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Abstract

Chaos synchronization of identical chemical reactors with different initial conditions is investigated by two
approaches: linear coupling and a novel coupling which is proposed for the first time. Both approaches are
studied under bidirectional and unidirectional schemes. The conditions to achieve stability of synchronization are
determined by the Lyapunov theorem for linear coupling method. Also, stability condition is obtained when novel
coupling is applied. In each section, numerical simulations are presented to verify the theoretical results.
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1. Introduction

Synchronization of coupled dynamical systems is an important field of nonlinear dynamics. Its effects in
oscillators are widely used in chemical reactors (Cruz et al., 2009; Chen, 2008; Kurkina & Kuretuva, 2004). The
idea of synchronizing two identical chaotic systems that start with different initial conditions was introduced by
Pecora and Carrols (1990). It consists of linking the trajectories of one system to the corresponding trajectories of
the other so that they remain in step with each other through the transmission of a signal. A variety of approaches
have been proposed for the synchronization of chaotic systems [Lian et al; 2002; Tan et al., 2003; Jiang & Zheng,
2005); However they can be classified into two cases: bidirectional and unidirectional scenarios (Chen et al.,
1998). Bidirectional coupling involves the situation wherein the two chaotic systems influence each other
mutually. Since this bidirectional coupling is believed to be generic in a majority of natural processes, it has
generated utmost interest in the scientific community. However, it is easy to motivate studying the
synchronization phenomena under unidirectional coupling as there may exist numerous nonlinear processes that
function within the premises of master-slave configuration (Cruz et al., 2009). This will be discussed in the next
section.

There are many control techniques to determine coupling terms such that error dynamics converges to zero. A
general one is based on negative linear feedback of error dynamics. Moreover there are many nonlinear feedback
based synchronization techniques where the coupling terms are nonlinear functions of error dynamics  In this
paper we use two schemes for coupling: first we start by linear coupling scheme in both bidirectional and
unidirectional ways. We prove the stability of error dynamics by the Lyapunov theorem (Slotine & Li, 1991).
Then we propose a novel method to couple both unidirectional and bidirectional for synchronization of two
identical chaotic chemical reactors. We show that our coupling scheme can synchronize the considered system
effectively and in a short time. Also, we study asymptotic stability of error dynamics theoretically. The rest of the
paper is organized as follows: Next section is devoted to a brief introduction on synchronization problem. In
section 3 the model of a well known chemical reactor is brought in. The chaotic behavior of this model has been
studied in (Haung, 2005). Section 4 presents the synchronization problem with linear coupling in unidirectional
and bidirectional schemes. In section 5, first the stability of synchronization by a new coupling scheme is shown
by simulation. Then validity of the proposed method is revealed by the stability theory. The final section is
dedicated to compare the linear coupling and the novel coupling schemes and weakness and advantages of these
methods are studied.

2. Synchronization Problem
Consider the following chaotic systems described by
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X =F(X,U), Y=F(,V)
where X,Y € R", are the state variables, U,V € R™, are the control inputs and F:R" x R™ — R" determines
the dynamic of systems. The synchronization is to design U,V such that the states of both systems follow each
other asymptotically (Chen et al., 1998). Dynamic of the error of synchronization can be expressed as
E=F(X,U)-F(Y,V)
where E = X —Y . The aim of synchronization is to make !im | E |l=0 by choosing a suitable U and V .

The bidirectional coupling scheme uses U =G,(X,Y) and V =G,(X,Y) where both systems influence each
other. If G,(X,Y)=-G,(X,Y)=KE where K =diag{x}, then the coupling terms are linear. In the

unidirectional scheme we utilize U =0 and the second system does not affect the first one. This scheme is often
called master-slave configuration.

3. Chemical Reactor Dynamic

The well-stirred chemical reactor dynamic has been studied in (Haung, 2005) which consists of the following five
reversible steps

ky ks ks e ks
A+X<2X, X+Y<2Y, A+Y<A, X+Z<A, A+Z<2Z.
%

— — — —
K, k., K K., kg

Here, A, A, and A, are initiators, A, and A, are products. The intermediates whose dynamics are followed are
X,Y and Z . The corresponding non-dimensionalized dynamical evolution equations read

X=(a, -k x-y-2)x
y=(x- a5)y )
z=(a,—x—-k2)z
Where X,y and z are positive mole functions, and a,,a,,a,Kk ; and k_ are positive parameters.
For the following value of parameters, system (1) is chaotic.
a =30, a,=16.5 a,=10, k , =05, k ;=05 2)

Fig. 1 shows the chaotic trajectory of system (1) with initial conditions [x(0), y(0), z(0)] = [5,17,0.3]. Note that
the state variables of the system are always nonnegative because of the inherent properties.

Fig. 1. Chaotic trajectory of system (1) after transition time.
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4. Synchronization by Linear Coupling

A. Bidirectional Synchronization
Let us consider two well-Stirred reactors with bidirectional linear coupling as

X = (@ =KX =Y —2))% +Kx(X — %)
Y1 = (X1 - aS)yl + K(yz - yl) ) reactor 1 (3)
2, =(a,— % —k42,)z, +x(z,-7,)

X, = (& =KX, =Y, —2,) %, + K(X —X,)
Y, = (X, —a5) Y, +x(Y; — Ys) : reactor 2 4)
2, =(a, — %, —K52,)2, +x(2, - 2,)
Define the components of error vector as
& =X—X,, &=Y,—Y,, €=2-12,, (5)

The following error dynamic for e, is

€, = (31 - k71X1 Y1 21)X1 - (a1 - k—lxz —Y, - 22)X2 —2xe,, (6)
this can be simplified as
€, =ay (X% — %) =K, (% =X, ) (X + X,) — 2xe,
Y YK =YX + Yo Xy — X + 24X, — 40X, + 25X,
=ae, — K, (X +X,)6, — V18, — X8, — 7,6, — X,€, — 2k€ ’ 0

=[a, -k, (4 +%)-(V,+2) -2 =X —X][g, €, ez]T
By similar manipulation we have

e, =Y,6 —(a+2x—X)e,, (8)
and
e, =-z,e, —(k (z,+2,)—a, +2x+X)e,, 9)
Equations (7)-(9) can be summarized in the following system
éx —2/<+a1—k_1(x1+x2)—(y1+zl) =X —X €
e, |= Y, —2Kk—a; +X 0 e, (10)
é, -7, 0 —-2k+a,-k  (2,+2,)-(%+Xx) | e

z

We have the following theorem.

Theorem 1: The origin of (10) is asymptotically stable if x is chosen sufficiently large.
Proof: The origin is an equilibrium point for (10) and a suitable Lyapunov function is of the form (Slotine & Li,
1991)

V=1(e;+e)+e)), (11)
Computing time derivative of V along the trajectories of (10), we find
V=¢ee +ee +ege
=— (K, (X +X,) + Y + 2, + 2K — 8))€] — X,8,8, — X,€,€, + (12)
y,e8, —(as + 2k — X )e; —z,e.e, — (K 5(z, +2,) —a, + 2k + X, )&}
or equivalently
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V=-e e ¢]Qle e el (13)

where Q =[q;;1, i, j =1,2,3 is the following matrix

ZK_ai+k71(X1+X2)+y1+Zl X2;y2 X, +2Z,
0= X ; Y2 (2K +a; — X)) 0 (14)
x242rzz 0 2k —a, +k (2, +2,) + %

To ensure that the origin is asymptotically stable, the matrix Q would be positive definite. This is the case if the
following three inequalities hold:

0 >0, Oy0 — 00, >0,  det(Q)>0, (15)
Hence by the first condition on the left of (15) we have 2x —a, +k (X +X,) + (Y, +Z;) > 0. Since we always
have Kk ,(X, +X,) + (Y, +2,) >0, achoice for x independent of states is

2K > Q. (16)
Also since a chaotic system has bounded trajectories, there exists a positive constant 7, such that
0<x,Y,z, </, 1=12,
Thus the second inequality in (15) becomes
(2x—a)(2x +a, — 1) > (?, (17)

Similarly the third condition is held if
2k —a)(2x+a, — )2k —a, —((1+2K ) > ’[2x +a; + )+ (2x —a, + ((1+ 2k .))], (18)

Considering (16)-(18) we may choose sufficiently large x so that V <0 for the error vector € =0 and the origin
of (10) is asymptotically stable. This completes the proof.m
As a notable feature we know that negativeness of the time derivative of Lyapunov function is a sufficient

condition for the stability, i.e. V <O is a conservative condition. So although theorem 1 implies a large coupling
strength « for stability of the origin of error dynamics, systems (3) and (4) are synchronized by the smaller
coupling strength « . Fig. 2 shows the time history of error with & = 0.5 where theorem 1 entails & > 7.5. There

it is demonstrated that error components e, ,e, and e, go to zero after a short time.
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Fig. 2. Time history of error dynamics for linear bidirectional coupling method with x=0.5.

A. Unidirectional Synchronization
Now consider the master-slave configuration of coupled chemical reactors where control signal just apply to slave
system which yields

X:I. = (ai - k—lxl -y - Z1))(1
Vi=(%—a)Y, : master reactor
21 = (a4 —X - k—SZl)Zl

X, = (8 =K X, =Y, = 2,) X, + k(X —X,)

Y, = (X —a5)Y, +x(Y,—Y,) : slave reactor

(19)

2, =(a, =%, =K 52,)2, + (2, - 2,)
By the errors defined in (5), we have the same error dynamics as (10) where 2x is changed into «. So the

stability results are the same as (16)-(18) and theorem 1 remains valid. Fig. 3 shows the trajectories of the error
dynamics in phase plane for x =0.8. It reveals stability of the origin of error dynamics.
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Fig. 3. Phase planes of error dynamics for linear unidirectional coupling method with «=0.8.

5. Synchronization by Novel Coupling

A. Bidirectional Synchronization
Adgain consider the corresponding dynamics of reactors. If we replace X, <> X, in the third equations of reactors

then a new coupling systems are obtained as

X o=(a -k -y —7)X
V=X —a)y, ,  hew reactor 1 (20)

21 = (3-4 —X - k—SZl)Zl

X, = (@, =KX — Y, —2,)%,
Y, =(X, —ag)y, , new reactor 2 (21)

Z'2 = (a4 —X - k—szz)zz

Both systems (20) and (21) remain chaotic and become synchronized. Fig. 4 shows the state variables of both
systems which follow each other after a short transient time.
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Fig. 4. Comparisons of systems trajectories by using bidirectional coupling x, <> x, -
This is because of the dynamics of error signals: By definition (5) of error signals we have
& =[a -k ,(x+%)-(,+2) -% -xle e el. (22)
By similar manipulations we have
e, =[y, —a;+x Olle, e, e,
and
e,=[0 0 a,—kg(z;+7,)-(x+x)lle e, eI,

So the error dynamics are obtained as the following system

éx ai_k—l(xl+xz)_(y1+zl) — % —X; €
e, = Y, —-a,+ X 0 e | (23)
g, 0 0 a, —Ks(z,+2,) = (%, + %) e,
or
éx 2‘1 - X2 - X2 eX ex
e (=Y. 4 0 e [=Ae | (24)
g, 0 0 A4 |e, e,
At last (24) is stable if the matrix A+ A" is negative definite (Slotine & Li, 1991). This is occurred if
S,=24,<0, S,=444 —(X,—Y,)> >0, S,=-21X;+24S,<0, (25)

The above parameters are time dependent. In Fig. 5, (—S,,S, /100, —S, /10*) are plotted. It can be seen that

these are positive almost all the times. Thus the error dynamics may be stable, and so the states in both systems
become identical which are seen in Fig. 4.
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Fig. 5. The establishment of (25) for the stability of (24).

Now we couple two systems by substituting z, <>z, in the first equations of the reactors of model (1), which
yields

X = (81 - k71X1 — Y- ZZ)Xi

Yy =(X% —a)Y, ., new reactor 1 (26)

2, = (3.4 —X - k—SZl)Zl

X, = (al - k—lxz —Y, - Zl)XZ

Y, = (X — )Y, . new reactor 2 @7)

2, = (a4 — X~ k—szz)zz

Then these systems are synchronized with each other. Stability results are obtained as the previous case. Fig. 6
shows that the error dynamics go to zero after a short time and faster than the previous synchronizations.

10 ! ! ;

Fig. 6. Time history of error dynamics using bidirectional coupling z, <> z,.
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B. Unidirectional Synchronization

For unidirectional synchronization first we replace X,by X, in the third equation of reactor 2 as the slave system

which gives up system (21) where the master system is
X = (a1 - k—le Y- Zl)Xl
Yo = (X —a5)y, ,  master reactor
Z, = (a4 —X - k—SZl)Zl

To study behavior of the coupled systems we calculate the error dynamics

éx al_k—l(X1+X2)_(y1+Zl) =X, =X, ex
e, |= Y, —a; + X 0 e,
e 0 0 a,—ks(z,+2,)—x% | e,

z

This is comparable with (23), so the stability conditions are the same as (25) with
A =a, _k—5(21+22)_xl <0,
Fig. 7 shows the phase planes of error dynamics.
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Fig. 7. Phase plane of error dynamics by using novel unidirectional coupling x — x, .
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Now by replacing z, — z, in the first equation of the slave reactor we have (27) where the master reactor stays
unchanged as (28). In Fig. 8 the time history of error dynamics are given which indicates the errors go to zero.

S0 ! ! ! r
i i
3 4 5
T T
i i
3 4 5
T T
i i
3 4 5

t
Fig. 8. Time history of error dynamics using unidirectional coupling , _,, .

6. Closing Remarks

To closing this paper we compare linear and nonlinear coupling schemes. First we consider bidirectional coupling
in linear form presented by (3) and (4); and bidirectional nonlinear coupling given by (20) and (21). In Fig. 9 the
convergence rates of error dynamics are compared for two different values of x and also for nonlinear coupling.
It is observed that transient time is comparable in both schemes for x ~1. Moreover convergence rates can be
increased by increasing coupling gain « .

T
— lingar coupling x=0.5
noniinear coupling
———lingar coupling x=1

30 i i i i
0

Fig. 9. Comparison of convergence rates of nonlinear and linear coupling schemes with different

coupling strengths « .

There are two significant differences between the above two methods:

i. In linear coupling the amplitude of control signal x|X, —X,| goes to zero after transient time but in

nonlinear coupling the control signals X (i=12) never go to zero. Note that it is true for unidirectional

coupling.

ii. In linear coupling three signals must be transferred between systems but in the new coupling scheme it is

enough to synchronize two systems only by one signal.
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In section 4 we used X; as control signal in the third equations of reactors and z; as control signal in the first

equation of reactors. But we cannot use these nonlinear coupling in the second equation. This is because the
structure of the second equation of reactor is unstable:

yi = (Xi - as)Yi
In other word X; —a; may be positive in many times, and changing this equation may increase the instability. But
we can apply Y, =Y, as nonlinear coupling in the first equation of slave reactor instead of z, —z,. This
coupling term may stabilize the equilibrium point of chaotic slave system which is shown in Fig. 10.

Briefly, the problem of synchronization with different schemes in chaotic chemical reactors is solved in this
paper. The effects of linear and nonlinear coupling terms as well as bidirectional and unidirectional coupling
methods have been studied. Finally the advantages and weakness of each method are investigated.
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Fig. 10. Stabilizing equilibrium point of slave system by nonlinear coupling term y, — y, in the first
equation of slave reactor.
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