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Abstract   
 

The paper presents a study of  Rayleigh wave s propagation due to mountain of  arbitrary 

shape and of  width a. The mountain is p resent in the surface of  an elastic solid medium . The 

method of  solution is Wiener -Hopf technique. The reflected, transmitted and scattered waves  

are obtained by inversion of  Fourier transforms. The numerical computations are carried out 

for the amplitude of  the scattered and reflected waves versus wave number and wave length. 

The scattered waves behave as decaying cylindrical waves at  distant points and have a large 

amplitude near the foot of  the mountain .  
 

Keywords:  Rayleigh waves, Isotropic medium, refle cted and transmitted waves, Wiener -

Hopf technique, Fourier transform.  
 

1. Introduction 
 

Rayleigh waves are  the surface seismic waves that  cause vertical  shift ing of  the earth during 

an earthquake. These waves are responsible for destruction of the building s and loss of 

human lives. Scattering of seismic waves due to irregulari t ies in the surface leads to large 

amplification and variation in ground motion during earthquakes.  Sato [12]  has  studied the 

problem of Love wave propagation in case of a surface laye r on a solid half  space using the  

Wiener-Hopf  technique. Kazi [6] has  solved the same problem by an approximate method. 

Scattering of a compressional wave due to the presence of a rigid barrier in the surface of a  

l iquid half  space has been discussed by Deshwal [4].  Momoi [8,  9] has studied the problem 

of scattering of Rayleigh waves by semicircular and rectangular discontinuit ies in the surface 

of a solid half  space. The problem of attenuation of Rayleigh waves propagating along an 

irregular surface of an empty borehole has been investigated by Maximov et  al .  [7 ].  Avila-

Carrera et  al .  [2] have considered several  crack configurations in order to show the 

importance of cracks’ geometry on Rayleigh wave propagation.  
 

They have used the Indirect  Boundary Eleme nt Method (IBEM). They [1] have fur ther 

studied the scattering and diffraction of Rayleigh waves by shallow cracks. In this work,  

they have used the IBEM to calculate the scattered fields produced by single or multiple 

cracks near a free surface.  Chattopadhyay et  al .  [3] have studied the reflection of shear 

waves in visco-elastic medium at parabolic irregulari ty. They found that  amplitude of 

reflected wave decreases with increasing length of notch and increases with increasing depth 

of irregulari ty.  In this  paper,  we aim to study the propagation of Rayleigh wave at  the foot of 

a mountain with i ts base occupying the region 0 x a  , z = 0 in the surface of a solid half 

space z 0 . The shape of mountain is immaterial  and i t  is  assumed to be rigid such that  there 

is no displacement across the mountain. The method of solution is the Fourier transformation 

of the basic equations and determination of  unknown functions by the technique of Wiener 

and Hopf  [10].  
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2. Formulation of the Problem 
 

A mountain of an arbi trary shape and of width a is present in the surface of an elastic solid 

medium. Its base and the solid half  space are given by  0 x a   and  z 0 respectively. The 

medium is homogeneous, isotropic and sl ightly dissipative. The problem is two dimensional 

in zx-plane.  

                                                                                             
If  the retarding force of the medium is proportional  to the velocity then the wave equation is  

                         

_ _ _ _
2 2 2

2 2 2 2

1
ε

x z c t t

 
         

    
 

                                                   (2.1) 

where c is  the velocity of propagation and  ε   0 is damping constant.  The potential  function 

harmonic in t ime is  

                                   
_

iwtx,z, t x,z e                                                                                (2.2) 

The equation (2.1) reduces to  

                                    
2

2 k x,z 0                                                                                 (2.3) 

where                    
1/2

2

1 2k i c k ik       

is  complex whose imaginary part  is  small  and posi t ive. Let the incident Rayleigh wave be 

given by 

                                  2 2

i 0 0 0B 2p k exp ip x z                                                             (2.4) 

                                  i 0 0 0 0B 2ip exp ip x z                                                                 (2.5) 

where  0p  is  a root of the Rayleigh frequency equation   

                      f (p) =  2 2 22p k 4p 0    ,     
2

2 2 2p k , p k                 (2.6) 

   0 0 0 0p , p     , str ikes at  the foot of the mountain from the region      x    0. 

The potential   x,z satisfies the wave equation   

                                 2 2k x,z 0                                                                                    (2.7) 

Let the total  potentials be  

                                   t ix,z x,z x,z                                                                          (2.8)                                                       

                                  t ix,z x,z x,z                                                                       (2.9) 

The displacement components (u,  w) in terms of potential  are  

                              t t t tu , w
x z z x

   
   
   

                                                              (2.10) 

 

3. Boundary Conditions  
 

The conditions on the boundaries are  
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   x,z , x,z  are bounded when z                                                        (3.1)  

 u=0 at  z=0 for 0 x a                                                                                       (3.2) 

(iii) w = 0  at  z=0  for 0 x a                                                                                    (3.3)  

       (iv) 
22 k 0, z 0, x 0, x a

x z x

   
       

   
                                                     (3.4) 

(v) 
22 k 0, z 0, x 0, x a

x x z

   
       

   
                                                        (3.5)  

The conditions  (3.2) and (3.3) subject  to (2.3) and (2.7) reduce to  

             
2 2

i 0 0B(2p k )exp(ip x), 0 x a                                                                 (3.6) 

             i 0 0 0B(2ip )exp(ip x), 0 x a                                                                    (3.7)   

Let us define the Fourier transform 

                 ipxp,z x,z e dx, p i





          

                                
0 a

ipx ipx ipx

0 a

x,z e dx x,z e dx x,z e dx





         

                                 a ap,z p,z p,z                                                                      (3.8)  

         If   for   given  z,   x, z    and   x,z   have  the   behavior     exp d x    as x , d   then 

 p,z  is  analytic in  d  and  p,z and i ts derivative w.r. t .  z are analytic in the strip  

d d   . The transform of   x,z  has the same behavior.  
 

4. Solution of the problem 
 

Fourier transforms of the equations (2.3) and (2.7) give  

                          
2

2
2 2

2

d
0, p k

dz


                                                                     (4.1)  

                         
2

2 2 2

2

d
0, p k

dz


                                                                       (4.2)  

Since  x,z  and  x,z  are bounded as  z  and their  transforms are also bounded. The 

solutions of (4.1) and (4.2) are   

                          p,z C p exp z                                                                                     (4.3) 

                          p,z D p exp z                                                                                    (4.4) 

The signs in radicals for   and   are such that  their  real  parts are positive for  all p. Using the 

notations  p ,  p  for  p,0 ,  p,0  etc., from (4.3) we see  

                    
 

 

'

p
p


 


                                                                                                     (4.5)  

This equation is decomposed  

                   
   

 
 

 

' ''
k kp1

p
p k p k 2k 2k p k

 



        
     
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                    
     

 

' ''
k kp1

p
p k p k 2k 2k p k

 



        
     

                                 (4.6)  

The L.H.S. of (4.6) is analytic in  d  and the R.H.S. in  d . They represent an entire 

function. Further each side tends to zero as  p  . By an extension of Liouville ’s theorem, 

the entire function is identically zero.  Hence, equating each side to zero, we get  

                             
' ' '

p p qF p , q k k                                                      (4.7)  

                             
' ' '

p p qF p , q k k                                                    (4.8) 

                    
   
1 1

F p
2k p k 2k p k

 
  

                                                                  (4.9)  

 

In the same way,  from (4.4) we get  

                           
' ' '

p p qG p , q k k                                              (4.10)  

                           
' ' '

p p qG p , q k k                                            (4.11)  

                    
   

1 1
G p

2k p k 2k p k
 

  
                                                             (4.12)  

 

Fourier transforms of (3.6) and (3.7) give  

                 
 

  0 0

2 2a
0i p p x i p p a2 2

a 0

00

B 2p k
p B 2p k e dx e 1

i p p

 


      
                   (4.13) 

               

 
  0 0

a
i p p x i p p a0 0

a 0 0

00

2p B
p B 2ip e dx e 1

p p

 
      

                               (4.14)  

Multiplying (3.4)  by 
ipxe and integrating between  x =  and x=0, we get  

          
0

ipx 2

0

2ip e dx k p 2
z x z x





      
         

      
  

               
' 2 2 2i i

i 0 00
0

2ip p 2p k p 2ip 2 B k 2pp
z x

 

  
            

  
(4.15)  

 

Similarly (3.5) leads to  

             
'

2 2 2 2

0 0 0 0 02p k p 2ip p 2ip p p 2p k 2p 
          
 

                   (4.16)  

Solving (4.8),  (4.11),  (4.15)  and (4.16),  we get  

             2 2f p p 2ip q 2p k G p 2ip qF p
      
 

 

         2 2 2 2 2

0 0 0 0 0 0 02iB 2p k p p 2p k 2p 4ip B k 2pp           
 

             (4.17) 

             2 2 2

0 0f p p 2p k 2ip qF p 2 B k 2pp
        
 

 

      2 2

0 0 0 0 02ip 2ip qG p 2iB p p 2p k 2p          
  

                                      (4.18)  

Integrating (3.4) and (3.5) between x=a and x  =  after multiplying i t  by  exp(ipx),  i t  is  

obtained that  

             0
' i p p a2 2 2

a a 0 02p k p 2ip p 2 B k 2pp e


                                            (4.19)  
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          0
' i p p a2 2 2 2

a a 0 0 0 0 02p k p 2ip p 2iB p p 2p k 2p e


 
           
 

  (4.20)  

 

5. Reflected Waves  
 

The factor  exp(-ipx) =  exp(-i x)exp(x) in the inverse transforms makes the  integrals vanish at  

infinity in the upper part  of the complex plane if  x   0 and in the lower part  if  x   0. For  

waves in the region x   0, we have 

                                 
i

ipx

i

1
x,z p,z e dp

2

 





 

  
                                                             (5.1)  

where the l ine integral  (5.1) is in the strip  –d       d. The contour  is in the upper half  of the 

complex plane where   p,z   is  analytic and hence  

                               
i

ipx

i

1
p,z e dp 0

2

 





 

  
                                                                        (5.2) 

From (5.1) and (5.2),  i t  is  found that  

                                   
i

ipx

i

1
x,z p,z p,z e dp

2

 



 

 

                                             (5.3)  

To find the integrand, the wave equation (2.3) is integrated from  x =   to x=0 after 

multiplying i t  by  exp(ipx), to  find 

                               
2

2

2 0
0

d
ip

dz x




  
       

 
                                                              (5.4)   

Changing p to –p and subtracting the result ing equation from (5.4) ,  we obtain  

                             
2

2 2 2

0 02

d
p,z p,z 2ipB 2p k exp z

dz
 

 
             

 
        (5.5)  

The complete solution of (5.5) is  

                              
  0z2 2

0z z

1 2 2

0

2ipB 2p k e
p,z p,z L p e L p e

p p



 

 


      


    (5.6)  

To find L and 1L , we take z=0 in (5.6)  and use (4.17 ) i t  is  found that  

                        

   
 

   

   

    0

2 2

2 2 2 2 2 z

0 0

z2 2 z 2 2

0 0

4ip
p,z p, z 2Lsinh z 2p k qG p

f p

B 2p k 2p k 2B k e

2ipB 2p k e e p p ( 5.7 )

 



 

        


     

   

                    

Differentiating (5.7)  w.r.t .  z and putt ing z  = 0, we get  

                                                        
 

   
' ' 2 2 2

0

4ip
p p 2 L 2p k qG p 2B k

f p
 


           


  

                               2 2 2 2 2 2 2 2

0 0 0 0B 2p k 2p k 2ipB 2p k p p        


     (5.8)  

2L is obtained from here as the left hand member is known from (4.8) and (4.17).  We find 

the integrand in  (5.3)  to be  

    
    

 0

2 2 2 2

0 0 0 z z

2 2 2 2

0 0

2ipB 2p k 2ipB 2p ksinh z
p,z p,z . e e

p p p p

 

 

    
      

  
 

                         2 2 2 2 2 2 2 z

0 04ip q 2p k G p B 2p k 2p k 2Bk e         
 

     (5.9)  
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The pole at  p = 
0p  contributes 

            
 

      0 0ip x z2 2 2 20 0
1 0 0 0 0'

0

4p
x,z q 2p k G p 2B 2p k e e

f p

  
      
 

           (5.10)  

This represents the reflected wave in the region x  0. This does not depend upon the width a  

of the mountain. The reflected shear wave in the region is found to  be 

          
 

      0 0ip x z2 2 2 20 0
1 0 0 0 0 0 0 0'

0

4p
x,z 2p k qF p 4ip B 2p k e e

f p

 
        
 

   (5.11)  

 

6. Scattered and Transmitted Waves 
 

The incident Rayleigh waves are not  only reflected but they are scattered also by the surface 

irregulari ty. For finding the scattered component,  we evaluate the integral  in equation (5.3).  

The integrand in (5.9)  has branch points at  p = k   and  p = k. The branch cuts are given by  the  

conditions  Re( ) = 0 = Re( ). As discussed by Ewing and Press [5],  the parts of branch cuts are 

hyperbolic as shown in figure 2. For contribution  along the branch cut we put  p = k iu , u  

being small  as the main contribution is around the branch point.  Along the cut  Re( ) = 0 and  

Im( ) changes signs along two sides of the cut .  Since   is imaginary,  
2  is  negative.  Therefore  

                                          
2 2

2 2

1 2k iu k 2iu k ik u                                           (6.1)  

     From here,        2 12k u i , k 0                                                                   (6.2)  

                    

 

 

 

 

 

 

 

 

 

 

                               

 

                           Fig.2  Contour of integration in complex p -plane 
 

Integrating (5.3) along two sides of  the branch cut,  we find  

           
2k x

ux

2
i i

0

ie
x,z p,z p,z p,z p,z e du

2





   
   

                   
  (6.3) 

                  
2k x

ux

1 2 2 2

0

2e
H u sin z 2k u H u u cos z 2k u e du



  
                             (6.4)  

u is small ,  1H u  and   2H u are expanded around u=0 and only  1H 0 and  2H 0  are retained.  

We have used Laplace integrals as discussed by Oberhett inger  and Badii  [11].  

The scattered waves for the region x  0 are obtained to be  
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 
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                         
2 2 2

2 2 2 2

2 2 0 2qG k 2 k k k k 2 Bk k k
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                               
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0 2 2

z
iB 2p k z k k exp k x

2x

  
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                                 (6.5) 

when  x  z, then 

                        r

2
2 2 z

x z x
2x

                                                                                           (6.6) 

and the scattered wave is of the form 

                           2 2x,z exp k r r                                                                                    (6.7)   

We now find the waves transmitted to the other side of the mountain. The potential  for the 

region x  a is given by 

                           
i

ipx

a

i

1
x,z p,z e dp

2

 





 

  
                                                                    (6.8)  

 a p,z   is  analytic in the contour which l ies in the lower half  of the complex plane and so  

                         
i

2ipa ipx

a

i

1
p,z e e dp 0

2

 





 

  
                                                                     (6.9)  

From (6.8) and (6.9),  we obtain  

                              
i
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2

 



 

 

                                      (6.10) 

The Fourier transform of the equation  (2.3) f rom x=a to x=  gives  

                         
2

2 ipa ipaa
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d
e ip e

dz x
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                                                    (6.11) 

To find the integrand in (6.10),  we apply the same procedure of finding the integrand in 

equation (5.3).  We find the integrand in (6.10) to be           
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where 
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                                        
2ipa
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1 e
2p B 2p k

p p p p

 
     

  
                                  (6.13) 

The pole at 0p p   in the integrand in (6.10) contributes  

                          0 0ip x z2 2 2 2

3 0 0 0 0 0 0x,z B 2p k e e 4p q 2p k G p cos2p a
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         

                                             0 0ip x a z '

0 0 0 0 0 02p qF p sin 2p a e e f p
 

                        (6.14)  
 

7. Numerical Computations and Discussion of Results  
 

The incident Rayleigh waves are  scattered as well  as reflected due to the presence of 

mountain in the surface of an elastic solid medium. The mathematical  calculations have been 

done for Poisson’s sol ids for which k 3k  at  a point  (r=1/2km, z=0) in the  region x 0 of the 

free surface.  The results are obtained for q=0 and 1.8932k  . The graphs of amplitude versus 

the wave number and wave length of the scattered waves has been plotted in figures 3 and  4 

respectively.  The graphs indicate that  the amplitude of  the scattered waves depends on the  

wave number and hence on the wave length of the scattered wave. Also the scattered wave 

given in equation (6.5) are of the  form  2exp k r r . These are cylindrical  waves which die 

at  distant points from the foot of the mountain. On the free  surface (z=0), the scat tered 

waves have the form  
3

2
2exp k x x which is large at  the points near the scatterer.   Thus the 

energy of the scattered waves is very large close to the scatterer and diminishes as the wave 

moves away from it .  The transmitted waves in (6.14) depends upon the width a of the 

mountain. As the distance from the other end of the mountain increases, the transmitted wave 

decreases exponentially and dies out at  distant points.  The reflected waves  are given by 

(5.10) and (5.11).  The graphs showing the variation of amplitude versus wave number  and 

wave length of reflected Rayleigh waves are shown in figures 5 and 6  respectively.  The 

amplitude of reflected waves increases rapidly as the wave number   k increases slowly. As 

the wave length goes on decreasing slowly the amplitude of the scattered wave decreases.  

With seismic stations spread all  over the world, the results of the paper are valid for 

underground nuclear  explosions carried out on either side of t he mountains l ike Himalayas.  

It  helps  calculating the amount of energy reflected and scattered at  the foot of  the mountain 

and the amount of energy which is transmitted to the other side of the mountain.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3 Variation of amplitude vs  wave number   Fig.4 Variation of amplitude vs wave length     

of scattered waves                  of scattered waves  
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Fig.5 Variation of amplitude vs  wave number Fig.6 Variation of amplitude vs wave length   

                    of reflec ted waves                          of ref lected waves  
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