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Abstract  
 

In this paper, we study the existence of oscillatory and nonoscillatory solutions of neutral dynamic equations 

0))()()()(())()((    txtQtxtPrtcxtx  

where 0,0,0  rc  are constants, ),(,  RTCQP rd .We obtain some sufficient and necessary 

conditions for the existence of bounded and unbounded positive solutions, as well as some sufficient conditions 

for the existence of bounded and unbounded oscillatory solutions. 
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1. ITRODUCTION 
 

In this paper, we consider the following neutral differential equation with positive and negative coefficients on 

time scales 

       0)()()()())()((    txtQtxtPrtcxtx             (1.1) 

and 

          )()()()())()((    txtQtxtPrtcxtx               (1.2) 

where 0,0,0  rc  are constants, ),(,  RTCQP rd . 

0)()()()())()((   txtQtxtPrtcxtx             (1.3) 

and 

)()()()())()((   txtQtxtPrtcxtx              (1.4) 

Eq.(1.3) and Eq.(1.4) have been investigated by Graef and Yang and Zhang [2,6],Yu [9],Yu and Wang [8] and 

Lalli and Zhang [7]. However, the research on the existence of positive solutions and oscillatory solutions of (1.1) 

and (1.2) are scarce in the literature. 
 

 

In Section 2, we obtain conditions for the existence of both bounded positive solutions and bounded oscillatory 

solutions for Eq.(1.1) with 1c . 

In Section 3, we obtain conditions for the existence of unbounded positive solutions for Eq.(1.1) with 1c . 

    In Section 4, we obtain conditions for the existence of both bounded positive solutions and bounded oscillatory 

solutions for Eq.(1.1) with )1,0(c . 

In Section 5, we obtain conditions for the existence  of  both bounded positive solutions and bounded oscillatory 

solutions for Eq.(1.2). 

In Section 6, we consider Eq.(1.1) and Eq.(1.2) in the case 1c .The following hypothesis will be adopted 

throughout in this paper: 

(H1)  0,0  r  are constants, 

(H2) ),(,  RTCQP rd , 

(H3) 0)()()(  tQtPtP . 

The following lemma is taken from Zhang and Yu [10]. 
 

Lemma 1.1. Suppose that )),,([ 0

 RtCf rd and 0r . Then 
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is equivalent to  




0

)(
t

tttf . 

2 Bounded solutions of Eq.(1.1) with c = 1. 
 

In this section, we consider the equation 

                 0)()()()())()((    txtQtxtPrtxtx            (2.1) 
 

Theorem 2.1. Assume (H1),(H2),(H3) and the following conditions hold. 

(H4) ,)( 


ssPs  

(H5) .)( 


ssQ  

Then Eq.(2.1) has a bounded positive solution, and for any continuous periodic oscillatory function )(t with 

period r , has a bounded oscillatory solution )(tx such that 

                              )()()( tRttx                              (2.2) 

where )(tR is a rd-continuous real function with ,)( MtR   ))(max(),(maxmin ttM    )1,0(  for 

1tt  , 1t  is a sufficiently large number. 

To prove the above theorem, we need to establish the following lemmas. 
 

Lemma 2.1  Suppose the assumptions of Theorem 2.1 hold. Then the equations 

0))(2)()(())(2)()(())()((
__

   tMtxtQtMtxtPrtxtx    (2.3) 

and 

         0)2)()()2)()(())()((
__

  MtxtQMtxtPrtxtx        (2.4) 

have bounded positive solutions )(1 tu and )(tu  respectively, such that 

MtuMtu
2

)(,
2

)( 1


  

for 1tt  ,where )(max tM  , 1t  is sufficiently large. 

 

Proof.  The proof about Eq.(2.3) is quite similar to that about Eq.(2.4), we give only the proof about Eq.(2.4). 

Choose 1t  sufficiently large such that 
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Clearly, ),(  RTCH rd . Define 1

0

,)()( ttirtHty
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It is obvious that  )),,([ 1

 RtCy rd  with )()()( tHrtyty  , ,
4

)(0 MMty 
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Define a set X by  

 11 ),()(0)),,([ tttytxRtCxX rd   

and an operator S on X  by 










 





],[))((

)2)()(()2)()(()(
))((

111
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mtttmtSx

mttsMsxsPsMsxsQrtx
tSx t

t

t


 where 

 rm ,max  . 

Clearly 

mtttytHrtytSx  1),()()())(( , 

for any Xx .i.e., XSX  . 

Define a sequence of functions  
0

)(
kk tx  as follows: 

10 ),()( tttytx  , 

.,2,1,),)(()( 11   ktttSxtx kk  

By induction we can prove that 

.,2,1,),()()(0 11   ktttytxtx kk  

Then there exists a function Xu  such that .),()(lim 1tttutxk
k




It is obvious that 0)( tu  on ),[ 1 t . By 

Lebesgue’s dominated convergence theorem we have 







t

t

t
sMsusPsMsusQrtutu )2)()(()2)()(()()( 


, mtt  1 . 

Then we get 

).2)()(()2)()(())()(( MtutPMtutQrtutu     

i.e., )(tu  is a bounded positive solution of Eq.(2.4) with Mtu
4

)(0


 . The proof is complete. 

Proof of Theorem 2.1. Let 

).()(2)(),(2)( 11 tutMtUtuMtU    

where )(tu , )(1 tu  are defined by Lemma 2.1. It is easy to see that )(tU  and )(1 tU are both bounded positive 

solutions of Eq.(2.1). Because Eq.(2.1) is linear, 

111 )),()(()()()()( tttututtUtUtx    

is also a solution of Eq.(2.1). It is easy to see that x(t) is oscillatory and satisfies (2.2).The proof is complete. 
 

Example 2.1.  If RT  , consider the neutral differential equation 

0)()()1()())1()(( 11  txtQtxtPtxtx               (2.6) 

Where 
)1()1(

14
)(,

)2)(1(

6
)(

4121
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Clearly 0)1()()( 111  tQtPtP , 




dssQ )(1  and 


dssPs )(1 . 

By Theorem 2.1,Eq.(2.6) has a bounded positive solution. In fact, 
21)(  ttx is such a solution of Eq.(2.6). 

 

Example 2.2.If RT  ,consider the neutral differential equation 

               0)()()
2

5
()())2()(( 22    txtQtxtPtxtx          (2.7) 
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Clearly 0)
2

3
()()( 222  tQtPtP , 




dssQ )(2
 and 



dssPs )(2
. 

By Theorem 2.1,Eq.(2.7) has a bounded oscillatory solution. In fact, tttx sin)1()( 2 is such a solution of 

Eq.(2.7). 

The following result is about necessary conditions for the existence of bounded positive solutions of (2.1). 
 

Theorem 2.2.Assume that (H1),(H2),(H3) and (H5) hold. If Eq.(2.1) has a bounded positive solution. Then (H4) 

holds. 
 

Proof. Let x(t) be a bounded positive solution of Eq.(2.1). Then there exists 0L  and 00 t  such that 

Ltx  )(0  on ),[ 0 t . Set 

 


t

t
ssxsQrtxtxty


 )()()()()(  

Then 

                       0,0)()()( tttxtPty                         (2.8) 

We claim that 0)( ty  eventually. Assume the contrary that 0)( ty  eventually. 

Then there exist 01 tt   and 0  such that  )(ty   on ),[ 1 t . Then 
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 )()()()(  

for 1tt  . By induction we have 
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， ,2,1k . Then 0)( 1  krtx for sufficiently large k , which 

is a contradiction. So we have 

)()()()()( rtxssxsQrtxtx
t

t
   

  

eventually. Then there exists 0J  and 12 tt   such that Jtx )(  x(t) > J on ),[ 2 t . From (2.8), we see 



23,)()( tttJtPty . 

Integrating its both sides, we get 





t

ssPJty )()( . 

Then 

3,)()()()()()()( ttssPJrtxssPJssxsQrtxtx
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Therefore, 

                 







k

i
irt

ssPJtxkrtxL
1

33
3

)()()( ,                    (2.9) 

for ,2,1k . Letting k  in (2.9), we get 
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which is equivalent to 




dssPs )( . 

The proof is complete. 
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Corollary 2.1.Assume that (H1),(H2),(H3) and (H5) hold.Eq.(2.1) has a bounded positive solution if and only if 

(H4) holds. 
 

3  Unbounded solutions for Eq.(1.1) with c = 1 
 

Definition 3.1. A positive solution x(t) of Eq.(2.1) is called an A-type solution, if  it  can be expressed in the form 

tttx  )( ,                             (3.1) 

where 0  is a constant, Rtx ),[:  is a bounded continuous function, 0xt . 
 

Theorem 3.1. Assume (H1),(H2),(H3) and the following conditions hold. 

(H6) 


dttPt )(2
, 

(H7) 


dtttQ )( , 

Then Eq.(2.1) has an A-type positive solution. 
 

Proof.  Choose 1t  sufficiently large such that 
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Clearly, ),(  RTCH rd . Define 1

0

,)()( ttirtHty
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It is obvious that  )),,([ 1

 RtCy  with )()()( tHrtyty   and ,1)(0  ty 1tt  . 

Define a set X by  

 11 ),()(0)),,([ tttytxRtCxX rd   

and an operator S  on  X  by 
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Where  rm ,max  . 

Clearly, XSX  . 

Define a sequence of functions  
0

)(
kk tx  as follows: 

10 ),()( tttytx  , 

.,2,1,),)(()( 11   ktttSxtx kk  

By induction we can prove that 

.,2,1,),()()(0 11   ktttytxtx kk  

Then there exists a function Xu  such that .),()(lim 1tttutxk
k




It is obvious that 0)( tu  on ),[ 1 t . By 

Lebesgue’s dominated convergence theorem we have Suu  .It is easy to see that  x(t) = t+u(t)  is an A-type 

positive solution of Eq.(2.1). The proof is complete. 

Similar to Theorem 2.2, we have 
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Theorem 3.2. Assume that (H1),(H2),(H3) and (H7) hold. If Eq.(2.1) has an A-type positive solution. Then (H6) 

holds. 
 

Corollary 3.1.Assume that (H1),(H2),(H3) and (H7) hold.Eq.(2.1) has an A-type posi- 

tive solution if and only if (H6) holds. 
 

4  Bounded solutions of Eq.(1.1) with c ∈  (0, 1) 
 

In this section, we consider the following equation 

0))()()()(())()((    txtQtxtPrtcxtx            (4.1) 

where  )1,0(c . 
 

Theorem 4.1.Suppose that )1,0(c . (H1),(H2),(H3),(H5) and the following condition hold. 

(H8) 










0 3
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ssPc  for some 01 t . 

Then Eq.(4.1) has a bounded positive solution,and,for any continuous periodic oscillatory function )(t  with 

period r , has a bounded oscillatory solution 

))()(()( tRtctx r

t

                              (4.3) 

where ,)( MtR  )1,0( .  

The proof of Theorem 4.1 is based on the following lemma. 
 

Lemma 4.1. Suppose that the conditions of Theorem 4.1 hold. Then the equations 
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have bounded positive solutions )(1 tu  and )(tu  respectively,such that 
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Proof. We give only the outline of the proof for Eq.(4.5). We consider the integral equation of the form 
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 2)()(()2)()(()()(   (4.6) 
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 )()( ,then (4.6) becomes 
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 2)()(()2)()(()()(   (4.7) 

To prove the lemma ,it is sufficient to prove that (4.7) has a bounded positive solution )(tz  such that 

Mtz
2

)(


 ,for 1tt  ,where 1t  is a sufficiently large number. 

Choose 1t  sufficiently large such that 
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The rest of the proof is quite similar to the proof of Lemma 2.2 and we omit it. 
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In view of Lemma 4.2,we can prove Theorem 4.1 by the similar method to the proof of Theorem 2.1. We 

omit the detail here. 

In the following we give an explicit condition to guarantee that (H8) holds. 
 

Corollary 4.1. If (H1),(H2),(H3),(H5) and the following condition hold. 

(H9) ,)( 


ssP  

Then the conclusion of Theorem 4.1 is true. 
 

Proof. It is sufficient to prove that (H9) implies (H8). 

Set 
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0

1
uc

cr
K r

u
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Therefore (H9) implies (H8). The proof is complete. 
 

5  Bounded solutions of Eq.(1.2) 
 

Consider Eq.(1.2) with 1c . 

)()()()())()((    txtQtxtPrtxtx             (5.1) 

Theorem 5.1.Assume that (H1) hold. Then Eq.(5.1) has a bounded positive solution and for any periodic 

oscillatory sequence  )(t with period r ,has a bounded oscillatory solution  )(tx  such that 

)()()( tRttx                              (5.2) 

where ,)( MtR  )1,0( .  

The proof of Theorem 5.1 is based on the following Lemma. 
 

Lemma 5.1.Suppose the conditions of Theorem 5.1 hold.THen the equations 

))(2)()(())(2)()(())()((    tMtxtqtMtxtprtxtx   (5.3) 

And 
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)2)()(()2)()(())()(( MtxtqMtxtprtxtx     

have bounded positive solutions )(tu  and )(tu , respectively ,such that 

MtuMtu
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)(,
2

)(


 , 

where )1,0( . 
 

Proof. THe proof about Eq.(5.3) is quite similar to that about Eq.(5.4).So we give only the proof about Eq.(5.4). 

Choose 1t sufficiently large such that (2.5) holds. Define a set   by 
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i.e.,  )(tu  is a solution of Eq.(5.4).The proof is complete. 

In view of Lemma 5.1,we can prove Theorem 5.1 by the similar method to the proof of Theorem 2.1.We omit it. 

Similar to Theorem 2.2, we have 
 

Theorem 5.2. Assume that (H2) holds. If Eq.(5.1) has a bounded positive solution  )(tx  such that 

0)(inflim 


tx
n

, then (H1) holds. 

Similar to Theorem 3.1 and Theorem 3.3, we have the following results. 
 

Theorem 5.3. Assume that (H3),(H4) hold. Then Eq.(5.1) has an A-type positive solution . 
 

Theorem 5.4. Assume that (H1),(H4) and (H5) hold. Then Eq.(5.1) has a B-type positive solution . 

Now we consider Eq.(1.2)with )1,0(c .Similar to Corollary 4.1,we have 
 

Theorem 5.5. Suppose that )1,0(c ,(H2) and (H6) hold. Then Eq.(1.2) has a bounded positive solution, and for 

any periodic oscillatory sequence  )(t  with period m , has a bounded oscillatory solution 

))()(()( tRtctx m

n

  ， 

where ,)( MtR  )1,0( . 
 

6  Unbounded solutions of Eq.(1.1) and Eq(1.2) with 1c  
 

Similarly,in the case 1c ,we have the following result. 
 

Theorem 6.1. Suppose that 1c . (H1),(H2),(H3),(H5) and (H8) hold. Then Eq.(1.1) and Eq.(1.2) has an 

unbounded positive solution, and,for any continuous periodic oscillatory function )(t  with period r , has an 

unbounded oscillatory solution 

))()(()( tRtctx r

t

  ， 

where ,)( MtR  )1,0( . 

In the following we give an explicit condition to guarantee that (H8) holds in the case 1c . 
 

Corollary 6.1. If 1c ,(H1),(H2),(H3),(H5) and the following condition hold. 
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Then the conclusion of Theorem 6.1 is true. 
 

Proof. It is sufficient to prove that (H10) implies (H8). 
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Therefore (H10) implies (H8). The proof is complete. 
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