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Abstract 
 

The steady MHD mixed convection stagnation point flow towards a vertical surface immersed in an 

incompressible micropolar fluid in the presence of thermal radiation is investigated. The external velocity 

impinges normal to the wall and the wall temperature is assumed to vary linearly with the distance from the 

stagnation point. The governing partial differential equations are transformed into a system of ordinary 
differential equations, which is then solved numerically due to nonlinearity of the system by a shooting technique 

alongside with sixth order Runge-Kutta iteration scheme. The features of the flow and heat transfer 

characteristics for different values of the embedded flow parameters are analyzed and discussed. Both assisting 
and opposing flows are considered. We made comparison with Ishak et al [1] upper solution being the only stable 

solution in the absence of radiation and there were perfect agreement. The heat transfer rate and the skin friction 

were discussed extensively. 
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1. Introduction 
 

Micropolar fluids are fluid with microstructure. They belong to a class of fluids with nonsymmetric stress tensor 
that we shall call polar fluids. Micropolar fluids may also represent fluids consisting of rigid, randomly oriented 

(or spherical) particles suspended in a viscous medium, where the deformation of the particle is ignored. This 

constitutes a substantial generalization of the Navier-Stokes model and opens a new field of potential 
applications. The attractiveness and power of the model of micropolar fluids come from the fact that it is both a 

significant and a simple generalization of the classical Navier-Stokes model. The theory of micropolar fluids 

developed by Eringen [1,2] and has been a field of very active research for the last few decades as this class of 
fluids represents, mathematically, many industrial important fluids such as paints, body fluids, polymers, colloidal 

fluids, suspension fluids, animal blood, liquid crystal, etc among the various non-Newtonian fluids model. In 

addition to its classical velocity field, involve three gyration vectors. These latter degrees of freedom provide the 

necessary instrument to account for the intrinsic rotary motions and stretch of the local fluid elements. The theory 
of micropolar fluids [3] is a special case of the theory of simple microfluids.   
 

This theory may have applications in the understanding of nemotogenic and smectogenic liquid crystals, flow of 
colloidal fluids, fluids with additives, suspension solutions, blood flows, fluids with bar like elements etc. 

Interesting aspects of theory and applications of micropolar fluids are dealt in the books by Eringen [4] and 

Lukaszewicz [5]. Micropolar fluid mechanics has received attention of many researchers and a good list of 
references on the published papers for this fluid can be found in Eringen [4] and Ishak et al. [6]. However, the 

associated MHD problems have not received much attention until recently. 
 

Considering the linear theory of micropolar viscoelasticity has been carried out by Eringen [7]. Nazar et al. [8] 

studied stagnation point flow of a micropolar fluid towards a stretching sheet. Ali and Hayat [9] considered the 

peristaltic flow of a micropolar fluid in an asymmetric channel. Moreover, Sajid et al. [10] examined the 
homotopy analysis for boundary layer flow of a micropolar fluid through a porous channel. MHD flow of a 

micropolar fluid near a stagnation-point towards a non-linear stretching surface was considered by Hat et al [11]. 

[12] Investigated the effects of an endoscope on peristaltic flow of a micropolar fluid and also Hayat et al. [13] 

examined mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. More recently, Ishak 
et al. [14] investigated magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a 

vertical surface. 
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The resent paper considers a steady MHD flow towards a stagnation point on a vertical surface immersed in a 

micropolar fluid in the presence of thermal radiation which is an extension of Ishak et al. [14] work. Therefore, 

the objective of the present study is to investigate the influence of radiation and other embedded parameters in the 
flow model and also for assisting and opposing flow respectively. 
 

2. Analysis 
 

We consider the steady, two-dimensional flow of an incompressible electrically conducting micropolar fluid in 
the presence of thermal radiation near the stagnation point on a vertical heated plate. It is assumed that the 

velocity of the flow external to the boundary layer U(x) and the temperature Tw(x) of the plate are proportional to 

the distance x from the stagnation point, i.e. U(x) = ax and bxTxTw  )( , where a and b are constants. A 

uniform magnetic field of strength B0 is assumed to be applied in the positive y-direction normal to the plate. The 
magnetic Reynolds number of the flow is taken to be small enough so that the induced magnetic field is 

negligible. In addition heat radiation effects are included. Under these assumptions along with the Boussinesq and 

boundary layer approximation, the system of equations, which models the flow is given by  
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where u and v are the velocity components along the x-and y-axes, respectively, g is the acceleration due to 

gravity and T is the fluid temperature in the boundary layer. Furthermore, μ, k, ρ, β, j, N, γ, α, cp and qr are 

respectively the dynamic viscosity, vortex viscosity (or the microrotation viscosity), fluid density, thermal 
expansion coefficient, microinertial density, microrotation vector (or angular velocity), spin gradient viscosity, 

thermal diffusivity, specific heat at constant pressure and heat flux. We follow the work of many authors by 

assuming that ,)21()2( jKjk   where kK  is the material parameter. This assumption is 

involved to allow the field of equations predicts the correct behavior in the limiting case when the microstructure 
effects become negligible and the total spin N reduces to the angular velocity (see Ishak et al [14]). By the 

Rosseland approximation the radiative heat flux can be reduced in the form  
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where Γ and k
*
 are the Stefan-Boltzmann constant and the mean absorption coefficient respectively. Invoking 

Taylor series, one has 
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where in the above equation T0 is the temperature at the centre y = 0 and terms of higher order are neglected. 

The continuity equation (1) is satisfied by introducing a stream function Ψ such that  
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The momentum, angular momentum and energy equations can be transformed into the corresponding ordinary 

differential equations by the following substitutions: 
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The transformed ordinary differential equations are : 
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subject to the boundary conditions (5) which become  
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where we have aj   as a characteristic length (see Rees and Bassom [10]). In the above equations, primes 

denote differentiation with respect to η, Pr  is the Prandtl number, aBM 20 is the magnetic parameter,

2Re xxGr is the buoyancy or mixed convection parameter,  *34 kTRa  is the thermal radiation 

parameter,
23)(  xTTgGr wx  is the local Grashof number and Uxx Re is the local Reynolds number. 

We further notice that λ is a constant with λ < 0 and λ > 0 correspond to the opposing and assisting flows, 

respectively, while λ = 0 (i.e. TTw  ) is purely a forced convection flow. When M= 0, and Ra = 0, the problem 

reduces to those considered by Lol et al. [16], while when M = 0, Ra = 0 and K = 0 it reduces to those of 

Ramachandran et al. [15]. Similarly, when Ra = 0, the problem reduces to those of Ishak et al [14]. 
 

Table 1: Values of )0(f  for different values of Pr when M = 0, K = 0, λ = 1, and Ra = 0 
 

Pr Ramachandran et 

al. [15] 

Lok et al. [16] Ishak et al. [14] Present result 

0.7 1.7063 1.706376 1.7063 1.70632271203751262 

1 - - 1.6755 1.67543657183886084 

7 1.5179 1.517952 1.5179 1.51791261937622068 

10 - - 1.4928 1.49283867303847640 
 

Table 2: Values of )0(  for different values of Pr when M = 0, K = 0, λ = 1, and Ra = 0 
 

Pr Ramachandran et al. 
[15] 

Lok et al. 
[16] 

Ishak et al. [14] Present result 

0.7 0.7641 0.764087 0.7641 0.764063401496150818 

1 - - 0.8708 0.870778601174578282 

7 1.7224 1.722775 1.7225 1.722381606491674150 

10 - - 1.9448 1.94461739662861999 
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Table 3: Values of )0()0(),0( fandH   for the embedded flow parameters in the flow model 
 

Pr M K λ Ra )0(H  )0(   )0(f   

0.7 1 1 1 1 0.673533225654727397 0.540053877956969353 1.61468454020605878 

1 1 1 1 1 -0.79738035280778796 0.619939494830565318 1.59476070561557592 

7 1 1 1 1 -0.74378966234346344 1.264867553643981301 1.48757932468692688 

10 1 1 1 1 -0.73490475392458787 1.433965306315825302 1.46980950784917576 

1 2 1 1 1 -0.88888840182570960 0.631755666137700955 1.77777680365141922 

1 3 1 1 1 -0.97033677598117162 0.641134514774587827 1.94067355196234326 

1 4 1 1 1 -1.04444566276134274 0.648879550533652982 2.08889132552268552 

1 1 2 1 1 -0.68178153667736074 0.599054824397862728 1.36356307335472148 

1 1 3 1 1 -0.60520930794100857 0.582757691664827826 1.21041861588201716 

1 1 1 -2 1 0.111572066457112887 -0.18701355600946964 -0.22314413291422576 

1 1 1 -1 1 -0.46737800347075114 0.547042658498067990 0.934756006941502294 

1 1 1 2 1 -0.94762472078923587 0.648299389679389604 1.895249441578471744 

1 1 1 3 1 -1.09113677810678422 0.673338127653544505 2.18227355621356844 

1 1 1 1 2 -0.80996660438664480 0.520263351040158972 1.61993320877328961 

1 1 1 1 3 -0.81835396288089890 0.460085611836912378 1.63670792576179780 

1 1 1 1 4 -0.82455436995093500 0.418308462705216100 1.64910873990187002 

1 1 1 1 0 -0.77342489869876796 0.851744190841606907 1.54684979739753592 
 

Table 4: Values of )0(f  and )0(  for Pr = 1, M = 1, K = 0 and 1, and for various values of λ 
 

Pr M K Ra λ )0(f   )0(   

1 1 0 1 -3 -0.67712667258229630 0.0666358397658931984 

1 1 0 1 -2 -0.23535322015789078 -0.17232126269374437 

1 1 0 1 -1 1.11480374634655521 0.567019781207243834 

1 1 0 1 0 1.58533069663939318 0.612177070698151304 

1 1 0 1 1 2.02205641484308174 0.649007910757433470 

1 1 0 1 2 2.43470273998483844 0.680445476704595986 

1 1 1 1 -3 -0.52821696260852701 0.0284101877934617754 

1 1 1 1 -2 -0.22373720258648052 -0.187500142451099864 

1 1 1 1 -1 0.93475600766665134 0.547042659772633110 

1 1 1 1 0 1.27684219627811402 0.586967357231851006 

1 1 1 1 1 1.59476070545589454 0.619939495091724744 

1 1 1 1 2 1.89524944139703820 0.648299389820970796 
 

The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt number Nux, which are 

defined as  
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Where the wall shear stress w  and the heat flux qw are given by  
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With k being the thermal conductivity. Using the similarity variables (9), we have  
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which have been computed in tables 3 and 4. 
 

3. Results and discussion 
 

Eqs. (8)-(10) constitute a highly non-linear coupled boundary value problem of third and second-order. So we 
develop most effective numerical shooting technique with sixth-order Runge-Kutta integration algorithm. To 

select  we begin with some initial guess value and solve the problem with some particular set of parameters to 

obtain    00),0(   andfH .  
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The solution process is repeated with another larger value of  until two successive values of 

   00),0(   andfH  differ only after desired digit signifying the limit of the boundary along η. The last value 

of   is chosen as appropriate value for that particular simultaneous equations of first order for seven unknowns 

following the method of superposition. To solve this system we require seven initial conditions whilst we have 

only two initial conditions     ,00 fonfandf  two initial conditions on each on Hand . Still there are three 

initial conditions     )0(0,0 Handf    which are not prescribed. Now, we employ numerical shooting 

technique where these two ending boundary conditions are utilized to produce two unknown initial conditions at η 

= 0. In this calculation, the step size 001.0  is used while obtaining the numerical solution with 11max 

and five-decimal accuracy as the criterion for convergence.  
 

Numerical calculations have been carried out for different values of the thermophysical parameters controlling the 

fluid dynamics in the flow regime. Tables (1) and (2) show the comparison of Ramachandran et al. [15], Lok et al. 

[16] and Ishak et al [14] works with the present work for M = 0, K = 0, λ = 0, Ra = 0 and for various values of 
Prandtl numbers Pr and it is noteworthy that there is a excellent agreement. From table (3), it is seen that the local 

skin friction together with the heat transfer rate at the moving plate surface increases with increasing magnetic 

field parameter while the angular velocity at the surface decreases. The rate of heat transfer and the local skin 
friction at the plate surface decreases with increasing the material parameter K while the angular velocity at the 

surface increases. The Nusselt number and the local Skin friction at the wall surface increases with an increase in 

the convection parameter λ for opposing and assisting flows. It was clearly seen that increasing the thermal 
radiation parameter decreases the heat transfer rate at the wall surface and increasing the local Skin friction at the 

wall surface. This table shows that there is a favorable pressure gradient due to the buoyancy forces, which results 

in the flow being accelerated and consequently there is a larger skin friction coefficient thank in the non-buoyancy 

case (λ = 0). In table (4), we computed the local Skin friction and heat transfer rate at the surface for Pr = 1, M = 
1, k = 0, 1 and for various values of convection parameter λ. For K = 0 and 1, the heat transfer rate and the local 

Skin friction at the surface increases which agrees with figs. (8) and (9) in Ishak et al. [14] work.  
 

The velocity, angular velocity and temperature profiles as shown in Figs. 1-13. Figs. 1-5 represent the velocity 

profiles for the embedded flow parameters. It is clearly seen that increasing in M, Pr, K and Ra decreases the 

velocity boundary layer thickness even for both opposing and assisting flows (see figs. 1-5). Figs. 6-9 represent 

the angular velocity profiles for the flow parameters. The effects of all the embedded flow parameters have great 
influence on the angular velocity boundary layer thickness for both assisting and opposing flows. The influence of 

the embedded flow parameters on the temperature field is represented by figs. 10-13. Increasing the Prandtl 

number Pr decreases the thermal boundary layer thickness across the plate which agrees with literatures (see fig. 
10). Other parameters like the material parameter K and the radiation parameter increases the thermal boundary 

layer thickness as they increased. 

 
Figure 1: Velocity profiles for Pr = 0.72, K = 1, λ = 1, Ra = 1 
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Figure 2: Velocity profiles for M = 1, K = 1, λ = 1, Ra = 1 

 
Figure 3: Velocity profiles for M = 1, Pr = 0.72, λ = -1, Ra = 1(opposing flow) 
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Figure 4: Velocity profiles for M = 1, Pr = 0.72, λ = 1, Ra = 1(assisting flow) 

 

 
Figure 5: Velocity profiles for M = 1, Pr = 0.72, λ = 1, K = 1 
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Figure 6: Angular Velocity profiles for Pr = 0.72, K = 1, λ = 1, Ra = 1 

 
 

Figure 7: Angular Velocity profiles for M = 1, Pr = 0.72, λ = -1, Ra = 1(opposing flow) 
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Figure 8: Angular Velocity profiles for M = 1, Pr = 0.72, λ = 1, Ra = 1(assisting flow) 

 
Figure 9: Angular Velocity profiles for M = 1, Pr = 0.72, λ = 1, K = 1 
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Figure 10: Temperature profiles for M = 1, K = 1, λ = 1, Ra = 1 

 
Figure 11: Temperature profiles for M = 1, Pr = 0.72, λ = -1, Ra = 1(opposing flow) 
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Figure 12: Temperature profiles for M = 1, Pr = 0.72, λ = 1, Ra = 1(assisting flow) 

 

 
Figure 13: Temperature profiles for M = 1, Pr = 0.72, λ = 1, K = 1 

 

4. Conclusions 
 

We have theoretically investigated the similarity solutions for the steady MHD flow towards a stagnation point on 

a vertical immersed in an incompressible micropolar fluid with thermal radiation. The transformed non-linear 
ordinary differential equations were solved numerically using shooting method with sixth order of Runge-Kutta 

integration technique. There was an existence of reversed flow in the assisting flow regime also. Thermal 

radiation absorption has a greater influence on the velocity, angular velocity and temperature fields, thus 
micropolar fluid delays the boundary layer separation, which in turn increases the range of similarity solutions 

compared to Newtonian fluid.  
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Therefore, from the above analysis we could conclude that for micropolar fluids flow, the radiation effects play a 

significant role and should not be neglected. 
 

Acknowledgements 
 

POO would like to thank Covenant University, Ota, Nigeria, West Africa for their financial support for the 

research work. 
 

References 
 

[1] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1-18. 

[2] A.C. Eringen, Theory of thermomicropolar fluids, J. Math. Anal. Appl. 38 (1972) 480-496. 

[3] A.C. Eringen, Simple microfluids, Int. J. Eng. Sci. 2 (1964) 205-217. 

[4] A.C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer, New York, 2001. 

[5] G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Birkhauser, Basel, 1999. 

[6] A. Ishak, R. Nazar, I. Pop, Moving wedge and flat plate in a micropolar fluid, Int. J. Eng. Sci. 44 (2006)  

       1225-1236. 

[7] A.C. Eringen, Linear theory of micropolar viscoelasticity, Int. J. Eng. Sci. 5, issues 2 (1967) 191-204. 

[8] R. Nazar, N. Amin, D. Filip, I. Pop, Stagnation point flow of a micropolar fluid towards a stretching  

       sheet, Int. J. of Non-Linear Mechanics, 39, Issue 7 (2004) 1227-1235. 

[9] N. Ali, T. Hayat, Peristaltic flow of a micropolar fluid in an asymmetric channel, Computer &  

       Mathematics with Applications, 55, Issue 4 (2008) 589-608. 

[10] M. Sajid, Z. Abbas, T. Hayat, Homotopy analysis for boundary layer flow of a micropolar fluid  

         through a porous channel, Applied Mathematical Modelling, 33, Issue 11 (2009) 4120-4125. 

[11] T. Hayat, T. Javed, Z. Abbas, MHD flow of a micropolar fluid near a stagnation-point towards a non- 

        linear stretching surface, Nonlinear Analysis: Real World Applications, 10, Issue 3 (2009) 1514-1526 . 

[12] T. Hayat, N. Ali, Effects of an endoscope on peristaltic of a micropolar fluid, Mathematical and  

         Computer Modelling, 48, Issue 5-6 (2008) 721-733.   

[13] T. Hayat, Z. Abbas, T. Javed, Mixed convection flow of a micropolar fluid over a non-linearly  

         stretching sheet, Physics Letters A, 372, Issue 5 (2008) 637-647. 

[14] A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamics (MHD) flow of a micropolar fluid towards a  

        stagnation point on a vertical surface, Computers and Mathematics with Applications 56 (2008)  

        3188-3194. 

[15] N. Ramachandran, T.S. Chem, B.F. Armaly, Mixed convection in a stagnation flows adjacent to  

        a vertical surfaces, ASME J. Heat Mass Transfer 110 (1988) 373-377. 

[16] Y.Y. Lok, N. Amin, D. Campean, I. Pop, Steady mixed convection flow of a micropolar fluid near the  

        stagnation point on a vertical surface, Int. J. Numerical Methods Heat Flow 15 (2005) 654-670. 

 


