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Abstract

It has become imperative in recent times to determine the properties of the solutions of certain mathematical
equations or inequalities from the knowledge of associated inequalities or equations. In this paper, a number of
oscillatory properties of the solutions of impulsive differential inequalities are established using the knowledge of
those of their associated equations and what is more, some comparison theorems for the positive solutions of
certain neutral delay impulsive differential equations are also formulated.

KEY WORDS: Neutral delay impulsive differential inequalities and equations; Comparison results and theorems.

1. Introduction

Sometimes in analysis and in many other considerations, there exists the need to compare the properties of the
solutions of certain mathematical equations and inequalities. Such comparison may take the form of conclusions
about the behaviours of the solutions of the inequalities knowing the behaviours of the solutions of the associated
equations and vice versa. In this paper, we

Q) establish some comparison results for positive solutions of a neutral delay impulsive differential equation
of the form

N

0 Ep )] +Fa 0o )01,

= . (1.1)
= (1.2)

= (1.3)

)+ 32 0 b 50|+ St )20,

=

where p;» @;, C;, Qi b, and d, are temporarily assumed to be piece-wise continuous functions; t. and o, are
continuous and q,, b, and d, are positive constants forall t, t, eR,, 1<j<M and 1<i<N; and

(i) formulate comparison theorems for neutral delay impulsive differential equations with the aid of some
known oscillatory properties of the solutions of other given delay impulsive equations.

Unlike ordinary differential equations, the solution x(t) for te [tO,T) of an impulsive differential equation or its
first derivative x'(t) is a piece-wise continuous function with points of discontinuity t, [t,,T), t, #t.
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Therefore, in order to simplify the statements of our assertions later, we introduce the set of functions PC and
PC" which are defined as follows:

LetreN,D:=[T,0)cRandlet S:= {tk}keE, where E represents a subscript set which can be the set of natural
numbers N or the set of integers Z, be fixed. Throughout our discussion, we will assume that the sequences
{tk }keE are moments of impulse effect and satisfy the properties:

C11 If {t, |, isdefined with E:=N, then 0<t, <t, <--- and

klim t, =+oo;
Cl2 If {t,}, . isdefined with E:=Z, then t, <0<t,, t, <t,,, forall keZ,k=0and
kIim t, =to0.

We denote by PC(D, R) the set of all functions ¢ : D — R, which are continuous for all teD, tgS. They are
continuous from the left and have discontinuity of the first kind at the points for which teS.

J
By PC'(D,R), we denote the set of functions @:D—R having derivative ZT(’PEPC(D' R), 0<j<r

({Bainov/Simeonov: 1998}; {Lakshmikantham et al: 1989}). To specify the points of discontinuity of functions
belonging to PC or PC", we shall sometimes use the symbols PC(D, R; S) and PC’(D, R; S), reN. In the
sequel, all functional inequalities that we write are assumed to hold finally, that is, for all sufficiently large t.

Let yzmax{rj, ci} and let t, >t,. By a solution of equation (1.1), we mean a function
M

X(t) e PC[[t1 -, oo), R] such that x(t)+ij(t)x(t—rj(t)) is piece-wise continuously differentiable for t > t, and
i=1

such that equation (1.1) is satisfied for all t >t,.

Let t, >t, be a given initial point and let ¢ ePCf[t, —v, t,], R] be a given initial function. Then if

X(t_Tj(t))EPC1[[t1 -1, 4], R], x(t-o;(t) PC[lt, -7, t,], R] and

tlim(t—rj(t))ztIim(t—csi(t))zoo, vt>t,, 1, o €R,, (1.4)

equation (1.1) has a unique solution on [t1, oo) satisfying the initial condition
X(t) = o(t) for t, —y <t <t, ({Bainov/Simeonov: 1998}). (1.5)
A solution x of the initial value problem (1.1) and (1.5) on [t,, o) is said to be
(i) finally positive, if there exists T >0 such that x(t) is defined for t > T and x(t)>0 forall t > T;
(i) finally negative, if there exists T >0 such that x(t) is defined for t > T and x(t)< 0 forall t>T;
(iii)  regular, if it is defined in some half line [T,, o) for some T, €R and
supﬂx(t) t> T} >0, VT >T, ({Lakshmikantham et al: 1989}).
In what follows, we will denote by X((p;t), the unique solution of the initial value problem (1.1) and (1.5). It
exists throughout the interval [t, —y, +0).
2. Statement of the Problem

The comparison results for the solutions of non-neutral delay impulsive differential equations and inequalities
have been studied by many authors [{Kulenovic et al: 1990}; {Ladas et al: 1992}; {Agarwal et al: 1996},
{Belinskiy et al: 2007}; {Berezanski/Braverman: 2002}, {Domshlak et al: 2002}; {EI-Morshedy/Grace: 2005}].
A comprehensive treatment of such results is given in the monograph by Bainov and Simeonov
({Bainov/Simeonov: 1998}). One of the most important methods of such investigations is the method of
generalized characteristic equations, which is based on the idea of finding the solutions of linear impulsive
systems of the form
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x(t)ch(to)exp[—ja(s)dsj l-a,), t>t,. 2.1

t tost, <t

Our main objective is to apply this method to equation (1.1) and inequalities (1.2) and (1.3) to find comparison
conditions and to generalize and extend the idea for the determination of the oscillatory properties earlier referred
to.

We return to equation (1.1) and based on it, introduce the conditions

o1 P ePC'([ty, )R, ), 1, €C'([ty, ©) R, ) 1<j<M,
"~ g, ePC(lty, ) R.), o, eC(lty, )R, ); 1<i<N

and

C2.2 Lett,eR, anddefinet , = min{T_M '~I'_1}, where

T =minfinf {t—<; (t)}] and T, = minjinf {t o, (1)}

1<j<M Wt 1<isN \t>t,

For each t, €R,, we define the following functions:
(O =mnfty, t-7, O} HO=max{t, -5 1=j<m

2.2
a/0)=min{tyt-0,0), G0)=-maxlt, t-c 0} 1<ism 0
and write the generalized characteristic system as
{oc (t)= S, [a]t)
(2.3)
O(’k = Ipq [O(’](k)’
where t>t,, t, >t; and t, €S forall ke Z; Spq, Ipq are generalized characteristic operators acting on the

neutral delay impulsive differential equations with the coefficients p and q for t and t, respectively; and

Spolalt)=Au®) TT0-a)"+Ax0) [T01-0,)",

H;(b)st, <t Gi(t)<t, <t

lpq[a](k)zl\ﬁ(tk) H(1_“z)71+/\22(tk) H(']_OL/,’)A'

H; (t )<t <ty G (t )=t, <ty

(2.4)

The operator elements A (x), 1<m’, n <2, are defined by

Aﬂ(t):i{pjm(rg(t)_1)%%“))%;«)@}%

ofh(t,) ofh(t,)
{pjak)(mj(tk)—1)Wa(Hj(tk))+Ap,-(tk> o) }exp[H

A1) = $2q,1p 250 p[ ja(swsj

i(t)

t

J a(s)dsj.

(t)

>
N

—
=
N—

Il
M=

and

Ay ()= ZN:q"( PGt ) ex Ta(s)dS]’ Vi>t,.
i=t o(t,) G (t,)

Let JcRbe a given interval and Q(J) a set of piece-wise continuous functions defined in J. In future, the
notation (oc, lou ), )e Q(J), where a(t) is the value of o at t, will mean that the function o and the sequence
{o Ji7, satisfy the condition

a €PC(J,R), a, <1 Vk e Z suchthat t, e[ty,0)NS.

Now let equation (1.4) and condition
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23 {rj eC'R,,R,) 5,eCR,,R,)

lim (t—rj(t)):tlim (t-o,(t)=o0, 1<j<M and 1<i<N

t—>+o0

be fulfilled. Further, let the coefficients of equation (1.1) be non-negative, that is,
s IPi€ PC'([t,, ©) R, ),q, € PC([t,, )R, ),

"~ |9, 20 for keN, 1<j<M and 1<i<N.
Define

M = max{M, N},

and let x(t) be a finally positive solution of equation (1.1).
Remark 2.1 (Equivalent of Remark 16.2 by Bainov and Simeonov ({Bainov/Simeonov: 1998})
Assume that condition C2.3 holds. Then for sufficiently large t, hj(t) =t,, Hj(t)= t —rj(t), g/(t)=t, and
G,(t)=t—o(t) for 1<j<M, 1<i<N and Vtelt,, T)\S system (2.3) transforms into the equation

alt)= 3y (060 et +p;<t)]exp[ ja lr(t) (-, )"+

<t, <t

&qi(t)ex{ Ia(s)ds} [10-a,)",

—a(t)st, <t

(2.5)

O‘kzi[ ( 1)‘“ —1(t ) +Ap; (t, )] { t_fOL(S)dS]t_l_[ 1—a, )"+

+§:Qik exl{ Ta(s)dSJ H(1—OL()_1.
=t t—oi

t—oilty) —oi(t)st, <t

Corollary 2.1 (Equivalent of Corollary 16.2 by Bainov and Simeonov ({Bainov/Simeonov: 1998})

Let conditions C2.1 and C2.3 be fulfilled. Suppose equation (1.1) has a finally positive solution x(t) for
telt,, T\S and x(to*)>0 vk eN such that t, €S. Then there exist t, >0 and (oc, {ak}:;)eQ([L“ +00)) such
that (a, {ock}:;) is a solution of equation (2.4) for t>t, >0.

Now, let condition C2.3 be fulfilled and suppose that the coefficients of equation (1.1) are nonnegative, that is,
condition C2.4 is satisfied. Let x be a finally positive solution of equation (1.1), and let the function a and the

sequence {o, |, be defined as
x' (t) Ax(t,)
t)=— , —_ k 2.6
O‘() X(t) O X(tk) (2.6)
for teft,, T)\S and VkeN, t, €S. Then from Corollary 2.1, there exists t, >0 such that (oc, {ak}f=1) is a
solution of equation (2.5) for t > t, and what is more,
Z[pé(t)+qi ] Z[Apé )+ () ]s o, <1, x(t;)>0 (2.7)
1
for t>t,, t, >t;, 1<k <oo, 1£§£M.
Let t_, be as defined in condition C2.2, J:= [t71, +oo) and set
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S0 Z[p e} (-t =, () + b} 0 ex {“ J Tl6-2)"

+iqi(t)ex{ j‘k(s)dsJ [10-2,)7",

=1 t-(t) —ai(t)st, <t

(k):i[pj(tk( )~ 1ot —7(t,))+Ap; (t )]ex;{ Ta(s)ds}t‘nt@_%)w

te—1;(t)
N A
+>7qy ex ja 1-a,)
i=1 tk G

te—o;(t,) —a;(te )<t <ty

(t
for (1, P ), )eQ(J) and t>t,, t, >t,, 1<k<oo. Then:
(i) S, [0]t) Z[pg (t)+a. (t)], T,[0)k)= [Apg( )+q§k(t)], t>t, t,>t, and t, €S;

Gy it (B {Bk}k:1)eQ(J), (v {yk}k:1)eQ(J) and
B(t)SY(t)’ B <v. t=t,, keN

qu BIt)< S [ tes,
TaBJK) < T [Yk), vt €.

To each t, >0 and t_, as defined in condition C2.2, we relay the following inductively defined functional and
numerical sequences:

{uo(t)z 0,for t>t_

Uy =0, for t, >t

then

0 0t <t<t,
u + =< ~
TS g lun KD 2,
0t <t <t,t eS
u " =<~

T g lug Skt > 8,8 €S
Theorem 2.1 (Equivalent of Theorem 16.2 by Bainov and Simeonov ({Bainov/Simeonov: 1998})
Let conditions C2.3 and C2.4 hold. Then the following statements are equivalent:
@ equation (1.1) has a finally positive solution;

(b) there exists t, >0 such that the sequences {um(t)} and {umk}, defined by equation (2.9) converge point-
wise and monotonically, that is,

(2.9)

im u,()=u(t), t>t,
o (2.10)
m—>-+oo

and

u, <1 forall t, >t,and t, €S. (2.11)

3. Main Results
Let t, 20 and t_, be as defined in condition C2.2. We recall the neutral delay impulsive differential equation
(1.1) and the inequalities (1.2) and (1.3) and introduce the conditions
U Y ePC'R,, R,) g, b, d ePCR,,R,) 1,eC'R,,R,)
o; eC(R+,R+), Oy, Dy, d, 20, keN, 1<j<M and 1<i<N,
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and
o a(t)=p,(t)=c,(t) b(t)=qt)=d(t) vteR,,
' b, >q, >d,, keN, 1<j<M and 1<i<N.
Also, let us now suppose that the initial interval associated with the said equation and inequalities under the above
conditions is [t ,,t,].

Theorem 3.1
Let conditions C3.1 and C3.2 be fulfilled. Assume that x, y and z belong to the space PC([t_1,+oo), R) and are
solutions of equation (1.1) and inequalities (1.2) and (1.3) respectively. Suppose further, that

y(t)>0, t>t,, (3.1)

2 )2 x5 )=(5). (32

O ) 3

yito) xlty) ) T

2(t)=x(t)>y(t), vt=>t,. (3.4)

Then

Proof
It follows from inequalities (3.1) and (3.2) that the functions x and z are positively defined in some right

neighbourhood [to, T1) of t,. We shall show that T, =+oo. If we assume on the contrary, then there exists
T, > t, such that

x(t)>0, z(t)>0, t, <t<T, (3.5)
and
x(Tf)sO or z( f)SO (3.6)
Fortelt,,T,) and t, €[t,, T,)NS, we set
920 -0 20
0‘0() y(t) BO() () Y() ()
o :_Ay(tk) By, =— X(k) _ Az(tk)
TN )T )
then
O‘o(t)zsab [ao](t)’ Clok ab[ao](k) (3.7)
Bo(t)= S [B0](t). Boc =1 [ k). (38)
Yo t)SScd[YO](t Y ok Sch[\’o](k) (3.9)
for teft,, T,\S, t, €S, where
R o @ (1) L olhy(t)
S, [o]t)= > {a (Em-1) ) alH, (t)+a () (P((to))}x
t N t
1-o, )" b.(t ¢(gi(t) 1—a, )
XeX{Hj{t?‘(s)dsJH,,(Qﬁt @) IO ok | [T e )
M Ap(h;(t)) o(h;(t,))
wlaf) ;{aj(m(mj(tm) T O R iy }x
Xex tjkoc(s)ds H(1—a,)1+2blkwexp{ joc(s)ds} [10-o,)’
H;(t) H, (1 st <t i=1 (P( to)) Gi(t,) Gy (ty )<t, <t,
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Solh (1) |
Hi(t))+ Ap, (1)<
ol ) P ()40, (0

(P(g|(k
) +quk (P(to))

v
~

t, <t i=1 (to )) (t)
R _Aelh;(t) o(h;(t))
|cd[Y](k)_;|:Cj(tk)(ATJ(t) 1) A(P((to)) Y(Hi(tk)) ACJ(t) (P((t())) :|X

tk 1 o o), [
XeX{HjZ';kY)(S)dSJH (tk];t[/(dk YZ) +Z ¢ (P((to)) ” G(tky)(S)dS

and the functions h H g; and G, are as defined in the functions (2.2).
We shall prove that

{ ()>B ()>Y0() to<t<T,

Qo 2B ZYos o St <Tpt €8S,
However, in doing this, we shall only restrict ourselves to the proof of
o, (1) =B, (t) otg =Bys to <tt, <T,and t, €8,

since the proof of

Bo(t)ZYo(t)’ Box = Vo to<tt, <Tyand t, €3
is analogous and is omitted.

G (t )<t, <ty

(3.10)

(3.11)

It follows from conditions (3.1) and (3.5) that (Oﬂo,{%k . ) (BO,{ ok }:’:1) and (yo, Vo }:;) belong to Q(t,,T,)),

that is, oy, By, Yo €PC[t,, T, R) and oy, Bye, v <1 for Vk:t, €ft,, T,)NS.

On the other hand, equation (3.8) suggests that (BO : { ok }‘;;1) is a solution of the system

{B(t) - Spq [B](t)
Bk = lpq [B](k)
vtelt,,T,). Therefore,

{Bo(t)EB(t)Sao(t)’ ety T

)
o =P Sag, b G[o 1>ds

and this is a proof of inequalities (3.11).
Obviously,

y(t)= y(T+)exp[ Ioco s)ds} [T0-og),

to <t <t
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x(t>=x(T;)exp{—jB0<s)ds] [T6-s.).

to<t, <t

A1)- z(T;)exp{—joyo(swsj 010,

to<ty <t

Therefore, from inequalities (3.2) and (3.10) it follows that

z(t)=x(t)>y(t), t, <t<T,. (3.14)
Hence, from inequality (3.14) and the left-continuity of the functions y, x and z,

2(T;)2x(T,)2y(T,)>0,
which is contradictory to inequalities (3.6) for T, ¢ S.

If T, =t forsome meN, then equation (3.8) and inequalities (3.7), (3.9) and (3.10) suggest that

1> 0ty = Bon = Vo -
This implies that x(T,)>0 and z(T1)> 0, which further confirms the contradiction of inequalities (3.6).
Consequently, relation (3.4) holds for each t > t,. This completes the proof of Theorem 3.1.

The following are some corollaries arising from the proved theorem and are generally important, especially in
establishing linearized oscillation theorems for neutral impulsive equations.

Corollary 3.1
Let the following conditions hold:

caz 1A ePC'R,.R,) b ePCR,,R,), t,eC'R., R,),
' c,€CR,,R,), b, >0, keN, 1<j<M and 1<i<N,
Let t, >0 and o, y € PC([t_,t,], R) be such that

w(t,)= olt,)> 0, (;‘Z(tz))zqi(tz))zo, t, <t<t, (3.15)
and

x(; t)>0, t>t,.
Then

x(w;t)>x(g;t), t=>t,.

Now consider the neutral impulsive differential inequality (1.2) together with the equation

N

{v(t)&aj(t)y(t—rj(t))} o3 Oyt (D) -0tes

]=1 i=1

) N (3.16)
A{Y(tk)Jf;aj(tk)Y(tk _Tj(tk)):|+iz1:bikY(tk _Gi(tk))ZO’Vtk eS.

From Theorem 3.1, we immediately obtain the following result.
Corollary 3.2

Let conditions C3.3 be fulfilled. Then the following statements are equivalent:

@) The neutral impulsive inequality (1.2) has a finally positive solution;

(b) Equation (3.16) has a finally positive solution.

Comparison results can also be extended to impulsive differential equations and inequalities with advanced
arguments by way of adapting the proofs from the present section. For example, the following results are
analogous to Corollary 3.2.

Corollary 3.3
Let conditions C3.3 be fulfilled. Then the following statements are equivalent:
@) The inequality
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q(t)x(t-o,(t)=0,teS

0+ S 00-<0)] -

A{X(tk)Jr %pj(tk)x(tk - Tj(tk

has a finally positive solution
(b) The equation

0+ S0 00-<.0)] -
8 3t)s Sp -

has a finally positive solution.

M=

N
_zqikx(tk _Gi(tk))2 0,vt, €S

i=1

~——
| —— |

a(O)x(t-oi(t)=0teS
)} iqu( (tk))ZO’Vtk €S

M=

~—

i=1

Let us now return to the neutral delay impulsive differential equation (3.16) and together with it, consider the
equation

M N
@m+2m®w—‘oﬂ+2qu M (0)=0tes
A . (3.17)
A{y(tk)_l_z;,pj(tk)Y(tk _Mj(tk)):| +Z1:qik Y(tk _}\’i(tk)): 0, vt, eS.
= i=
We introduce the following conditions:
cas a{. ePC1(R+,R+)., b, ePCR,.R,), 1, e.C1(R+, F.<+),<si eCR,,R,), b, =0, keN, 18)
fim [t=7, (0] = im [t-o,(t)]=+e0, 1<j<M, 1<i<N
and
cas p{- eF>C1(R+,R+)j g, €PCR,.R,), 1 e.C1(R+, 3+),xi eCR.,R,), gy >0, keN, (3.19)
lim [t—uj(t)]ztlrfw [t=n, (1)]=+o0, 1< <M, 1<i<N.
Theorem 3.2
Suppose conditions C3.4 and C3.5 are fulfilled. Let, for each 1<j<M, 1<i<N,
aj(’[)Z pj(t)’ bi(t)Z Qi(t)’ by =y, "71(’[)Z Hj(t)’ (3.20)
o,(t)=2,(t), teR, vkeN. '

Suppose further, that each regular solution of equation (3.17) is oscillatory. Then each regular solution of
equation (3.16) is oscillatory.

Proof
Foreach t, >0, weset t_ —min{T e }and t, :min{'l':1,'T':1}, where

T —mmhﬂﬂfﬁﬁiT-ﬂmﬂmﬁ 5,1}
and
T, =minfof b -, (O T, = minfaf 2. (1)}

and definethesequences{ ()} d{ }asfollows:
Vo(t)=0, v =0, fort>t , t, >t ,and t, €S
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0, t, <t<t,,

v (t)= %[aj(t)(r}(t)—1)vm(t—rj(t))+a](t)]ex{t j[vm(s)ds} 1!( v, )+

N
+> [{ [Va s)ds] [10-v.)" t=t
|=1 (t) t— s(t)<t/<t

0, t, <t <ty Vvt eS.

M t 1
Z[aj(tk)(mj(t)—1)vm(tk—rj(tk))+Aaj(tk)]ex Ivm(s)ds [10-v,) "+

mtk = ) “
j= -7(t) b= (b )<t <t

N
+Zbikex;{ jv j [T0-va )", t >ty Vi, €S.

i=1 t—o;(ty) te—oi(ty )<t <t

Furthermore, we define the sequences {u,,(t)} and {u,, } as follows:
U, (t)=0, u, =0, fort>t", t >t and t, €S

0, t <t<ty,

(0= 2By Ok -1 (-1, 0) P10 ]exr{ Jun s)ds} [T0-u, )"+

top (t t- p.l(t)<t <t

;{J'u J (1-u,, )", txt,
_1 tx(t)<t,<t

0, t, <t <t,, vt eS.

M &
z[pj(tk>(Auj(t>—1)um(tk—uj<tk))+Apj(tk>]ex:{ jum(s)ds} [T0-up, )"+

m+ik — )4
= te—w () —wy ()<t <t

N
+2_ i ex{ ju j [T0-un )", te=to, Wt €S
te—ni(t) t—u

i=1 2 (t —py(ty st <t
For purposes of contradiction, let us assume that equation (3.16) has a non-oscillatory solution, which, in view of
its linearity, may be finally positive. Consequently, from Theorem 2.1, there exists t, >0 such that the sequences

{vm(t)} and { } defined by the formulas above, converge point-wise and monotonically as follows:

lim v, (t)=v(t), t>t,,teS.
imv,, =v,, t >t,Vt, eS. (3.21)

m—-+o0
and
v, <1fort >t;and t, €S .

It follows from the conditions in inequalities (3.20) that
u,(t)<v, (t) u, <v,,. (3.22)
foreach t>t,, t, >t, and keN.
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On the other hand, since the sequences {u.(t)} and {u,} are non-decreasing in respect of meN, then
inequalities (3.22) imply that the limits

lim u, (t)=u(t) t>t, teS.
{mITm+wumk —u, t, >t, Vi, S, (3.23)
exist and
u <1fort, >t;, and t, €8S.
Thus, from Theorem 2.1, equation (3.17) has a finally positive solution which is a contradiction. This completes
the proof of Theorem 3.2.
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