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Abstract 
 

This study investigates the influence of thermal radiation on boundary layer flow of nanofluids over a moving 

surface in a flowing fluid. The plate is assumed to move in the same or opposite directions to the free stream. The 

governing partial differential equations are transformed into ordinary differential equations, a more convenient 
form for numerical computation, using a similarity transformation. The resulting ordinary differential equations 

are solved by shooting method alongside with sixth order of Runge-Kutta integration technique. To observe 

physical insight and interesting aspects of the problem in the presence of thermal radiation, the non-dimensional 
velocity, temperature and concentration field are numerically studied and displayed graphically for pertinent 

parameters. It is observed that radiation has dominant effect on the heat transfer and the mass transfer rate. It is 

further noticed that the heat transfer rate is consistently higher for a nanofluids with smaller value of Le and Pr 
while the mass flux rate is higher for a nanofluids with higher values of Le and Pr. The results were displayed in 

tables and in graphs. 
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1. Introduction 
 

Many industrial processes involve the transfer of heat by means of a flowing fluid in either the laminar or 

turbulent regime as well as flowing or stagnant boiling fluids. The processes cover a large range of temperatures 
and pressures. Many of these applications would benefit from a decrease in the thermal resistance of the heat 

transfer fluids. This situation would lead to smaller heat transfer systems with lower capital cost and improved 

energy efficiencies. Nanofluids have the potential to reduce such thermal resistances, and the industrial groups 
that would benefit from such improved heat transfer fluids are quite varied. They include transportation, 

electronics, medical, food, and manufacturing of many types. 
 

Convective flow in porous media has been widely studied in the recent years due to its wide applications in 
engineering as postaccidental heat removal in nuclear reactors, solar collectors, drying processes, heat exchangers, 

geothermal and oil recovery, building construction, etc. (Nield and Bejan [1], Ingham and Pop [2], Vafai [3], 

Vadasz [4], etc.). It is well known that conventional heat transfer fluids, including oil, water, and ethylene glycol 
mixture are poor heat transfer fluids, since the thermal conductivity of these fluids plays an important role on the 

heat transfer coefficient between the heat transfer medium and the heat transfer surface. An innovative technique, 

which uses a mixture of nanoparticles and the base fluid, was first introduced by Choi [5] in order to develop 

advanced heat transfer fluids with substantially higher conductivities. The resulting mixture of the base fluid and 
nanoparticles having unique physical and chemical properties is referred to as a nanofluid. It is expected that the 

presence of the nanoparticles in the nanofluid increases the thermal conductivity and therefore substantially 

enhances the heat transfer characteristics of the nanofluid.  
 

Nanofluid is envisioned to describe a fluid in which nanometer-sized particles are suspended in convectional heat 

transfer basic fluids. Convectional heat transfer fluids, including oil, water, and ethylene glycol mixture are poor 
heat transfer fluids, since the thermal conductivity of these fluids play important role on the heat transfer 

coefficient between the heat transfer medium and the heat transfer surface. Therefore numerous methods have 

been taken to improve the thermal conductivity of these fluids by suspending nano/micro sized particle materials 
in liquids. There have been published several recent numerical studies on the modelling of natural convection heat 

transfer in nanofluids: Congedo et al. [6], Ghasemi and Aminossadati [7], Ho et al. [8, 9], etc. These studies have 

used traditional finite difference and finite volume techniques with the tremendous call on computational 

resources that these techniques necessitate. A very good collection of the published papers on nanofluids can be 
found in the book by Das et al. [10] and in the review papers by Wang and Mujumdar [11-13], and Kakaç and 

Pramuanjaroenkij [14].  
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Moreover, Oztop and Nada [15] investigated numerical study of natural convection in partially heated rectangular 

enclosures filled with nanofluids. Furthermore, application of nanofluids for heat transfer enhancement of 

separated flow encountered in a backward facing step was examined by Nada [16]. Duangthongsuk and 

Wongwises [17] studied effect of thermophysical properties models on the predicting of the convective heat 
transfer coefficient for low concentration nanofluid. Ahmad and Pop [18] investigated mixed convection 

boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Boundary 

layer flow of nanofluids over a moving surface in a flowing fluid was examined by Bachok et al. [19].  
In addition to the numerous experimental investigations into nanofluid thermal properties and heat transfer, 

various investigators have proposed physical mechanisms and mathematical models to describe and predict the 

phenomena. While comprehensive theoretical models for nanofluids that take all main factors into account are 
lacking, some progress has been made in this area. Consequently, the classical models and new improvements are 

presented in this research work by extending the work of Bachok et al. [19] to include the thermal radiation in the 

energy equation for more physical implications. 
 

2. Mathematical formulation 
 

We consider the steady boundary layer flow of a nanofluid past a moving semi-infinite flat plate in a uniform free 
stream. It is therefore assumed that the velocity of the uniform stream is U and that of the flat plate is Uw = λU, 

where λ is the plate velocity parameter (see Weidman et al. [21]). The flow takes place at y≥0, where y is the 

coordinate measured normal to the moving surface. It is also assumed that at the moving surface, the temperature 
T and the nanoparticles fraction C take constant values Tw and Cw, respectively, while the values of T and C in the 

ambient fluid are denoted by , CandT respectively. Following the nanofluid model proposed by Tiwari and 

Das [21] along with the Boussinesq and boundary layer approximations, it is easy to show that the steady 

boundary layer equations of the present problem are, see also Nield and Bejan [1], 
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where u and v are the velocity components along the x and y axes, respectively,   fck   is the thermal 

diffusivity of the fluid,  is the kinematic viscosity coefficient, k is the thermal conductivity, qr is the heat flux 

and     .fp cc    The boundary conditions Eqs. (1)-(4) are taking to be  
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where U is the uniform velocity of the free stream flow. It is worth mentioning that the moving parameter λ > 0 

corresponds to downstream movement of the plate from the origin, while λ < 0 corresponds to the upstream 

movement of the plate from the origin. Here we introduce the stream function ψ defined as xu    and

xv   , which identically satisfies Eq. (1). 
 

The radiative heat flux qr is described by Roseland approximation such that  
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where Kand*  are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. 

Following Chamkha [20], we assume that the temperature differences within the flow are sufficiently small so 

that the T
4
 can be expressed as a linear function after using Taylor series to expand T

4
 about the free stream 

temperature T and neglecting higher-order terms. This result is the following approximation: 
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Using (6) and (7) in (3), we obtain 
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Introducing a similarity variable η and a dimensionless stream function f(η) and temperature () as  
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where prime symbol denotes differentiation with respect to η.  Eqs. (2) – (4) reduce to  
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where the five parameters are defined by  
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Here Ra, Pr, Le, Nb and Nt represent the radiation field parameter, Prandtl number, Lewis number, the Brownian 
motion parameter and the thermophoresis parameter, respectively. We notice that when Ra is zero, it reduces to 

Bachok et al. [19]. Similarly, when Ra, Nb and Nt are zero, Eqs. (11) and (12) involve just two depend variables, 

namely f(η) and θ(η), and the boundary-value problem for these two variables reduces to the classical problem of 

Weidman et al. [21] for an impermeable moving surface in a Newtonian fluid. 
 

The quantities of practical interest are the skin-friction coefficient Cf, the local Nusselt number Nux and the local 

Sherwood number Shx which are defined as 
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where mww qandq, are the shear stress, heat flux and mass flux at the surface. Using variables (9), we obtain 
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where Uxx Re is the local Reynolds number.  According to Bachok et al. [19], xxxx ShandNu 2121 ReRe 

are referred to as the reduced Nusselt number and reduced Sherwood numbers which are represented by

   00   and , respectively. 
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Table 1: Computation showing )0()0(),0(   andf for the embedded flow parameters. 
 

Pr Nb Nt Le Ra λ )0(f   )0(   )0(  

1 0.1 0.1 2 1 0.1 0.462512231335513724 0.353009090654790525 0.600376409340231842 

2 0.1 0.1 2 1 0.1 0.462512231335513946 0.443434647935964543 0.562457035585906096 

6 0.1 0.1 2 1 0.1 0.462512231335514001 0.593071654079466048 0.489137269031544864 

0.71 0.5 0.1 2 1 0.1 0.462512231335513890 0.285737898169713512 0.662096514552980908 

0.71 1 0.1 2 1 0.1 0.462512231335513890 0.255035168828560810 0.667739046702424566 

0.71 1.5 0.1 2 1 0.1 0.462512231335513890 0.227175684263961896 0.669454527846779168 

0.71 0.1 0.5 2 1 0.1 0.462512231335513668 0.295594542768505164 0.450827958779160820 

0.71 0.1 1 2 1 0.1 0.462512231335513668 0.323423738988172282 0.447459049864581682 

0.71 0.1 1.5 2 1 0.1 0.462512231335513668 0.276043127809399712 0.348137268360352358 

0.71 0.1 0.1 10 1 0.1 0.462512231335513779 0.311046090586418744 1.22044716870212766 

0.71 0.1 0.1 20 1 0.1 0.462512231335513835 0.310666650574021486 1.62037385931696987 

0.71 0.1 0.1 50 1 0.1 0.462512231335514168 0.310302944402533754 2.36541736605274088 

0.71 0.1 0.1 2 2 0.1 0.462512231335513779 0.263891001878680864 0.630473442278061902 

0.71 0.1 0.1 2 4 0.1 0.462512231335513890 0.213217651902775474 0.644032507451099523 

0.71 0.1 0.1 2 1 0.5 0.328741123610356012 0.369403062629324650 0.818385422420432884 

0.71 0.1 0.1 2 1 1 0.000000000000000000 0.424127723429936432 1.01624088342316310 

0.71 0.1 0.1 2 1 2 -1.01906103740154763 0.509486510429009608 1.32551731302558640 
 

Table 2: Computation showing )0(  for various values of Pr when Le = 2, Nb = 0.5, Nt = 0.5, Ra = 1. 
 

  2Pr),0(   6Pr),0(   10Pr),0(   

-0.3 0.047819542380303004 0.003295769230528344 0.000166213406775072 

0.1 0.308307030774321422 0.230620414531485934 0.147537150471109990 

0.5 0.389793024298875802 0.328584837455264178 0.232262596807346206 

1 0.469486852558989698 0.424759629186832410 0.316475009088326264 

1.5 0.536323380372475068 0.504897750569688330 0.386491170541982010 

2 0.595154149077500528 0.574892398615186040 0.447347764968361150 
 

Table 3: Computation showing )0( for various values of Le when Pr = 2, Nb = 0.5, Nt = 0.5, Ra = 1. 
 

  2),0(  Le  6),0(  Le  10),0(  Le  

-0.3 0.06151543376887638 0.01028416910268342 0.00575132347682167 

0.1 0.66238439234778779 1.05777140734819696 1.29560164171625458 

0.5 0.85467940844952228 1.51891728615814992 1.94788285321869536 

1 1.04106575969379711 1.95545743340004074 2.55431176201018894 

1.5 1.19642560998789270 2.31308177016589278 3.04635782851225478 

2 1.33263242375462032 2.62304545528352939 3.47063450012585228 
 

3. Results and discussion 
 

The ordinary differential equations (10)-(12) subject to the boundary condition (13) are solved numerically using 
the symbolic algebra software Maple [22]. Table 1 presents the computation showing the skin-friction coefficient 

Cf, the reduced Nusselt number Nu and the reduced Sherwood number Sh for various values of embedded 

parameters. From Table 1, it is understood that the skin-friction and the rate of heat transfer at the plate surface 
increases with an increase in Prandtl number while the reduced Sherwood number decreases. It is interesting to 

note that increase in the Brownian motion parameter Nb has no influence on the skin-friction coefficient but the 

heat transfer rate increases while the mass transfer decreases at the wall plate. Similarly, increase in the 

thermophoresis parameter Nt has reverse effects on the rate of heat transfer and the mass transfer at the wall plate 
compared to Brownian parameter. Increasing the Lewis number and the radiation parameter Le, Ra increases the 

skin-friction and the reduced Sherwood number at the wall plate while it reduces the heat transfer rate at the wall 

plate for cooling system. It is also interesting to note that increasing parameter λ decreases the skin-friction at the 
wall plate but bring an increase in the reduced Nusselt and Sherwood number at the wall plate.  
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Table 2 shows the reduced Nusselt number for various values of Prandtl number Pr with other flow parameters 

constant and Table 3 shows the reduced Sherwood number for various values of Le. It is seen that the heat 

transfer rate is consistently higher for a nanofluid with smaller values of Le and Pr, while on the other hand, the 

mass flux rate is higher for a nanofluid with higher values of Le and Pr. Figure 1 depicts the fluid temperature 
profile for various values of Prandtl number Pr with other embedded flow parameters fixed. As Prandtl number 

increases, the temperature at every location in the thermal boundary layer decreases. The effect of Prandtl number 

on the Nanoparticle fraction profiles. It is interesting to note that the effect is felts far away from the wall plate. 
Specifically, between η = 0.6 and 2, the nanoparticle fraction boundary layer thickness increases but from η > 2, 

the nanoparticle fraction boundary layer thickness decreases before satisfying the far field boundary conditions 

asymptotically which support the numerical results obtained. Figures 3 and 4 represent the effect of Brownian 
motion parameter Nb on the temperature and the nanoparticle volume fraction profiles. Increasing Nb thickens the 

thermal boundary layer thickness while the reverse is the case for nanoparticle volume fraction profiles. 

Increasing Lewis number Le resulted to a decrease in nanoparticle volume fraction boundary layer thickness 

which agrees with Bachok et al. [19] (see figure 8). The effect of λ is seen in figures 9 to 11. Figure 12 depicts the 
effect of radiation (absorption) parameter on the thermal boundary layer and it is interesting to note that 

increasing in Ra leads to an increase in the thermal boundary layer thickness a little away from the wall plate. In 

figure13, it is also seen that as Ra increases the nanoparticle volume fraction decreases away from the wall plate. 
 

 
 

Figure 1: Temperature profiles for various values of Pr when Nt = 0.5, Nb = 0.5, Le = 2, λ = 0.5, Ra = 1. 
 

 
Figure 2: Nanoparticle volume fraction profiles for various values of Pr when Nt = 0.5, Nb = 0.5, Le = 2,    λ = 

0.5, Ra = 1. 
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Figure 3: Temperature profiles for various values of Nb when Nt = 0.5, Pr = 2, Le = 2, λ = 0.5, Ra = 1. 

 
 

Figure 4: Nanoparticle volume fraction profiles for various values of Nb when Nt = 0.5, Pr = 2, Le = 2,       λ = 

0.5, Ra = 1. 
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Figure 5: Temperature profiles for various values of Nt when Pr = 2, Le = 2, Nb = 2 and λ = -0.2. 

 
Figure 6: Nanoparticle volume fraction profiles for various values of Nt when Nb = 0.5, Pr = 2, Le = 2,       λ = -

0.2, Ra = 1. 
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Figure 7: Temperature profiles for various values of Le when Pr = 2, Nt = 0.5, Nb = 0.5, Ra = 0.5 and λ = 0.5. 

 
Figure 8: Nanoparticle volume fraction profiles for various values of Le when Pr = 2, Nt = 0.5, Nb = 0.5,       Ra 

= 0.5 and λ = 0.5. 
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Figure 9: Velocity profiles for various values of λ when Pr = 2, Nt = 0.5, Nb = 0.5, Ra = 0.5 and Le = 2. 

 
Figure 10: Temperature profiles for various values of λ when Pr = 2, Nt = 0.5, Nb = 0.5, Ra = 0.5 and  Le = 2. 
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Figure 11: Nanoparticle volume fraction profiles for various values of λ when Pr = 2, Nt = 0.5, Nb = 0.5,      Ra = 

0.5 and Le = 2. 

 
Figure 12: Temperature profiles for various values of Ra when Pr = 2, Nt = 0.5, Nb = 0.5, λ = 0.5 and       Le = 2. 
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Figure 13: Nanoparticle volume fraction profiles for various values of Ra when Pr = 2, Nt = 0.5, Nb = 0.5, λ = 
0.5 and Le = 2. 
 

4. Conclusions 
 

Analysis has been carried out theoretically on the Boundary layer flow of nanofluids over a moving surface in a 

flowing fluid in the presence of radiation past a moving semi-infinite flat plate in a uniform free stream. A 
similarity transformation is been used to transformed the governing partial differential equations into ordinary 

differential equations, a more convenient form for numerical computation. These equations are solved 

numerically using the shooting method alongside with sixth order of Runge-Kutta integration scheme. Numerical 
solutions for the skin-friction coefficient, the local Nusselt number and the local Sherwood number as well as for 

the velocity, temperature and the nanoparticle volume fraction profiles are represented in some graphs for various 

embedded flow parameter conditions. It was found that radiation has a greater influence on both the thermal 

boundary layer thickness and the nanoparticle volume fraction profiles and therefore cannot be neglected in 
engineering applications (electronic cooling).   
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