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Abstract

The initial problem of systems of nonlinear ordinary differential equation with variable structure and impulses is
considered in the paper. The changing (switching) in the right-hand side of the system and impulsive effects are
realized at the moments, when the switching functions become zero. Sufficient conditions of continuous
dependence of the solution on the initial condition and the switching functions are found.
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1. Introduction

The differential equations with variable structure and impulses are convenient mathematical apparatus for
modeling the dynamic processes which are subjected to "the intensive and relatively short-term" external
influences during its development. It is assumed that the duration of these effects is negligible compared with the
total duration of the process, so that it can be considered as "instantaneous", in the form of impulses. Frequently,
after these impulsive perturbations, the process continues its development, obeyed to the new rules and laws,
different from the previous ones.

Applications of the differential equations with variable structure are mainly in the control theory: [9], [11], [14],
[16], [17], [19], [27], [29] and [34]. The impulsive equations are used mostly for describing the species evolution:
[6], [81, [13], [14], [15], [21], [22], [23], [24], [26], [30], [31], [32], [33], [35], [37], [38] and [39]. The equations
with variable structure and impulses are used to investigate the dynamics of the hydraulic valve stopper in article
[10]. The variable structure of the model system corresponds to the both states of the seal valve - “open" and
"closed". The impulses are realized at the moments when the seal valve changes its position from “open” to
“closed”. In fact, these impulses are realized at the moments when the valve shutter speed is zero, i.e. the seal
valve touches its bed.

The moments when, the impulsive effects are materialized and the structure changes can be determined in
different ways, which define different classes of the considered systems. We quote the following:

- The switching moments are fixed in advance: [1], [2], [7], [18] and [20];

- The switching moments coincide with the moments at which the integral curve (trajectory) cancels the
predefined functions, determined in the phase space of the system differential equations: [5], [14], [21] and
[25]. These functions are called switchings;

- The switching moments coincide with the moments, at which the trajectory of the system considered meets
the predefined sets, situated in the extended phase space (in general these sets are hypersurfaces): [3], [9],
[10], [12], [28] and [32];

- The switching moments coincide with the moments at which the solution minimizes a functional [4];

- The switching moments are random by their nature [36].

In this paper the switching moments are of the second type.
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2. Preliminary results

The main object of this paper is the following initial problem of the system of nonlinear ordinary differential
equations with variable structure and impulses at non-fixed moments:

ORI f.(t.x), @(x(t))=0, t, <t<t,
@  o(x(t))=0,i=12..,

©) X(t +O):x(ti)+li(x(ti)),

(4) X(tO):XO'

where

- the functions f,:R"xD —>R", f. :< £ f2,... fi”), the phase space D is non empty domain of R";

- the functions ¢, : D - R;

- the functions 1, :D —R" and (Id +1;):D— D, Id isanidentity in R";

- the initial point (t,,%,) € R"xD.

The solution of the initial problem is a partially continuous function, with left continuity at the moments t,t,,....
Moreover, this solution is a diferetiable function in each of the open intervals (tifl L. ) 1=12,... Itis satisfied:
1.1. For t, t, <t<t, the solution of the problem (1), (2), (3), (4) coincides with the solution of the initial

problem (1), (4) (with invariable structure and without impulses), i.e. coincides with the solution of the problem

(5) o _ fL (6 X), X(ty)=X;
dt
1.2.Fort, t,<t<t,itissatisfied ¢, (X, (t))=0, where X, (t) is a solution of the initial problem (5);
1.3. Let t; be the first moment aftert; , for which is satisfied the equation ¢, (x1 (tl)) =0;
1.4. At the moment t, besides a changing of the right side of the problem considered, the impulsive perturbation

of the solution takes place, i.e. it is done the equality (3) for i =1. li is valid

X(t,+0)=x () +1,(x (1)) =(1d +1,) (% (1))

2.1. For t, t, <t<t,, the solution of the problem (1), (2), (3), (4) coincides with the solution of the initial
problem

ax

(6) p

f,(t,x), x(t,+0)=(1d+1,)(x(t));

2.2. For t, t, <t<t,, it is satisfied the inequality ¢, (X,(t))=0, where X,(t) is a solution of the initial
problem (6);

2.3. Let t, be the first moment after t,, for which it is fulfilled the equation ¢, (X, (t,))=0;

2.4. At the moment t,, the right hand side of the problem discussed and the impulsive perturbation takes place,
i.e. it is done the equality (3) for i =2. We have

X(t, +0)=x, (t,)+ 1, (%, (t,))=(1d +1,)(x,(t,))

etc.
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The solution of the problem is left continuous at the moments t,t,,... In general (for example, when the
functions |, (x) #0 for xe D, 1=1,2,...) this solution has discontinuous right hand side at the points, indicated
above. There is a finite jump discontinuity at these points. We will denote, the points t,,t,,... switching moments,
the functions I, 1=1,2,..., are impulsive functions and ¢,, i =1,2,..., are switching functions.

Further, the solution of the problem (1), (2), (3), (4) we will note with x(t;to, xo,gol,goz,...). More precisely, we
have
X(tite, %), b <t<t;

X(titg, X, 9), 1, <t<ty;
(7) X(tites Xos @1, Py, n) = i

(8) e f(6X7), @ (X' (1)) %0, t, <t<t,
9) (pi*(x*(ti*))=0, i=1,2,...,

(10) X (17 +0)=x"(t')+1, (x*(t,))

(11) X (t)=x,

where:
- the switching functions (pi* ‘D> R;

- the initial point (t;,X;) € R*xD.
The solution of this problem we denote by X~ (t X, 0,9, ) Like (7) there is
X (tt5,%), to<t<t;
X (titg, 5.1 ), 1 <t<ty;
X*(t;t;,xg,@,(o;,...): ............

X (10,6, 00 070 ) 8 <E<tL

Definition 1. We will say that the solution of the problem (1), (2), (3), (4) depends continuously on the initial
condition and the switching functions, if:

(Ve =const >0)(V7 =const >0)(VT =const > t,)(35 =5(&,7,T)>0):
(vt eR", [t <5)(vg e D, [xg—x] <)
(Vo eC[D.R],

¢ (X)-¢ (x)|<5 for xeD, i=12,.) =
(Hx*(t;tg,x;,gof,(p;,...)—x(t;to,xo,(pl,goz,...)H<g for ty™ <t<Tand t—t|>7, i:1,2,...),
where t™ :max{t;,to}.
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Note that the existence of “proximity” between the both solutions (of the problem considered and the
corresponding perturbed problem) it not required in the pre-fixed neighbourhoods (t, —7,t +7),i=12,..., at
the switching moments of the basic problem.

For convenience, we introduce the symbols:
- D, = {x eD; o (x) = O}, i=12,..., are switching hypersurfaces of the basic problem;

- (I): = {x eD; goi* (x) = 0}, I=12,..., are switching hypersurfaces of the perturbed problem;

- I,(x)=0 for x e D. The equality (1d + I, )(x)=Xx is valid;

-7 (ty %) = {(t X(tity, X, @1 P51-0)), B <t ST} is a trajectory of the problem considered for t, <t <T ;
-7 (5.%) = {(t X (t 't x;(pfgo;)) t <t ST} is a trajectory of the perturbed problem if t, <t <T ;
- ||| 'and (.,.) are the Euclidean norm and the dot product in R";

- By (%) :{x eR"; [[x—x,|| < 6} is & - neighbourhood of the point X, .

We introduce the following conditions:

H1. The functions f, eC[R*x D, R”] and there exists the positive constantC,,,,, such that for each point
(t,x)eR"xD and i =1,2,... the inequalities

1 xl<c,

are valid.

H2. The functions ¢, € C*[D,R] and there exists the positive constant C,,, such that for each point x € D

gradg
and 1 =1,2,... the inequalities

ngadgpi (X)H < Cyrago

are valid.

H3. The functions |, € C[D, R”], (1d+1;):®; — D and there exists the positive constant C,, ., such that

Id+1)
for each point x e @, and i=1,2,... the inequalities

‘(DM ((Id + Ii)(x))‘ :‘@Hl(x"' l; (X))‘ Z C¢(|d+|)

are valid.

H4. For each point (t,x)e R* xD and i=1,2,... the inequalities
@ ((1d+1,)(x)).(grade,, (x), f,, (t.x)) < 0

are valid.

H5. There exists the positive constant C< , such that for each point (t,x) eR"xD and i=12,... the

grade, f)
inequalities

Kgrad(pi (%), fi(t, x)>‘ > Clyrai 1)
are valid.
H6. For each point (to, xo) eR"xD and i=1,2,... there exists a unique solution of the initial problem for

t>t,
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dx

(12)  —=1(t,x), x(t;)=x,.
dt

Ttheorem 1. Let the conditions: H1, H2, H3 and H4 hold.
Then:

1. If the trajectory 7(t0, XO) of the problem (1), (2), (3), (4) meets consecutively the switching hypersurfaces @,
and O.

i+1?

then for the corresponding switching moments t; and t
C

the following estimate is valid:

i+11

t- 1—t- > (p(ld+|) '
" I Cgrad(p'cf
2. If the trajectory 7(t0,x0) meets all the switching hypersurfaces®,, i=1,2,..., then the switching moments

increase infinitely, i.e. limt, =,
11—

Proof. Under the conditions H4 the functions ¢, ((1d +1,)(x)) and (grade,, (x), f,,; (t,x)) are non-zero

and they have opposite signs for any point(t,x)e R* x D. Without loss of generality we assume that the
following inequalities are valid:

(13) @, ((1d+1,)(x))<0, xeD
and
(14) (grade,,(x), f,,(t,x))>0, (t,x)eR"xD.

We consider the function ¢:[t,,t,,] = R, defined by the equality

(pm(x(ti +0;tO,XO,(01,...(0i))
15)  ¢(t)= :q)m(x(ti;to,X0,¢l,...¢H)+Ii(X(ti;to,XO,(pl,...(oifl))),t:ti;
P (X(titg, X0, @), 1 <<,
Under condition H3 and inequality (13) it is true
16)  B(ta)—2(t) = @y (X(tsite: Xos @) ) = Py (X (8 + 051, X0, 01,0 ))
=O—(/)i+1(x(ti;t0,xo,gol,...goi_1)+Ii(x(ti;to,xo,gal,...(pi_l)))
:—go”l((ld +1) (% (451, XO’¢1""¢i—l))) = go”l((ld +1) (X (45t XO,¢1,...¢)H)))‘ >C .-

On the other hand, using (14) and the conditions H1 and H2, we obtain consecutively:

¢(ti+1)_¢(ti):%¢(9)(ti+l _ti):%@ﬂ(x(g;to’ X1 Prs-p; ))'(ti+l _ti)

:(i@u(x(a;tov Xos Py, )) fifrl (91 X(e;to’ Xo1 Pry @, ))

24
0
"‘&(Pm(x(e;to' X07¢1""¢i)) fiil(e’ X(e;to' Xor Pry--P; ))
2
+... +
0 "
+87¢i+l(x(0;t0’ Xor Prs -, )) fi+l(9’ X(Q;to’ Xor Prs -, ))j-(tm _ti)

:<grad¢i+l(x(0;t0’XO’¢1""¢i )) ) fi+1(0’x(9;t0’ Xor Ppr--P; ))>'(ti+1_ti)
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fi+1(9, x(@;to, Xor Ppr P, ))H'(tm _ti)

<Joradgr, (x(60:t %0 )
< Cgradrp'Cf '(ti+l _ti )
The following estimate is achieved from the inequality above

t,-t= ﬁ(¢(ti+l)_¢(ti))’

gradp "™ f
whence, by means of the inequality (16), it follows that
C

(1d+1)
in G2 C(p—C

grade "™ f
If the trajectory of the basic problem meets infinitely many switching hypersurfaces, then using the previous
estimate we achieve the conclusion

C
limt, = lim((t —t, )+ (ty —t )+t (6 —t )+t ) 2 limi 20

i—w i—w i—w Cgradq;'Cf

+t, =o0.

The theorem is proved.
Theorem 2. Let the following conditions are fulfilled:

1. The conditions: H1, H2, H3, H4 and H5 hold.
2. The next inequality is correct for any point (t,x)e R"xD

o (%)-(grade (x), f,(t,x)) <0.
Then the trajectory of the problem (1), (2), (3), (4) meets each of the hypersurfaces ®,, i=12,...

Proof. First of all we will show that the trajectory of the basic problem meets the hypersurface @, . One of the
following two cases is valid from the condition 2:

Case 1. ¢ (%) <0, (grade,(X), f,(t,x))>0 for (t,x)eR" xD;
Case 2. ¢,(%)>0, <gradgol(x), fl(t,x)><0 for (t,x)eR"xD.

Here we will discuss the first case. Another case can be considered in a similar way. We introduce the function
#(t) = (X(tity, %)) for t=t,. There is

#(t) = (X(toith, %)) = (%) <O.

Under the condition H5 it is satisfied

d

a¢(t):<gradgol(x(t;to,xo)), fl(t,x(t;to,xo))>

= Kgrad(pl(x(t;to,xo)) : fl(t,x(t;to,xo))>‘ > Cyraa. 1y = CONSE > 0.

Using the facts ¢(t,) <0 and %gﬁ(t) =const >0 for t >1,, it follows that there exists a point t, >t,, such that

o (X(tit.%))=4(t,)=0. This means that at the moment t, the trajectory (t,,X,) mests the
hypersurface @, . Assume that the trajectory of the problem considered meets concequtively the hypersurfaces

O, D,,...,D; at the moments t,t,,...,t;. Then we prove that 7(t0, XO) meets the hypersurface @, ,, . Once again

without loss of generality we assume that the inequalities (13) and (14) are valid. As in the previous theorem, we
consider the function ¢, defined by (15). We have
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(17) ¢(ti +O) = ¢i+l(x(ti;t0’ XO’¢1""gDi—1)+ l; (X(ti;tO’ XO’¢11"'¢i—l)))
=g, ((Id +1)(x(t3 1t Xo,q)l,...(pifl))) <0.

For t > t; it is satisfied

d d
18 41 = ot xn-n)
:<grad§”i+1(x(t;to’Xm(”p---%))' fi+1(tyx(t;to’Xo’¢1’---(0i))>

= Kgrad%l(x(t;to,xo,gol,...goi)) : fM(t,x(t;to,xo,gol,...goi))>‘ 2 Cyraap. ) = CONSL> 0.
From (17) and (18) it follows that there exist a point t;,, >t. such that

¢(ti+1) =0 ¢i+1(x(ti+l;t0' XO’(DI""(Di )) =0.

The interpretation of this equality is that the trajectory of the problem (1), (2), (3), (4) meets the hypersurface
@, ,. The proof of the theorem follows by induction.

The theorem is proved.
Using theorem 1 and condition H6 we deduce the validity of the next theorem:

Theorem 3. Let the conditions: H1, H2, H3, H4 and H6 hold.
Then the solution of the problem (1), (2), (3), (4) exists and it is unique for t, <t <co.

Theorem 4. The following conditions are fulfilled:
1. The conditions: H1, H2, H3, H4 and H6 hold.

2. For each point (t,x) e R"xD the following inequality is true

o (%)-(grade, (x), f,(t,x)) < 0.
3. The trajectory y(t,, X, ) of the problem (1), (2), (3), (4) meets the hypersurface @, at the moment t,. Then
(36 =const > 0):

(V6 eR", o —t|<5)(vg €D, -] <d)
(V¢ eC[D.R], |oi (x)- ¢ (x)| <& for xeD)

:y*(tg,x;’)mq)z =,
Proof. Under the condition 2 the following inequalities take place:
(19) (%) =a(%+10(%))=a((1d+1,)(%)) %0,
(gradg (x), f,(t,x))#0, (t,x)eR"xD.
Assume that the next inequalities are valid:

(20) ¢1(X0):¢1(X(t0;t07xo))<ov@1(X(t1;to’xo)):0
and ¢, (X(t;t), %)) <0 for t, <t <t,.

The case ¢, (X,)>0 is considered in the same way. Assume that for any t>t, there is ¢ (X(t;t,,%,))<0.
Then t, is a point of maximum of the function ¢(t) =g, (X(t;ty,,)). Itis satisfied
d d
0=—-(t) = (xX(tito %)) =(grader (X(t;t %)), f (6 X (L%, %0)))
This equality contradicts to the second of the inequalities (19). Therefore there must be a point @ >t; such that
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$(0)=0.(x(63t,%))>0.

From the inequality gol(xo)<0 and the continuity of the function ¢, it follows that there exists a positive

constant &' such that for any point x € B;.(X,) the inequality ¢, (x) <0 is satisfied. By analogy, using the
inequality (pl(x(ﬁ;to,xo)) >0 and the continuity of the function ¢,, we obtain the existence of the positive
constant " such that for each point X & B,. (X(8;t,,%,)) the inequality ¢, (x) > 0 is valid. We denote

A'=min{|g; (X)), x& By (%)}, A"=min{|g, (x)], x € By (x(0:t,, %))}

In accordance with the classical theorem of continuous dependence of the solutions of the systems differential
equations with invariable structure and without impulses on the initial condition (for brevity is called further
Classical theorem for continuous dependence) it follows:

(35 =const, 0<5<5"): (V; eR", Jt;—t,|<5)(vg €D, )5 —%[ <)

:>(Hx*(t;t;,xS)—x(t;tO,XO)H<5" for ™ Stse).

We assume also that for the arbitrary chosen continuous function (pf : D — R is valid in adition the inequality
‘gof(x)—(pl(x)‘ <min{A" A"} for xe D .

For the part of the trajectory 7~ (tg x;) locked between the points X; and X~ (H;t; , x;) we obtain the following
restriction:
1. For the initial point x; it is satisfied

o =xl<5 =[x -x]<5'=x%<B,(x).
which yields

@) @ (%)=a(%)-a(%)+a(x)
<l () - (6)+ (%)

o (%)= (% )| -|e (%) <a-a=0

2. For the ., final ” point X*(H;tg,xg) it is valid

Hx*(t;t;,x;)—x(t;to,xo)H<5" for ™ <t<@

:Hx*(e;t;,x;)—x(ﬁ;to,xo)H<5": X (0315, %) € By (X(03t, %, ))-

As a result we ascertain that

22 (X (0:5.%)) =0 (X (0:t.%)) -2 (X (0:4.%))+ 1 (X (0:t.%5))

o (X (0:5.5))|- | (X (0:6.6)) - (x (6:8.%))| > A A" =0,

Under the conditions (21) and (22) for the function ¢(t) = g; (x* (t:t5, x;;)) we find out
(t) =2 (X (tit5.5)) =0 (%) <0, ¢(0) =g (X' (6:%,%))>0.

Using the continuity of the function ¢ we deduce that there exists a point t;, t; <t <@, such that

>
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$(t)=0 < ¢ (X' (1:5.%))=0.
The meaning of the last equality is that the trajectory 7~ (t; X ) of the perturbed problem (8), (9), (10), (11)

meets the hypersurface CDI at the moment tf . The theorem is proved.

Theorem 5. The following conditions are fulfilled:
1. The conditions: H1, H2, H3, H4 and H6 hold.

2. For each point (t,x) e R"x D the next inequality is valid

2 (%)-(grade, (x), f,(t,x)) < 0.

3. The trajectory ;/(to, xo) of the problem (1), (2), (3), (4) meets the hypersurface @, at the moment t,. 7hen
(Vn =const>0)(35=5(n)>0):

(Vt; eR’, [t —t| < 5)(ng €D, [x —x< 5)

(‘v’(p: eC[D,R], ‘(p;(x)—(pl(x)‘ <6 for xe D)

= ‘t; —ti‘ <n.

Proof. Using the Theorem 4 we find out that there exists 6'> 0 such that

(Vt;‘ eR’, [t -t <5')(ng eD, X —x[< 5')

(V¢ eC[D.R], |¢i (x)—@(x)| <5 for xeD)

whence it follows that the trajectory »”(t;, ;) of the problem (8), (9), (10), (11) intercepts the perturbed
hypersurface <DI at the moment tl* . Under the condition 2 of theorem 5 we assume that the inequalities (20) are
valid. Let 77 be an arbitrary constant and 0 <7 <min {t1 -1, 1, —tl} . Then the following inequalities are valid:
o (X(tity, %)) <0 for ty<t<t -5 and ¢ (X(t,+7;t;,%))>0.

We introduce the positive constants:

A'= min{‘gal(x(t;to,xo))‘, t, <t SH—U} and A"=g (X(t, +7;t,,%)).

From the first of both inequalities above for t =t, —7 it follows that

(23) @ (X(t,—73t5, %)) > —A"

Using the classical theorem of continuous dependence it follows:

(24) (35" =const, 0<5"<5"): (Y eR", [t;~t,|<5")(vx €D, x5 —x] <5")

1

:>Hx*(t;t;,x;)—x(t;to,xo)H< min{A" A"} for t"™ <t<t +7.

2Cgrad¢7
Let the function ¢, € C[D, R] and it satisfies

(25) ‘gof(x)—(pl(x)‘<%min{A',A"} for xeD.

Under condition H2 the gradients of the functions ¢, i=12,..., are bounded above. Hence, the following
inequalities are valid:
‘goi (x')-o, (X")‘chrad(p”XI_X"”’ X', x"eD, i=12,..

54



© Centre for Promoting Ideas, USA www.ijastnet .com
Using the estimates (23), (24) and (25), we obtain:

@) o (X (t-m5.%))=a (X (t-7:6.%))-a (X (L -7, %))
o (X (L =m:5.6)) o (X(6 =731, %)) + . (X(t =73, %))

o (X (L=m.%)) - (X (b -m:6.%))

# Coaa | X (=731, ) = X (& =773t % )| + 1 (X (& =731, %))

Latt Gt & a0

grade

<

On the other hand, we have
@) o (X (L+mitg)) = (X (b+7:6.%))-a (X (tL+7:5.%))
o (X (L +m:5.6) )~ (Xt 731, %))+ (X (4 +75t, % )
o (X (b-m5.%)) - (X (b =m:6.%))
= Coraao | ¥ (L =7736.% ) =X (t =731, % )|+ (X (t, =735, %))
1 1

7Tt T G

grade

A" — A"=0.

We rewrite (26) and (27) in a more compact form: ¢(t,—7)<0 and @(t,+7)>0 respectively. From the
continuity of the function ¢(t) = ¢, (x* (t i, xg)) for t, —n <t <t +7 it follows that there exists a point t, ,
t-n<t <t+ne-n<t-t<n < |t -t|<n,

such that

§() =i (x (5:6.)) =0.

The last equality means that the trajectory (t; x;) of the perturbed problem intercepts the hypersurface CDI at

the moment t, , for which it is satisfied the inequality ‘tf —t1‘<77. The theorem is proved.

3. Main Results
The main result is contained in the following theorem.

Theorem 6. Let the conditions: H1, H2, H3, H4 and H6 hold.
Then the solution of the problem (1), (2), (3), (4) depends continuously on the initial condition and the switching
functions.

Proof. Let ¢ and 7 be the arbitrary positive constants and T >t,. The following cases are posible:

Case 1. The trajectory 7/(t0, xo) of the problem (1), (2), (3), (4) meets no one of the switching hypersurfaces for

t, <t<T. In this case the assertation of the theorem follows from the classical theorem for continuous
dependence.
Case 2. The trajectory 7(t0, xo) meets only one hypersurface - @, for t; <t <T . Then it is satisfied:

2.1. According to the theorem 4 there are
(36‘ = const > O): (Vtg eR", ‘to —to‘ <5 )(VXO eD, on —XOH < 5‘)
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(‘v’(p: eC[D,U], ‘(PI(X)_%(X)‘ <5 for xe D) = f(tg,xg)m(l)z =,
i.e. the trajectory (t; X ) meets the switching hypersurface @, at the moment t; ;

2.2. According to the theorem 5 it is satisfied:
(vo",0<6" <57)(35" =const >0): (Vtg eR",

t—t,|<6")(¥g €D, |- %] <5")
<V¢; eC[D,R], |@ (x)-a(x)|<s" for xe D) = |t —t|<s",
where 5™ we will specify later. From the last inequality it follows that ‘tl* —t1‘< n;

2.3. From the classical theorem for continuous dependence the following is true
(V6",0< 8" <&)(36" =const>0): (Vt; e R", |t; —t,| < 6" )(¥x; €D, x5 —x| < ")

:Hx*(t;t;,x;)—x(t;to,xo)u<6V <eg, ty<t<t™,

min

where t™ =min {tl*tl} . The constant " we will specify later;

2.4. Letassume that t™ =t, and ™ =t, . The considerations in the second case are similar. Using the condition
H1 we deduce that

t1 t), % ) J'*f (r X (r;t;,x;))dr—x(tl;to,xo)

fl(TaX*(T;t;,X; HdTSé'V+Cf ‘tf_tl‘:é‘\/_,_cféiii_

b (26.) -t )|

<J’

2.5. From the continuity of function |, and taking into account the previous paragraph it follows that
(¥6" = const >0)(35" >0, 5* > 0): | (& +05t5,5; ) = x(t, + 035, %)

<[ (85385, 56) = (bt 30|+ 1 (X (85556 )) = 1 (X (b5t %))

where the constant 5" we will determine later.

‘<5Vi,

2.6. Again with the classical theorem for continuous dependence we obtain
(36" >0)(35" >0):
(V8 [t —t] <™ ) (£ +0:5.6 ), X (& +055.6) = x(t, + 05t %, )| < )
= HX*(t;t;,XS,gDI)—X(t;tO,XO,(pl H<g, ™ <t<T.

2.7. We perform the specifying of the constants in the following sequence:
2.7.1. From 2.1 we specify &'

2.7.2. From 2.6 we specify 6™ and 8";

2.7.3. From 2.5 we determine " and futher refine 6™ ;

2.7.4. From 2.3 we find 6" ;

2.7.5. From 2.2 futher refine 5" (5i" < 77) and determine &" .

2.8. Let S =min {5i ..... 5“} . The obtained result can be sumarized as:
ty 1ty < 5)(ng eD, % —x< 5)
(‘v’(p: eC[D,R], ‘(p:(x)—(ol(x)‘ <6 for xe D)

(vt eR’,
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Whence it follows:
28.1 X (68,%) X (tste, %, )| <&, > <t<t™ (see 2.3)

282 X (66,5, )~ X(tite, %, )| <&, ™ <U<T (see 2.6);
283, [t] —t|=["™ —t""

We rewrite the inequalities 2.8.1, 2.8.2 and 2.8.3 more compact in the form:

<n (see2.2).

Hx*(t;t;,x;,gol*,(p;,...)—x(t;to,xo,gol,(pz,...)H<g for ty™ <t<T and |t—t|>7.
The theorem in this case is proved.

Case 3. The trajectory of the fundamental problem meets finite number hypersurfaces for t, <t <T . We assume
that the following inequalities are fulfilled for the moments of these meetings:

t, <t <t, <..<t <T <t ,<..

We introduce the following notations:

e 1 1 1
T, =t™, lez(tl+t2), T, :E(t2+t3),...,Tk_l:E(tk_1+tk), T =T.

Under the previous case, we have:
3.1.(V6,, 0<6,<¢)(36, 0<6,<¢):

(V6 eR", o -t|<8)(vx €D, [ —x] <)
(V¢ eC[D.R], |¢ (x)-¢(x) <&, for xeD)
:Hx*(t;tg,xg)—x(t;to,xo)H<52,Togtgtlmin;

Hx*(t;t;,x;,qof)—x(t;to,xo,gol)H< 5, t"<t<T, and t/™ —-t™ <7.
32.(V6,, 0<6,<¢)(36,, 0<8,<¢):

(Vx*(t;t;,x;,gof), Hx*(Tl;t;,x;,(pf)—x(Tl;to,xo,(pl)H<52 )

(Ve, C[D.R], |¢; (X)-@,(x)| <5, for xeD)
:Hx*(t;tg,x;,gyf)—x(t;to,xo,gol)H<53,Tlstst;“‘";

X (6650503 )~ X(tito. X0 1., )| < 5 G SET, and % 47" <.

3x-1. (V6,, 0<6, <¢)(36,4, 0<6,,<¢€):

(VX*(t;t;‘,x;,gof,...,(p;_z), Hx*(Tl;t;,xg,(pf,...,go:_z)—x(Tl;to,xo,(ol,...,gok_z)H<5k_l )
(Wo;_leC[D, R], ‘(p:_l(x)—(pk_l(x)‘<5k_1 for XED)
:>Hx*(t;t;,x;,gpf,...,(p:_z)—x(t;to,xo,(pl,...,gok_z)u<5k, T, <t<t™;

[ (65556, 642 ) =X (Gt X, P ) < B (T <EST, and 7% 47 <.

3k (36, 0<6,<¢e):
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(VX*(t;tS,X&(Df,---,cf)il), HX*(Tl:tELXS,cof,---,cDEfl)—X(Tl:to,Xo,col,---,(ﬂkfl)u<5k )
(Vi eC[D.R], i (X)— @ (x)| < for xeD)
:Hx*(t;t;,x;,gof,...,(p:_l)—x(t;to,xo,gol,...,gok_l)H<g, T <t<t™;
Hx*(t;t;,x;,goj,...,gp;)—x(t;to,xo,(pl,...,gok)H<g, t"<t<T, and ™ —t™ <.

The constants &;, i =1,2,...,k , we define in the reverse order: first, we identify J, , after that we determine ¢, ,
etc. Finally, we find o;. We substitute & = ¢,. The results of the paragraphs 3.1 + 3.x can be summarized as:

to—t,| < 5)(vx; € D, ) =%, < )
(Ve eC[DR], o (x)=g, (x)|< & for xeD, i=12..) =

(vt eR’,

(Hx*(t;t;,xg,gof,ga;,...)—x(t;to,xo,gol,goz,...)u<g for ty™ <t<Tand t—t|>7, i :1,2,...).

The theorem is proved in this case.
Case 4. The trajectory of the problem (1), (2), (3), (4) meets infinity many switching hypersurfaces for t, <t <T .

The following inequalities t, <t, <t, <...<T are valid in this case. The last inequalities contradict to the second

statement of the theorem 1. Therefore, this case is impossible.
The theorem is proved.
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