000 and 2000–2009, 
respectively (Table 2). 

 
Figs.4. LST derived from Landsat TM (a,b,c) imagery for three different dates 
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Table.2: Descriptive statistics and intensity of urban heat island of study area for observed years 
 

Statistics LST1994 LST2000 LST2009 

Intensity of SUHI (˚C) 8.16 10.89 11.50 

Mean (˚C) 26.01 37.76 39.79 

Standard deviation (S.D.)  5.89 2.84 2.91 
 

Quantitatively, Table 3 shows the average LST and NDVI (mean ± S.D.) of each land use/cover type. Clearly, on 
two dates the built-up area that includes commercial, industrial and residential land exhibited the highest land 

surface temperature, followed by bare land. The vegetated area and water took third and fourth places, 

respectively. In comparison to the lower LST of each land cover type in 1994, increasing LST of each land cover 
type in 2000 and 2009 were detected; indicating seasonal variation should not be neglected when exploring the 

spatial and temporal pattern of UHI indicated by LST. However, differences in land surface temperatures 

reflected the impacts of land use changes on the thermal environment. Given the growing extent and magnitude of 
UHI on three dates, dramatic land use and cover changes in urban fringes and the major satellite towns 

exacerbated the regional UHI effect. 
 

4.2 The impact of land use/cover changes on greenness 
 

NDVI has been widely used as an indicator of vegetation abundance to estimate LST in studies of urban heat 

islands (Carson et al., 1994; Gillies and Carlson, 1995; Weng et al., 2004). In this study, NDVI and LST were 
found to be closely correlated in several LULC categories, especially in vegetated areas (Table 3). Generally, 

urban areas exhibit smaller NDVI values than non-urban areas, with consistent decrease in the mean NDVI as the 

mean LST increases. Indeed there is a consistent decline in NDVI with increase level of urban development. 
NDVI maps for the three dates are shown in Figs. 3. From 1994 to 2009, it was found that average NDVI (mean

 S.D.) in the BMA was about 0.304 0.353 in 1994 (the early summer), but this difference decreased to 0.146

 0.253 in 2000 (the late winter) and further to 0.016 0.200 in 2009 (the summer), respectively. This explains 
the fact that there was less vegetation cover interspersed within the developed areas in 2009 in comparison to 

2000 and 1994, because vegetation landscapes in urban areas are interspersed with the variegated developed urban 

structures.  
 

A sample with 6,620 randomly generated points was used to investigate the relationships of LST to NDVI for 

various LULC types. This explains the pattern between LST and NDVI in the scatter plots of Figs. 8; it appears 

there are at least two different areas, are not straightforward: When NDVI <-0.5 for March 1994, <-0.35 for 
February 2000 and <-0.2 for Aprils 2009 imagery, respectively (the relationships between the mean LST and 

mean NDVI graphed in Fig. 9), which represents heterogeneous effects from diverse non-vegetated areas of urban 

surfaces, non-vegetated wetland, and bare soil, no stable trend can be identified. In contrast, at higher NDVI 
values there is an inverse linear association with some variations at the highest NDVI levels on all three graphs, 

indicating there is a negative correlation between NDVI and LST from late winter to summer. However, the 

relationship tends to break down in the rural surroundings outside of Bangkok. In comparison to the other three 
period maps of NDVI (Figs.4 and 5) look very different with no evident association between the LST and the 

NDVI, which further implies using NDVI to understand LST is complicated since NDVI itself suffers strong 

seasonal changes. 
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Figs.5. NDVI derived from Landsat TM (a,b,c) imagery for three different dates 
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Figs.6. Spatial distribution patterns of LST in the Rattanakosin Island from the TM images acquired on (a.) 1994, 

(b.) 2000, and (c.) 2009 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Figs.7. Spatial distribution patterns of NDVI in the Rattanakosin Island the TM images acquired on (a.) 1994, (b.) 
2000, and (c.) 2009 
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Table.3: Average LST (˚C) and NDVI (mean ± S.D.) for various land uses/cover types 
 

LULC Types 1994   2000   2009  

 LST NDVI  LST NDVI  LST NDVI 

Built-up area 35.68±5.32 -0.137±0.099  40.04±1.79 
-

0.283±0.105 
 41.51±1.64 -0.497±0.182 

Vegetated area 25.04±3.15 0.213±0.227  37.76±1.38 0.149±0.132  39.74±1.40 0.016±0.171 

Water bodies 22.48±2.53 -0.863±0.206  36.74±1.01 
-
0.556±0.218 

 38.18±0.94 -0.368±0.208 

Other 26.78±4.81 -0.691±0.192  37.06±1.21 
-

0.114±0.238 
 39.03±0.92 0.103±0.076 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Figs.8. Scatterplots of LST versus NDVI for various LULC types of three different dates (a.) 1994, (b.) 2000, and 

(c.) 2009 

 

 
 

 

 
 

 

 

 
 

 

 
 

Figs.9. Relationship of mean LST versus mean NDVI (a.) 1994, (b.) 2000, and (c.) 2009 

 
Table.4: Pearson’s correlation coefficients between LST and NDVI for various land uses/cover types 
 

LULC Types 1994 2000 2009 

Built-up area -0.414* -0.391* -0.343* 

Vegetated area -0.311* -0.498* -0.556* 

Water bodies -0.012* -0.019* -0.032* 

Other (bare land) -0.054* -0.033* -0.041* 

*Significant at P=0.05 
   

 

 

(a.) (b.) (c.)

(a.) (b.) (c.)
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Pearson’s correlation coefficient of LST in 1994 to 2009, were negatively correlated with NDVI for all LULC 

categories in third years (Table.4). This significant negative correlation between LST and NDVI implied that the 

higher biomass a land cover had, the lower its LST was. This relationship has determined that due to the 

associated changes in NDVI, changes in LULC would have an indirect impact on LST. 

 

5. CONCLUSIONS 

 
This study has examined LULC changes in Bangkok metropolitan area, Thailand, from 1994 to 2009. The 

results indicate that urban/built-up areas expanded dramatically, while agricultural land declined. This decrease 

was also evident between 1994 and 2000, when vegetated area was further shrunk about 22% of the total area, 
was converted to other land use. The observed changes in LULC were largely attributed to population pressure on 

the land, a rapidly growing economy, poor land use planning, and the inconsistency in the governmental policies. 

Changes in LULC were accompanied by changes in LST. From 1994 to 2000, the urban or built-up surface 

temperature climbed, and continued to increase in BMA between 2000 and 2009. Moreover, temperature 
differences between the urban/built-up and the surrounding rural areas significantly widened. This could lead to 

an intensified urban heat island effect in the urban areas. The abundance of vegetation was an important factor 

influencing LST. This demonstrated that the decrease of biomass primarily triggered the impacts of urban 
expansion on LST. The application of remote sensing and GIS proved to be an efficient way to detect LULC and 

to evaluate its effect on LST. This made it possible to investigate the impacts of human activities on the 

environment as done in this study. In future studies, there is the need to focus on: (i) evaluation of the impact of 
the urban morphology on urban climate, and (ii) explore the relationship between urban planning (For example, 

green cover ratio and floor area ratio ) indicators and climate indicators. 
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