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Abstract 
 

In this paper we  identify the most efficient ARCH-type model that can be applied to the Nairobi  stock exchange 

data for forecasting and prediction of volatility which in turn is important in pricing financial derivatives, 

selecting portfolios, measuring and managing risks more accurately. The establishment of an efficient stock 
market is indispensable for an economy that is keen on utilizing scarce capital resources to achieve its economic 

growth. The purpose of this study was to determine the most efficient model from the symmetric and the 

asymmetric GARCH models. The models were evaluated by use of the Shwartz Bayesian Criteria (SBC), Akaike 
Information Criteria (AIC) and the Mean Squared Error (MSE). The results show that the AR-Integrated GARCH 

(IGARCH) models with student’s t-distribution are the best models for modelling volatility in the Nairobi Stock 

Market data.  
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1.0 Introduction 
 

Stock market volatility is one of the most important aspects of financial market developments, providing an 

important input for portfolio management, option pricing and market regulation (Poon and Granger, 2003). An 

investor’s choice of a portfolio is intended to maximize the expected return subject to a risk constraint, or to 

minimize his risk subject to a return constraint. An efficient model for forecasting of an asset’s price volatility 
provides a starting point for the assessment of investment risk. To price an option, one needs to know the 

volatility of the underlying asset. This can only be achieved through modelling the volatility. Volatility also has a 

great effect on the macro-economy. High volatility beyond a certain threshold will increase the risk of investor 
loses and raise concerns about the stability of the market and the wider economy (Hongyu and Zhichao, 2006). 
 

Financial time series modelling has been a subject of considerable research both in theoretical and empirical 

statistics and econometrics. Numerous parametric specifications of ARCH models have been considered for the 
description of the characteristics of financial markets. Engle (1982) introduced the Autoregressive Conditional 

Heteroscedasticity (ARCH) for modelling financial time series while Bollerslev (1986) came up with the 

Generalized ARCH (GARCH) to parsimoniously represent the higher order ARCH model while Nelson (1991) 
introduced the Exponential GARCH to capture the asymmetric effect.  
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Other specifications of the GARCH model includes: the TGARCH introduced by Zakoian (1994), IGARCH by 

Engle and Bollerslev (1986), the Quadratic GARCH (QGARCH) model introduced by Sentana (1995), the GJR 
model by Glosten et al., (1993) just to mention but  a few.  
 

The Sub-Saharan Africa has been under-researched as far as volatility modelling is concerned. Studies carried out 
in the African stock markets include, Frimpong and Oteng-Abayie (2006) who applied GARCH models to the 

Ghana Stock Exchange, Brooks et al., (1997) examined the effect of political change in the South African Stock 

market, Appiah-Kusi and Pascetto (1998) investigated the volatility and volatility spillovers in the emerging 
markets in Africa. More recently, Ogum et al., (2006) applied the EGARCH model to the Kenyan and Nigerian 

Stock Market returns. From the available literature, the NSE just like other Sub Saharan Africa Equity Markets 

has been under-researched as far as market volatility is concerned and therefore this study contributes to the small 

literature available on the Nairobi stock market. 
 

There is a significant amount of research on volatility of stock markets of developed countries. The focus of 

financial time series modelling has been on the ARCH model and its various extensions thereby ignoring the 
aspect of efficiency within the ARCH-type of models. As a matter of fact, the subject of the efficiency of the 

models for financial modelling has received little attention as far as econometric modelling is concerned. This 

study therefore aims at finding the most efficient model from amongst the autoregressive conditional 

heteroscedasticity class of models. The remainder of this paper is arranged as follows; section 2 presents the 
properties of financial data, section 3 gives an overview of the ARCH-type models considered in this paper, in 

section 4 we present the results and discussions, section 5 highlights the summary and conclusions while section 6 

contains the references. 
 

2.0 Properties of Financial Data  
 

Financial time series data often exhibit some common characteristics. Fan and Yao (2003) summarizes the most 
important features of financial time series as: The series tend to have leptokurtic distribution, i.e they have heavy 

tailed distribution with high probability of extreme values. In addition, changes in stock prices tend to be 

negatively correlated with changes in volatility, that is; volatility is higher after negative shocks than after positive 
shocks of the same magnitude. This is referred to as the leverage effect.  The sample autocorrelations of the data 

are small whereas the sample autocorrelations of the absolute and squared values are significantly different from 

zero even for large lags. This behaviour suggests some kind of long range dependence in the data. The 

distribution of log returns over large periods of time (such as a month, a half a year, a year) is closer to a normal 
distribution than for hourly or daily log-returns. Finally, the variances change over time and large (small) changes 

of either sign tend to be followed by large (small) changes of either sign (Mandelbrot, 1963). This characteristic is 

known as volatility clustering. These are facts characterizing many economic and financial variables. 
 

Researchers have applied different models to the stocks data from time to time. Mandelbrot (1963) utilized the 

infinite variance distributions when considering the models for stock market price changes. Fama (1965) similarly 

pointed out initially, their application in cases of economics particularly in modelling stock market prices. Fama 
et al., (1969) used a random walk to model the price changes. Andrew and Whitney (1986) tested the random 

walk hypothesis for weekly stock market returns by comparing the variance estimators. Here the random walk 

model was strongly rejected.  In recent studies, various specifications of ARCH models have been considered for 

the description of the characteristics of financial markets. Some studies in which ARCH-type models were 
utilized include; Gary and Mingyuon (2004) who applied the GARCH model to Shanghai Stock Exchange, 

Bertram (2004) modelled Australian Stock Exchange using ARCH models and Baudouhat (2004) used the 

GARCH model in analyzing the  Nordic financial market integration. In addition, Curto (2002) employed the 
GARCH model to explain the volatility of the Portuguese equity market, Walter (2005) applied the structural 

GARCH model to portfolio risk management while Frimpong and Oteng-Abayie (2006) modelled the Ghana 

Stock Exchange volatility using the GARCH models. More over, Ogum et al., (2006) applied EGARCH model to 
the Kenyan and Nigeria daily stock market data. 
 

3.0 Autoregressive Conditional Heteroscedasticity (ARCH) models 
 

An ARCH process is a mechanism that includes past variances in the explanation of future variances (Engle, 

2004). Autoregressive describes a feedback mechanism that incorporates past observations into the present. 
ARCH models specifically take the dependence of the conditional second moments in modelling consideration.  
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This accommodates the increasingly important demand to explain and to model risk and uncertainty in financial 

time series (Degiannakis and Xekalaki, 2004; Engle, 2004; Fan and Yao, 2003). 
 

An ARCH process can be defined in terms of the distribution of the errors of a dynamic linear regression model. 

The dependent variable ty  is assumed to be generated by 

ttt xy    t =1,…,T       1 

where tx   is a kx1 vector of exogenous variables, which may include lagged values of the dependent variable and 

  is a kx1 vector of regression parameters. The ARCH model characterizes the distribution of the stochastic error 

t  conditional on the realized values of the set of variables ,...},,,{ 22111   ttttt xyxy . In practice, it is 

assumed that 

1/ tt  ~ ),0( thN  where 
22

110 ... qtqtth     with 0 >0 and qii ,...,1,0   to ensure that the 

conditional variance is positive (Engle’s (1982). An explicit generating equation for an ARCH process is 

 ttt h   where t  ~i.i.d N (0,1). Since th  is a function of 1t  and is therefore fixed when 

conditioning on 1t , it is clear that t  as will be conditionally normal with 0)/()/( 11   ttttt EhE   

and ttt hVar  )/( 1 , ttt hVar  )/( 1 .  

 

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model developed by Bollerslev (1986) 

is a generalized ARCH (GARCH) where the conditional variance is 

ptptqtqtt hhh    ...... 11

22

110
 with the inequality conditions 0 > 0 , 0i  for 

i=1,…,q, 0i  for i= 1,…,p to ensure that the conditional variance is strictly positive.  
 

When the parameter estimates in GARCH (p,q) models are close to the unit root but not less than unit, i.e 

1
11




q

j

j

p

i

i  , for the GARCH process, the multi-step forecasts of the conditional variance do not approach 

the unconditional variance. These processes exhibit the persistence in variance/volatility whereby the current 
information remains important in forecasting the conditional variance. Engle and Bollerslev (1986) refer to these 

processes as the Integrated GARCH or IGARCH and they do not possess a finite variance but are stationary in the 

strong sense (Nelson, 1990). The simplest GARCH(1,1) is often found to be the benchmark of financial time 
series modelling because such simplicity does not significantly affect the preciseness of the outcome.   
 

Another extension is the GARCH-M model developed by Engle et al., (1987) whose key postulate was that time 

varying premia on different term instruments can be modelled as risk premia where the risk is due to 

unanticipated interest rates and is measured by the conditional variance of the one period holding yield. The 

GARCH (1,1)-M model is presented as  tttt hyx   1  where tx  and th are defined as before while 1ty  

is a vector of additional explanatory variables. Just like the GARCH model, the GARCH-M is unable to capture 

asymmetric characteristics of financial data. The Exponential GARCH (EGARCH) models were introduced by 

Nelson (1991) in an attempt to address the two major limitations of the GARCH models.  Here the volatility 

depends not only on the magnitude of the shock but also on their corresponding signs. The non-negativity 
restrictions are not imposed as in the case of GARCH since the EGARCH model describes the logarithm of the 

conditional variance which will always be positive. The specification for the conditional variance (Nelson, 1991) 

is given as, 
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Note that ttt    where ~t i.i.d (0,1).  

The parameter ( i ) in equation (10) measures the impact of innovation on volatility at time t while parameter 

( i ) is the auto-regressive term on lagged conditional volatility, reflecting the weight given to previous period’s 

conditional volatility t. It measures the persistence of shocks to the conditional variance.  
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The stationarity requirement is that the roots of the auto-regressive polynomial lie outside the unit circle. For 

EGARCH (1,1) this translates into 1  <1 (Ogum et al., 2006). Unlike the linear GARCH, in the EGARCH model 

a negative shock can have a different impact compared to a positive shock if the asymmetry parameter i is non-

zero. 
 

Threshold GARCH models (TGARCH) were introduced by Zakoian (1994). The generalized specification of the 

conditional variance equation is given by, 




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where ttt h  and 1

tI , if 0t and zero otherwise. In this model, good news, 0it , and bad news 

0it  , have differential effects on the conditional variance; good news has an impact of i , while bad news 

has an impact of ii   . If 0i , bad news increases volatility while if 0i , the news impact is 

asymmetric. When the threshold term is set to zero, then equation (12) becomes a GARCH (p,q) model. 
 

4.0 Results and Discussions 
 

In this study, four sets of data consisting of the weekly average share prices for Bamburi Cement Ltd, National 
Bank of Kenya Limited (NBK), Kenya Airways (KQ) Ltd as well as the weekly average NSE 20 share index were 

used. The data was obtained from the Nairobi Stock Exchange (NSE) for the period between 3
rd

 June 1996 to 30
th
 

October 2011 for the company share prices while for the NSE 20-share index data was for period between 2
nd

 
March 1998 to 30

th
 October 2011. The NSE 20-share index is a weighted mean with 1966 as the base year at 100. 

It is based on 20 companies calculated on a daily basis. The index is useful in determining the performance of the 

NSE by measuring the general price movement in the listed shares of the stock exchange. Bamburi Cement, Ltd. 

was founded in 1951 and manufactures cement in sub-Saharan Africa. The Kenya Airways’ principal activities 
include passengers and cargo carriage. It was incorporated in 1977 as the East African Airways Corporation 

(EAA). The company was listed in the NSE in 1996 and has been a major player in the Nairobi stock market. The 

National Bank of Kenya Limited (NBK) was incorporated on 19
th
, June 1968 and officially opened on Thursday 

14
th
, November 1968. Its main objective was to help Kenyans to get access to credit and control their economy 

after independence.  
 

The preliminary analysis was done by use of time plots for the various series presented in Figures 1 and 2. 
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Figure 1: Time plots for the weekly average prices 
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A visual inspection of the time plots clearly shows that the mean and variance are not constant, implying non-

stationarity of the data. The non-constant mean and variance suggests the utilization of a nonlinear model and 

preferably a non-normal distribution for modelling the data.  
 

The series were transformed by taking the first differences of the natural logarithms of the values in each the 

series. The transformation was aimed at attaining stationarity in the first moment. The equation representing the 

transformation is given by )ln()ln( 1 ttt PPX ,where tP  represents the weekly average value for each series. 

The sequence plots for the returns are presented in Figure 2. 
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Figure 2: Time plots for log differenced series 
 

The basic statistical properties of the data show that mean returns are all positive and close to zero a characteristic 
common in the financial return series. All the four series have very heavy tails showing a strong departure from 

the Gaussian assumption. The Jarque-Bera test also clearly rejects the null hypothesis of normality. Notable is the 

fact that all the four series exhibit positive Skewness estimate. This means that there are more observations on the 
right hand side.  
 

The series having exhibited heteroscedasticity as shown by the time plots were tested for the ARCH disturbances 
using Engle’s (1982) Lagrange Multiplier (LM) while the Portmanteau Q test (McLeod and Li, 1983) based on 

the squared residuals was used to test for the independence of the series. Since both the Q statistic and the LM are 

calculated from the squared residuals, they were used to identify the order of the ARCH process. For all the return 

series, the Q statistics and the Lagrange Multiplier (LM) tests indicated strong heteroscedasticity for all the lags 
from 1 to 12.This suggested an ARCH model of order q=8. 
 

4.1 Empirical Results and Discussions 
 

4.1.1 ARCH models 
 

The first set of models implemented in this study was the original Engle’s (1982) ARCH models. The student’s t-
distribution and the General Error Distribution (GED) were tested for all the series. The student’s t distribution 

assumption provided a better model for NBK and KQ while the GED performed well for NSE Index and 

Bamburi. This could be due to the fact the financial data is highly heavy tailed and is better captured by the 

student’s t-distribution since the GED distribution has a higher peak than the student’s t-distribution. Although the 
GED distribution may be better able to capture peaks, it is far worse for capturing fat tails. The Jarque-Bera 

(1980) statistic also strongly rejected the normality assumption in the standardized residuals for all the series. The 

fitted models were adequate since their standardized residuals were not significantly correlated in all the four 
series basing on the Ljung-Box Q statistics. The squared residuals were also not significantly correlated for lags 

up to 12 for all the four series.  
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4.1.2 GARCH models 
 

The next class of models implemented was the GARCH models. The autoregressive models were applied to 
capture the autocorrelation present in the series. The GARCH models for different values of p and q were fitted to 

the data, diagnosed and from the diagnosis and goodness of fit statistics, the GARCH (1,1) was found to be the 

best choice. This is consistent with most empirical studies involving the application of GARCH models in 

financial time series data. The Maximum Likelihood Estimation (MLE) method was employed in the parameter 
estimation.  
 

The GARCH parameter estimates for the variance equation was significant for all the series except for the NSE Index in 

which α1 was not statistically significant. In the GARCH model, the parameters   and   must satisfy 111    for 

stationarity. However, the GARCH (1,1) estimates violated the restriction imposed i.e. in all cases, 111   . This 

implies that the fitted GARCH model is not weakly stationary and the conditional variance )( 2

t  does not approach the 

unconditional variance )( 2  and thus the series might not have finite unconditional variance. This calls for the 

implementation of Integrated GARCH (1,1) model since it is capable of being stationary in the strong sense even though 

111    (Nelson,1990).  
 

Two distributions were tested (i.e student’s t and GED) for the specific GARCH (p,q) model and the best 
distribution choice was determined based on the SBC, AIC and the Log likelihood Ratio test in all the cases (see 

Table 4.8). For the NSE index, the distribution of choice was the student’s t-distribution while for NBK, Bamburi, 

and KQ the Generalized Error Distribution was chosen. This shows that the NSE index data had fatter tails as 

compared to NBK, Bamburi and KQ. The model adequacy was checked using the Ljung-Box Q statistics for 
residuals and squared residuals in which the null hypothesis of no significant correlations was not rejected for all 

the series implying that the fitted models were adequate. The JB statistics rejected the null hypothesis of 

normality in the standardized residuals. This implies that the models with the respective distributions failed to 
normalize the residuals. The Goodness of fit statistics and Diagnostic tests are presented Appendix 2. 
 

4.1.3 Integrated GARCH (IGARCH) Model 
 

Since the parameter estimates in GARCH (1,1) models were close to the unit root but not less than unit, i.e 

1
11




q

j

j

p

i

i  ,the IGARCH model was fitted. The MLE method was utilized for parameter estimation for 

the mean and variance equations. 
 

The parameter estimates for the variance equation were statistically significant at 0.05 significance level in all the 

series. In addition, 111    for all the cases; implying that multi-step forecasts of the conditional variance do 

not approach the unconditional variance (i.e the unconditional variance is infinite). Despite the infinite 

unconditional variance, one attractive feature of the IGARCH model is that it is strongly stationary even though it 
is not weakly stationary. The results indicate that the data sets used exhibit the persistence in variance/volatility 

whereby the current information remains important in forecasting the conditional variance, i.e. the current 

information in the NSE remains important in forecasting the conditional variance.  
 

Two distribution assumptions namely, Generalized error Distribution and t-distributions were tested. Generalized 
error Distribution provided the best fit for the data adequately when modelling with the IGARCH model in all the 

four series. The models were fitted and diagnosed using the AIC, SBC and the Log likelihood ratio test. However, 

the final model was considered adequate if its standardized residuals and squared residuals were not significantly 

correlated at 5% significance level. The residual correlation was tested using the Ljung-Box Q statistics. All the 
fitted IGARCH models were adequate since their residuals were not significantly correlated. Further, the 

standardized residuals were still non-normal as shown by the JB statistics for normality. The goodness of fit 

statistics for the IGARCH(1,1) model and the diagnostic tests are presented in Appendix 1 and 2 respectively. In 
order to capture the leverage effects, two asymmetric ARCH-type models; the Exponential GARCH (EGARCH) and 

Threshold GARCH (TGARCH) were fitted. 
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4.1.4 EGARCH models 
 

Despite the popularity and apparent success of GARCH models in practical applications, they cannot capture 

asymmetric response of volatility to news since the sign of the returns play no role in the model specification. 
Statistically, the asymmetric effect occurs when an unexpected decrease in price resulting from bad news 

increases volatility more than an unexpected increase in price of similar magnitude following good news. 
 

Accordingly, Nelson’s (1991) EGARCH model was fitted.  Unlike the GARCH (p,q) model, a negative shock can 
have a different impact on future volatility when compared to the positive shock if asymmetry parameter γ1 is not 

zero for the EGARCH model. It also does not need restrictions to be imposed on the parameters to ensure the non-

negativity. 
 

In the EGARCH model estimation, the MLE criterion was employed. Different orders for p and q in the variance 

equation were tested with the best results being achieved for p=q=1. The Generalized Error Distribution emerged 

as the best distribution for all the series (NSE, Bamburi, KQ and NBK). This implies that all the series under 
investigation have long tails and are asymmetric.  
 

The EGARCH model parameter estimates also reveal the persistence in volatility of the Nairobi equity market. 

This is because the sum of α1 and 
1  is approximately 1 in all the data sets. The asymmetric parameter γ1 is 

positive and significant for all the four series namely NSE Index,NBK, Bamburi and KQ. The positivity of γ1 

indicates that positive shocks increase volatility more than the negative shocks of an equal magnitude. This shows 

that the concept of “leverage effect” (i.e the negative shocks increasing volatility more than a positive shock of 
the same magnitude) is not applicable to the individual company stocks. This is consistent with  the earlier studies 

on the Nairobi Stock Exchange for instance Ogum et al., (2005, 2006) who found the asymmetry parameter γ1 to 

be positive when modelling the daily NSE 20 Share Index using the EGARCH models.  
 

This could arise from the fact that the weekly return series were used in this study while Ogum et al., (2005, 

2006) modelled the daily returns. Some information could have been lost when using the weekly average for the 

NSE index and the share prices for the companies. In addition, the flow of information in NSE might not be as 
efficient as in the developed equity markets. 
 

The model diagnostics and goodness of fit statistics are presented in Appendix 1 and 2 respectively. The 

diagnostics included the autocorrelation of the standardized residuals and squared residuals respectively. The 
Ljung-Box Q statistics represented by Q(12) and Q

2
(12) for residuals and squared residuals respectively were 

used which were not significant in all cases confirming the adequacy of the fitted models. The models could thus 

explain the non-linear dependence in the residuals i.e the models captured the dependence in the variance shown 
by the original series of returns. The EGARCH model, in all cases showed a smaller Kurtosis compared to the 

ARCH and GARCH models. In addition, the student’s t-distribution and Generalized Error Distributions also 

captured the tail properties of the data better than the Gaussian distribution in all the four cases. The JB statistics 

also strongly rejected the null hypothesis of normality in the standardized residuals in all the series under 
consideration. 
 

4.1.5 Threshold GARCH (1,1) 
 

The TGARCH (1,1) model which falls in the asymmetric class of ARCH-type models was also used. The model 
was fitted, estimated and diagnosed just like the previous models. From the two distributions tested, the student’s 

t distribution emerged the best for the NSE index while GED was considered the best for the NBK, Bamburi and 

KQ. This is because the GED and the students’s t-distributions were able to capture the tail properties of the data. 
It is worth noting that under the student’s t distribution, the convergence during estimation was a major problem. 

The algorithm converged very slowly and sometimes weakly. This casts doubts on the stability of the parameter 

estimates.  
 

In the variance equation, the asymmetry parameter γ1 was less than zero for all the four series. This implies that 
good news increases volatility more than bad news. This is consistent with the findings of Ogum et al., (2005, 

2006) who applied EGARCH models to the daily NSE 20 Share Index. Hence the leverage effect experienced in 

developed markets might not be a universal phenomenon. 
 

The diagnostic tests and goodness of fit statistics for the TGARCH models are presented in Appendix 1  and 2 

respectively. Just like the previous models, the best distributions were GED and the student’s t-distribution.  
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Also, based on the Ljung-Box Q statistics, both the residuals and the squared residuals were not significantly (5% 

level) correlated implying that the models were adequate. The JB statistic for normality also rejected the 
normality assumption in the standardized residuals. 
 

4.2 Efficiency Comparison between the ARCH-type Models 
 

Model efficiencies for each of the ARCH-type models implemented were evaluated using the various MSE.  The 

MSE for the chosen models are presented in Table 1. 
 

Table 1: MSE for the fitted ARCH-type models 
 

Series ARCH(q) GARCH(1,1) IGARCH(1,1) EGARCH(1,1) TGARCH(1,1) 

NSE INDEX 0.0006946 0.0006958 0.000696 0.0006967 0.000699 

NBK 0.006757 0.006765 0.006744 0.006766 0.006765 

BAMBURI 0.003119 0.003073 0.003098 0.003019 0.003073 

KQ 0.002997 0.002993 0.002989 0.002996 0.002993 
 

Considering the MSE values in Table1, it is clear that ARCH, GARCH, EGARCH and IGARCH are all equally 

efficient in modelling volatility based on the MSEs only, since the different ARCH-type models are almost equal 

for the respective data sets. The disadvantage with the ARCH model is that so many parameters are to be 
estimated. The GARCH, IGARCH, EGARCH and TGARCH models are able to parsimoniously model the series 

and hence are preferred to the original ARCH model. Considering the asymmetric properties of the data and the 

respective MSEs, the EGARCH (1,1) emerged as the best model for the NSE Index and Bamburi. For the NBK, 
both the EGARCH and the TGARCH are equally good but EGARCH is considered the best since the parameter 

estimates for the TGARCH are unstable due to weak convergence. The best model for Kenya Airways was the 

GARCH model.  
 

The respective models chosen are justified by their relatively lower values of residual Kurtosis and MSE in 

addition to the other diagnostics considered as well as the asymmetric parameter that captures the leverage effect. 

However, in terms of stationarity, the IGARCH model with the Generalized Error Distribution (GED) emerged as 

the best ARCH-type model since it was strongly stationary thus being more stable. This makes the IGARCH 
model to be the preferred model from the ARCH-type models for modelling the Nairobi Stock Exchange data for 

the periods between 2
nd

 March 1998 to 30
th
 October 2010 for NSE 20-Share index while and 3

rd 
June 1996 to 30

th
 

October 2010 for company share prices, i.e NBK, Bamburi and Kenya Airways. 
 

5.0 Summary and Conclusions 
 

In this study, the original Engle’s (1982) ARCH (p) model and its three extensions namely, standard GARCH 

(p,q), IGARCH(p,q), EGARCH (p,q) and TGARCH (p,q) were applied to the data. Different orders for ARCH(p) 

were tested in all cases where p=8 was found to be the most adequate for NSE index, Bamburi and KQ while for 

the NBK series, p=9 provided the best order for ARCH model. Four different p and q values were tested for 
GARCH(p,q), EGARCH (p,q) and TGARCH (p,q): (1,1), (1,2), (2,1) and (2,2). The order p, q equal to (1,1) is by 

far the most used values in GARCH research today and results obtained is also consistent with this.  
 

In all the four series, the order (1,1) is the best choice. Comparing the diagnostics and the goodness of fit 

statistics, the IGARCH (1,1) outperformed the ARCH, EGARCH and TGARCH models majorly due to its 

stationarity in the strong sense. However, the IGARCH model is unable to capture the asymmetry exhibited by the 

stock data. The EGARCH (1,1) and the TGARCH (1,1) are the preferred models to describe the dependence in 
variance for all the four series studied since they were able to model asymmetry and parsimoniously represent a 

higher order ARCH(p). However, the standardized residuals still displayed non-normality in all cases. 
 

Judging from the asymmetric parameter (γ1 <0) in the EGARCH model, the volatility increases more with the bad 
news (negative shocks)  than the good news (positive shocks) of the same magnitude for the NSE Index. This is 

not consistent with the findings of Ogum et al., (2005, 2006). However, for the individual stocks the asymmetric 

parameter (γ1 >0) meaning that volatility increases more for good news more than bad news of the same 
magnitude. This implies that the leverage effect may not be a universal phenomenon after all. From the different 

distributions tested and estimated, the student’s t distribution was the best choice for NSE index while GED was 

the best for NBK, Bamburi and Kenya Airways. The Gaussian assumption provided the poorest results and in 

some cases had convergence failures.  
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APPENDICES 
 

Appendix 1: The goodness of fit statistics for ARCH models 

 

LR- Represents Log likelihood Ratio test 

JB- Represents Jarque-Bera statistics for normality  
Q(12) - Represents Ljung-Box Q statistics for the standardized residuals 

Q
2
(12) - Represents Ljung-Box Q statistics for squared standardized residuals 

P-Values are given in the brackets 
 

Appendix 2: Diagnostic Tests for Standardized Residuals for ARCH-type models 
 

 

Series 
Statistics ARCH(q) GARCH(1,1) IGARCH(1,1) EGARCH(1,1) TGARCH(1,1) 

NSE 

INDEX 

Skewness 0.371885 0.453360 0.274917 0.604607 0.510931 

Kurtosis 10.74517 10.92675 9.247141 9.579835 10.59302 

JB 1634.604 (0.00) 1718.698 (0.00) 1061.89(0.000) 1208.424 (0.00) 1584.85 (0.000) 

Q(12) 6.7497 (0.345) 7.5418 (0.274) 5.2777 (0.509) 7.4763 (0.279) 7.0248 (0.319) 

Q
2
(12) 6.7934  (0.340) 5.7669 (0.450) 13.047 (0.560) 5.2634 (0.511) 6.3818 (0.382)  

NBK 

Skewness 0.439535 0.280164 -0.228243 0.249078 0.247907 

Kurtosis 12.07521 13.12185 22.04193 12.30715 13.08784 

JB 2573 (0.000) 3181.45(0.000) 11231.8 (0.000) 2689.39 (0.000) 3158.07 (0.000) 

Q(12) 10.752(0.293) 10.642 (0.301) 16.739 (0.053) 11.305 (0.255) 10.215 (0.333) 

Q
2
(12) 6.7901 (0.659) 3.4587 (0.943) 47.096 (0.000) 2.7684 (0.973) 3.2014 (0.956) 

BAMBURI 

Skewness -6.437273 -1.483386 1.232353 -1.523194 -1.420842 

Kurtosis 128.6041 34.14905 28.68903 28.60294 30.41023 

JB 492213.6 (0.00) 30228.6(0.000) 20562.8 (0.000) 22137.3 (0.000) 23446.36 (0.00) 

Q(12) 10.311 (0.172) 13.569 (0.06) 18.593 (0.670) 16.906 (0.180) 13.770 (0.06) 

Q
2
(12) 0.1257 (1.000) 1.1426 (0.992) 18.593 (0.100) 1.9102 (0.965) 1.4412 (0.984) 

KQ 

Skewness 0.578515 0.729736 0.615099 0.558778 0.626258 

Kurtosis 8.830365 10.65188 11.20788 9.962207 10.49333 

JB 1092.344 (0.00) 1876.064 (0.00) 2129.62 (0.00) 1537.216 (0.00) 1784.475 (0.00) 

Q(12) 14.402 (0.072) 13.200(0.105) 5.8447 (0.665) 10.898 (0.208) 12.370 (0.135)  

Q
2
(12) 6.6472 6.0670 (0.640) 69.101 (0.450) 6.1931 (0.626) 5.8701 (0.662) 

 

 

 
 ARCH (q) GARCH(1,1) IGARCH(1,1) EGARCH(1,1) TGARCH 

 t GED t GED t GED t GED t GED 

NSE 

INDEX 

LR 1641.062 1641.492 1639.411 1638.036 1618.032 1619.657 1641.107 1645.863 1641.85 1638.305 

AIC -5.012538 -5.013531 -5.025961 -5.021717 -4.966148 -4.971165 -5.02811 -5.04279 -5.0304 -5.019461 

SBC -4.895168 -4.896161 -4.996500 -4.945771 -4.904010 -4.909027 -4.94526 -4.95994 -4.9476 -4.93661 

NBK 

LR 1089.142 1083.861 1098.053 1106.464 1052.383 1070.120 1106.751 1112.412 1098.55 1106.873 

AIC -2.891364 -2.877150 -2.934195 -2.956834 -2.816643 -2.864387 -2.95492 -2.9702 -2.9328 -2.955242 

SBC -2.798281 -2.784068 -2.884551 -2.907190 -2.779410 -2.827154 -2.89906 -2.91430 -2.8769 -2.899393 

BAMBURI 

LR 1350.889 1464.813 1529.121 1554.337 1484.791 1524.654 1533.434 1561.069 1530.18 1555.099 

AIC -3.602938 -3.910428 -4.100193 -4.168251 -3.985940 -4.093532 -4.1091 -4.1837 -4.1004 -4.167610 

SBC -3.503440 -3.810930 -4.038007 -4.106065 -3.936191 -4.043783 -4.04073 -4.11532 -4.032 -4.099205 

KQ 

LR 1349.801 1269.075 1353.618 1360.433 1306.834 1323.664 1351.000 1357.335 1355.10 1361.186 

AIC -3.595151 -3.377561 -3.624307 -3.642678 -3.503596 -3.548960 -3.61456 -3.63163 -3.6256 -3.642011 

SBC -3.495758 -3.278168 -3.568399 -3.586769 -3.460112 -3.505475 -3.55243 -3.56951 -3.5635 -3.579891 


