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Abstract  
 

Chaos synchronization of identical chemical reactors with different initial conditions is investigated by two 

approaches: linear coupling and a novel coupling which is proposed for the first time. Both approaches are 

studied under bidirectional and unidirectional schemes. The conditions to achieve stability of synchronization are 

determined by the Lyapunov theorem for linear coupling method. Also, stability condition is obtained when novel 

coupling is applied. In each section, numerical simulations are presented to verify the theoretical results.       
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1. Introduction 
 

Synchronization of coupled dynamical systems is an important field of nonlinear dynamics. Its effects in 

oscillators are widely used in chemical reactors (Cruz et al., 2009; Chen, 2008; Kurkina & Kuretuva, 2004). The 

idea of synchronizing two identical chaotic systems that start with different initial conditions was introduced by 

Pecora and Carrols (1990). It consists of linking the trajectories of one system to the corresponding trajectories of 

the other so that they remain in step with each other through the transmission of a signal. A variety of approaches 

have been proposed for the synchronization of chaotic systems [Lian et al; 2002; Tan et al., 2003; Jiang & Zheng, 

2005); However they can be classified into two cases: bidirectional and unidirectional scenarios (Chen et al., 

1998). Bidirectional coupling involves the situation wherein the two chaotic systems influence each other 

mutually. Since this bidirectional coupling is believed to be generic in a majority of natural processes, it has 

generated utmost interest in the scientific community. However, it is easy to motivate studying the 

synchronization phenomena under unidirectional coupling as there may exist numerous nonlinear processes that 

function within the premises of master-slave configuration (Cruz et al., 2009). This will be discussed in the next 

section. 
 

There are many control techniques to determine coupling terms such that error dynamics converges to zero. A 

general one is based on negative linear feedback of error dynamics. Moreover there are many nonlinear feedback 

based synchronization techniques where the coupling terms are nonlinear functions of error dynamics     In this 

paper we use two schemes for coupling: first we start by linear coupling scheme in both bidirectional and 

unidirectional ways.  We prove the stability of error dynamics by the Lyapunov theorem (Slotine & Li, 1991). 

Then we propose a novel method to couple both unidirectional and bidirectional for synchronization of two 

identical chaotic chemical reactors. We show that our coupling scheme can synchronize the considered system 

effectively and in a short time. Also, we study asymptotic stability of error dynamics theoretically.  The rest of the 

paper is organized as follows: Next section is devoted to a brief introduction on synchronization problem. In 

section 3 the model of a well known chemical reactor is brought in. The chaotic behavior of this model has been 

studied in (Haung, 2005). Section 4 presents the synchronization problem with linear coupling in unidirectional 

and bidirectional schemes. In section 5, first the stability of synchronization by a new coupling scheme is shown 

by simulation. Then validity of the proposed method is revealed by the stability theory. The final section is 

dedicated to compare the linear coupling and the novel coupling schemes and weakness and advantages of these 

methods are studied.  
 

2. Synchronization Problem 
Consider the following chaotic systems described by 
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),( UXFX  ,   ),( VYFY    

where 
nRYX , , are the state variables, 

mRVU , , are the control inputs and 
nmn RRRF :  determines 

the dynamic of systems. The synchronization is to design VU ,  such that the states of both systems follow each 

other asymptotically (Chen et al., 1998). Dynamic of the error of synchronization can be expressed as  

),(),( VYFUXFE    

where YXE  . The aim of synchronization is to make 0||||lim 


E
t

 by choosing a suitable U  and V  .  

The bidirectional coupling scheme uses ),(1 YXGU   and ),(2 YXGV   where both systems influence each 

other. If KEYXGYXG  ),(),( 12  where }diag{K , then the coupling terms are linear. In the 

unidirectional scheme we utilize 0U  and the second system does not affect the first one. This scheme is often 

called master-slave configuration.   
 

3. Chemical Reactor Dynamic  
 

The well-stirred chemical reactor dynamic has been studied in (Haung, 2005) which consists of the following five 

reversible steps 
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Here, 41, AA  and 5A  are initiators, 2A  and 3A  are products. The intermediates whose dynamics are followed are 

YX , and Z . The corresponding non-dimensionalized dynamical evolution equations read 
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Where yx,  and z are positive mole functions, and 1541 ,,, kaaa  and 5k  are positive parameters.  

For the following value of parameters, system (1) is chaotic.  

5.0,5.0,10,5.16,30 51541   kkaaa  (2) 

Fig. 1 shows the chaotic trajectory of system (1) with initial conditions )]0(),0(),0([ zyx  ]3.0,17,5[ . Note that 

the state variables of the system are always nonnegative because of the inherent properties.  

 
Fig. 1.  Chaotic trajectory of system (1) after transition time. 
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4. Synchronization by Linear Coupling 
 

A. Bidirectional Synchronization 

Let us consider two well-Stirred reactors with bidirectional linear coupling as 
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Define the components of error vector as  

212121 ,, zzeyyexxe zyx  ,             (5) 

The following error dynamic for xe is 
 

xx exzyxkaxzyxkae 2)()( 222211111111  
 , (6) 

this can be simplified as 
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By similar manipulation we have 

yxy exaeye )2( 152   ,             (8) 

and 

zxz exazzkeze )2)(( 142152    ,             (9) 

Equations (7)-(9) can be summarized in the following system 
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We have the following theorem. 
 

Theorem 1: The origin of (10) is asymptotically stable if   is chosen sufficiently large. 

Proof: The origin is an equilibrium point for (10) and a suitable Lyapunov function is of the form (Slotine & Li, 

1991) 
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Computing time derivative of V along the trajectories of (10), we find 
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or equivalently 
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where 3,2,1,],[  jiqQ ji  is the following matrix 
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To ensure that the origin is asymptotically stable, the matrix Q would be positive definite. This is the case if the 

following three inequalities hold: 

011 q ,       021122211  qqqq ,      0)det( Q ,          (15) 

Hence by the first condition on the left of (15) we have 0)()(2 112111   zyxxka . Since we always 

have 0)()( 11211  zyxxk , a choice for   independent of states is 
 

12 a .       (16) 

Also since a chaotic system has bounded trajectories, there exists a positive constant  , such that 

2,1,,,0  izyx iii  , 

Thus the second inequality in (15) becomes 

2
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Similarly the third condition is held if  
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Considering (16)-(18) we may choose sufficiently large   so that 0V  for the error vector 0e  and the origin 

of (10) is asymptotically stable. This completes the proof.■ 
  

As a notable feature we know that negativeness of the time derivative of Lyapunov function is a sufficient 

condition for the stability, i.e. 0V  is a conservative condition. So although theorem 1 implies a large coupling 

strength   for stability of the origin of error dynamics, systems (3) and (4) are synchronized by the smaller 

coupling strength  . Fig. 2 shows the time history of error with 5.0  where theorem 1 entails 5.7 . There 

it is demonstrated that error components yx ee ,  and ze  go to zero after a short time. 
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Fig. 2.  Time history of error dynamics for linear bidirectional coupling method with 5.0 . 

 

A. Unidirectional Synchronization 

Now consider the master-slave configuration of coupled chemical reactors where control signal just apply to slave 

system which yields 
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By the errors defined in (5), we have the same error dynamics as (10) where 2  is changed into  . So the 

stability results are the same as (16)-(18) and theorem 1 remains valid. Fig. 3 shows the trajectories of the error 

dynamics in phase plane for 8.0 . It reveals stability of the origin of error dynamics.   
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Fig. 3.  Phase planes of error dynamics for linear unidirectional coupling method with 8.0 . 

 

5. Synchronization by Novel Coupling 
 

A. Bidirectional Synchronization 

Again consider the corresponding dynamics of reactors. If we replace 12 xx   in the third equations of reactors 

then a new coupling systems are obtained as 
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Both systems (20) and (21) remain chaotic and become synchronized. Fig. 4 shows the state variables of both 

systems which follow each other after a short transient time.  
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Fig. 4. Comparisons of systems trajectories by using bidirectional coupling 

12 xx   . 
 

This is because of the dynamics of error signals: By definition (5) of error signals we have 
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At last (24) is stable if the matrix 
TAA  is negative definite (Slotine & Li, 1991). This is occurred if 
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The above parameters are time dependent. In Fig. 5, ( 100/, 21 SS , 
4

3 10/S ) are plotted. It can be seen that 

these are positive almost all the times. Thus the error dynamics may be stable, and so the states in both systems 

become identical which are seen in Fig. 4.  
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Fig. 5.  The establishment of (25) for the stability of (24). 

 

Now we couple two systems by substituting 12 zz   in the first equations of the reactors of model (1), which 

yields 
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Then these systems are synchronized with each other. Stability results are obtained as the previous case. Fig. 6 

shows that the error dynamics go to zero after a short time and faster than the previous synchronizations.  

 
Fig. 6. Time history of error dynamics using bidirectional coupling 

12 zz  . 
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B. Unidirectional Synchronization  

For unidirectional synchronization first we replace 1x by 2x  in the third equation of reactor 2 as the slave system 

which gives up system (21) where the master system is  
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To study behavior of the coupled systems we calculate the error dynamics  
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This is comparable with (23), so the stability conditions are the same as (25) with  

0)( 121543   xzzka ,  (30) 

Fig. 7 shows the phase planes of error dynamics. 

 
Fig. 7.  Phase plane of error dynamics by using novel unidirectional coupling 

21 xx  . 
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Now by replacing 12 zz   in the first equation of the slave reactor we have (27) where the master reactor stays 

unchanged as (28). In Fig. 8 the time history of error dynamics are given which indicates the errors go to zero.  

 
Fig. 8.  Time history of error dynamics using unidirectional coupling 

21 zz  . 
 

6. Closing Remarks  
 

To closing this paper we compare linear and nonlinear coupling schemes. First we consider bidirectional coupling 

in linear form presented by (3) and (4); and bidirectional nonlinear coupling given by (20) and (21). In Fig. 9 the 

convergence rates of error dynamics are compared for two different values of   and also for nonlinear coupling. 

It is observed that transient time is comparable in both schemes for 1 . Moreover convergence rates can be 

increased by increasing coupling gain  . 

 
Fig. 9.  Comparison of convergence rates of nonlinear and linear coupling schemes with different 

coupling strengths  .  
 

There are two significant differences between the above two methods:  

i. In linear coupling the amplitude of control signal || 21 xx   goes to zero after transient time but in    

nonlinear coupling the control signals )2,1( ixi  never go to zero. Note that it is true for unidirectional 

coupling. 

 ii. In linear coupling three signals must be transferred between systems but in the new coupling scheme it is 

enough to synchronize two systems only by one signal.    
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In section 4 we used ix  as control signal in the third equations of reactors and iz  as control signal in the first 

equation of reactors. But we cannot use these nonlinear coupling in the second equation. This is because the 

structure of the second equation of reactor is unstable: 

iii yaxy )( 5  

In other word 5axi   may be positive in many times, and changing this equation may increase the instability. But 

we can apply 12 yy   as nonlinear coupling in the first equation of slave reactor instead of 12 zz  . This 

coupling term may stabilize the equilibrium point of chaotic slave system which is shown in Fig. 10. 
 

Briefly, the problem of synchronization with different schemes in chaotic chemical reactors is solved in this 

paper. The effects of linear and nonlinear coupling terms as well as bidirectional and unidirectional coupling 

methods have been studied. Finally the advantages and weakness of each method are investigated.   

 
Fig. 10. Stabilizing equilibrium point of slave system by nonlinear coupling term 

12 yy   in the first 

equation of slave reactor.  
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