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Abstract

In this paper, we study the existence of oscillatory and nonoscillatory solutions of neutral dynamic equations
(X(t) —cx(t =r))* £ (P()x(t—6) —Q(t)x(t —5)) =0
where ¢>0,r >0,0>5>0 are constants, P,QeC_,(T,R").We obtain some sufficient and necessary

conditions for the existence of bounded and unbounded positive solutions, as well as some sufficient conditions
for the existence of bounded and unbounded oscillatory solutions.
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1. ITRODUCTION

In this paper, we consider the following neutral differential equation with positive and negative coefficients on
time scales

(X(t) —cx(t=r))* + P(O)x(t —0) —Q(t)x(t —5) =0 (1.1)
and
(X(t) —cx(t —r))* = P(t)x(t —8) — Q(t)x(t — 5) 1.2
where ¢ >0,r > 0,0 > 6 >0 are constants, P,Q e C,,(T,R").
(X({t)—cx(t—r)) + P)x(t—6)—Qt)x(t—o5)=0 (1.3)
and

(x(t)—cx(t—r)) =P@)x(t—80) —Qt)x(t-9) (1.4)
Eqg.(1.3) and Eq.(1.4) have been investigated by Graef and Yang and Zhang [2,6],Yu [9],Yu and Wang [8] and
Lalli and Zhang [7]. However, the research on the existence of positive solutions and oscillatory solutions of (1.1)
and (1.2) are scarce in the literature.

In Section 2, we obtain conditions for the existence of both bounded positive solutions and bounded oscillatory
solutions for Eq.(1.1) with c =1.

In Section 3, we obtain conditions for the existence of unbounded positive solutions for Eq.(1.1) with ¢ =1.
In Section 4, we obtain conditions for the existence of both bounded positive solutions and bounded oscillatory
solutions for Eq.(1.1) with ¢ € (0,1).

In Section 5, we obtain conditions for the existence of both bounded positive solutions and bounded oscillatory
solutions for Eq.(1.2).

In Section 6, we consider Eqg.(1.1) and Eq.(1.2) in the case ¢ >1.The following hypothesis will be adopted
throughout in this paper:
(H1) r>0,8> 6 >0 are constants,

(H2) P,QeC,(T,R"),

(H3) P(t) =P(t)-Q(t—0+5)>0.
The following lemma is taken from Zhang and Yu [10].

Lemma 1.1. Suppose that f € C,, ([t,,),R")and r > 0. Then

if £ ()As < 00

ot ir
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is equivalent to
jt :°rf (t)At < 0.
2 Bounded solutions of Eq.(1.1) with ¢ = 1.
In this section, we consider the equation
(X() = x(t=r)* + PO)x(t—6) - Q(t)x(t—5) =0 (2.2)
Theorem 2.1. Assume (H1),(H2),(H3) and the following conditions hold.
(H4) ro sP(s)As < oo,

(H5) rQ(s)As < 0,
Then Eq.(2.1) has a bounded positive solution, and for any continuous periodic oscillatory function (t) with
period r, has a bounded oscillatory solution X(t) such that
X(t) = o(t) + R(t) (2.2)
where R(t)is a rd-continuous real function with |R(t)| <M, M =min{max (), max(-o(t))} « < (0) for

t > t,,t, isasufficiently large number.
To prove the above theorem, we need to establish the following lemmas.

Lemma 2.1 Suppose the assumptions of Theorem 2.1 hold. Then the equations

(X(®) = x(t=r)* + PO)(X(t - ) + 2M + o(t — 0)) - QM) (X(t - 0) + 2M + w(t - 5)) =0  (2.3)
and

(X(®) = Xt =) + PE)(X(t—60) +2M)-Q(t)x(t —5) +2M) =0  (2.4)
have bounded positive solutions u, (t) and u(t) respectively, such that

a a
ut) <=M, u, (1) <=M
) < 5 M Ju, 0] <
for t >t,,where M = max|a)(t)| , t, is sufficiently large.

Proof. The proof about Eq.(2.3) is quite similar to that about Eq.(2.4), we give only the proof about Eq.(2.4).
Choose t; sufficiently large such that

[P = 0 aM
;Lm P(s)As + nL_HQ(s)As <160 (2.5)
where n ={9_5}+2 , Set
r
4I\7Jm 5(S)AS+4I\WIt Q(s)As t>t
t -0+ ! -1
H(t) = (t_tl“Lr)H(tl% t-r<t<t
0 t<t, -r.

Clearly, H e C,(T,R"). Define y(t) =D H(t—ir),t > t,.

i=0
Itis obvious that y € C,,([t,,),R") with y(t)—y({t—r)=H(), 0<y(t) <%M <M,
t>t.
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Define a set X by
X ={x e C\q([t,, ), RO < x(t) < y(t),t >t |

and an operator Son X by

(s0() = XD+ j:_MQ(s)(x(s —8)+2M)As + jt “P(s)(X(s-8)+2M)As  t2t +m here
(SX)(t, +m) te[t,t,+m]
m = max{6,r}.
Clearly

S)M) <y(t—-r)+H(@)=y(),t>t +m,
forany x e X .i.e., SX < X..
Define a sequence of functions {xk (t)}f:O as follows:
Xo (£) = y(0),t =1,
X, () =(Sx, )),t >t ,k=12,---.
By induction we can prove that
O<x () <x @) <y),t>t k=12---
Then there exists a function U € X such that lm X, (t) =u(t),t > t,.1t is obvious that u(t) >0 on [t;,o). By

Lebesgue’s dominated convergence theorem we have
O =ut-n+[  QE)u(s—38)+2M)as+ [ P(s)u(s—0)+2M)As t>t, +m.

Then we get
(u®) —u(t—r))* =Qt)(u(t — ) +2M) — P(t)(u(t — 6) + 2M).

i.e., u(t) is a bounded positive solution of Eq.(2.4) with 0 < u(t) < % M . The proof is complete.

Proof of Theorem 2.1. Let
U (t) = 2M +u(t),U, (t) = 2M + e(t) +u, (t).
where u(t),u, (t) are defined by Lemma 2.1. It is easy to see that U (t) and U, (t) are both bounded positive
solutions of Eq.(2.1). Because Eq.(2.1) is linear,
X(t) =U, (1) U (1) = () + (u, (1) —u(t)), t =t
is also a solution of Eq.(2.1). It is easy to see that x(t) is oscillatory and satisfies (2.2).The proof is complete.

Example 2.1. If T =R, consider the neutral differential equation
(x(®) —x(t-1))" + P Ox(t-1) - Q,(t)x(t) =0 (2.6)
6 at -1
t2(t-1)(t -2) Q= tt-1)*(t+1)
Clearly P,(t)=P,(t)-Q,(t-1) >0,

["Qu(s)ds <o and [Py (s)ds <oo.

Where P(t) =

By Theorem 2.1,Eq.(2.6) has a bounded positive solution. In fact, X(t) =1—t?is such a solution of Eq.(2.6).
Example 2.2.If T = R ,consider the neutral differential equation
(X(t) — x(t — 27))* + P, (t)x(t — gﬁ) —Q,(t)x(t—7)=0 (2.7)

(t—ziz)2

'[—§7z)2 -1

3t? —6at+47° (t—1x)°

Ar(t—rx) _
(t(t-27)° (t-n)*-1

Where P, (t) =
:(1 t2(t - 27)>

,Q,(t) =4~
(
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Clearly P,(t) =P, (t) - Q,(t —gzz) >0,

["Q,(s)ds <o and ["sP, (s)ds <o,

By Theorem 2.1,Eq.(2.7) has a bounded oscillatory solution. In fact, x(t) = (L—t*)sintis such a solution of
Eq.(2.7).
The following result is about necessary conditions for the existence of bounded positive solutions of (2.1).

Theorem 2.2.Assume that (H1),(H2),(H3) and (H5) hold. If Eg.(2.1) has a bounded positive solution. Then (H4)
holds.

Proof. Let x(t) be a bounded positive solution of Eq.(2.1). Then there exists L >0 and t, >0 such that
0<x(t) <L on [t,, o). Set

YO =x®O-xt-n- [ Qs)x(s-5)As
Then
y*(t) =P )x(t-6) <0,t >t, (2.8)
We claim that y(t) > O eventually. Assume the contrary that y(t) <O eventually.
Then there exist t, >t, and & >0 suchthat y(t) <—«a on [t;,). Then

X(t) <—a+x(t-1)-[ t_g+§Q(s)x(s —5)As

for t > t,. By induction we have

Rals

X(t, +kr) < —ka + x(t,) + zk: jt t Q(S)X(S — 8)As < — ke + X(t,) + nL jt w_gQ(s)As

+ir—0+58

0-06
r

is a contradiction. So we have

where n= { }+ 2, k=12,---.Then x(t, + kr) < O for sufficiently large k , which

x(t) > x(t—r) + fa Q(s)X(s-8)As > X(t-T)
eventually. Then there exists J >0 and t, >t, such that x(t) > J x(t) >Jon [t,,0). From (2.8), we see
yrt)<-P)J,t>t, =t, + 0.
Integrating its both sides, we get

y(t) > J jt “P(s)As.

Then
X(t) > x(t—r) + j:g QE)X(s—8)as+ [ P(s)as > x(t—r)+I [ P(s)as t >,
Therefore,
k 00 p—
L > x(t, +kr) > x(t,) + J 21: jt P, (2.9)

for k =1,2,---. Letting kK — o0 in (2.9), we get

Zfo_ P(s)As <,

) 3+
which is equivalent to

r sP(s)ds < .

The proof is complete.
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Corollary 2.1.Assume that (H1),(H2),(H3) and (H5) hold.Eq.(2.1) has a bounded positive solution if and only if
(H4) holds.

3 Unbounded solutions for Eq.(1.1) withc =1

Definition 3.1. A positive solution x(t) of Eq.(2.1) is called an A-type solution, if it can be expressed in the form
X(t) =at+ 3, (3.1)

where o >0 is aconstant, S :[t,,o0) — R is a bounded continuous function, t, > 0.

Theorem 3.1. Assume (H1),(H2),(H3) and the following conditions hold.
(H6) [ t*P(t)dt <o,

(H7) [ 1Q(t)dt < oo,
Then Eq.(2.1) has an A-type positive solution.

Proof. Choose t, sufficiently large such that

if;, Pt+Ddt+n[" QE)t+Ddt <1

where n ={9_5}+2 , Set
r
[[PO@+s)as+] Qa+s)as,  t>t
H(t) = (t_tl”)H(tl% t,—r<t<t,
0 t<t -r.

Clearly, H e C 4 (T,R"). Define y(t) = > H(t—ir),t > t,.

i=0

It is obvious that y € C([t;,),R") with y(t)—y(t—r)=H(t) and O<y(t)<L t>t,.

Define a set X by

X = {x e Cyy ([t;, ), RO < X(t) < y(t),t > t,

and an operator S on X by

(SX)(t) = {x(t -+ j{ :MQ(S)(X(S —8)+5—3)As + j{ “PO)(X(s—0)+5—0)As  t>t +m

(Sx)(t, +m) telt,,t, +m]

Where m = max{@,r}.

Clearly, SX < X..

Define a sequence of functions {Xk (t)}f:0 as follows:

X ) =y®)t=t,
X, (1) = (Sx, _)M),t >t k=12,
By induction we can prove that
O<x (M) <x @) <y),t>t k=12---
Then there exists a function U € X such that Em X, (t) =u(t),t > t,.1t is obvious that u(t) >0 on [t;,o). By
Lebesgue’s dominated convergence theorem we have U = SU.It is easy to see that x(t) = t+u(t) is an A-type

positive solution of Eq.(2.1). The proof is complete.
Similar to Theorem 2.2, we have
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Theorem 3.2. Assume that (H1),(H2),(H3) and (H7) hold. If Eq.(2.1) has an A-type positive solution. Then (H6)
holds.

Corollary 3.1.Assume that (H1),(H2),(H3) and (H7) hold.Eq.(2.1) has an A-type posi-
tive solution if and only if (H6) holds.

4 Bounded solutions of Eq.(1.1) withc € (0, 1)

In this section, we consider the following equation

(X(t) —cx(t —r))* + (P()x(t—60) —Q(t)x(t —5)) =0 4.1)
where ce(01).

Theorem 4.1.Suppose that ¢ € (0,1) . (H1),(H2),(H3),(H5) and the following condition hold.
s—t—jr

(H8) Zfijrc r P(s)As <« for some t, >0.
j=0 "¢

Then Eq.(4.1) has a bounded positive solution,and,for any continuous periodic oscillatory function @(t) with

period r, has a bounded oscillatory solution
t

X(t) = " (@(t) + R(1)) (4.3)
where [R(t)| <aM, & € (0,2).
The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.1. Suppose that the conditions of Theorem 4.1 hold. Then the equations
-6
(X(t) —cx(t =) + (PH)(X(t—6) + (2M + o(t —6))c '
t—-o
—QM)(X(t-8)+(2M +w(t—-5))c " )=0 (4.4)

and
t-6

t-6
(X(®) —cx(t—r)2 + (PO)(X(t—0) +2M)c " )= Q(t)(Xx(t=5)+2M)c ™ )=0 (4.5)
have bounded positive solutions u, (t) and u(t) respectively,such that

t t
lu(t) S%Mcr Ju @) S%Mc' .

Proof. We give only the outline of the proof for Eq.(4.5). We consider the integral equation of the form
s—60

X(t) = cx(t—r) + jt ‘_’:Q(s +8)(X(s) + 2|\Wc§)As + jt “P(s)(X(s—0) +2Mc T As (4.6)
Letting z(t) = X(t)c T ,then (4.6) becomes
s—t—6

s—t
z(t):z(t—r)+jt‘jQ(s+5)(z(s)+zmcr)As+jt PE)(x(s—6)+2Mc © As (4.7)
To prove the lemma ,it is sufficient to prove that (4.7) has a bounded positive solution z(t) such that
|2(t)| < % M for t > t, ,where t, is a sufficiently large number.

Choose t, sufficiently large such that

0 s—t,—jr
o St L 0 oM
c " P(s)As+n S)AS < ———,
Z I, ()as+n] Qs)As <o =

4
where E=c " >1.
The rest of the proof is quite similar to the proof of Lemma 2.2 and we omit it.
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In view of Lemma 4.2,we can prove Theorem 4.1 by the similar method to the proof of Theorem 2.1. We
omit the detail here.
In the following we give an explicit condition to guarantee that (H8) holds.

Corollary 4.1. If (H1),(H2),(H3),(H5) and the following condition hold.
(H9) | “P(s)As < o,
Then the conclusion of Theorem 4.1 is true.

Proof. It is sufficient to prove that (H9) implies (H8).

.| t-t .
Set = [ 1} , Where [] denotes the greatest integer function. Then t-r<t + Jr<t and
r

t,+r<t<t, +(j+Dr.
s—t,—jr

LetI=ZF c " P(s)As then
=0

,+r

s—t,—jr

| < lifﬁ(jﬂ)rA'{I{iir c v F_)(S)AS

r &g durir

S—t+r

1 & ptu+(j+n)r o o
< — At c " P(s)As
cr Z;; -“H ©)

t+ Jr

1 S—t+r

00

== ["at["c v P(s)As
cr Y t—r

1 e po S
=EJ.tl—rAtJ.t c " P(s)As

1 oo — o St
== P(s)as[ crat
Cr t1—l' t

< Cir(f P (s)As)( jt wc%Au)

=K jt °° P(s)As,

1 o o
where K =—| CrAuU.
cr o

Therefore (H9) implies (H8). The proof is complete.
5 Bounded solutions of Eq.(1.2)
Consider Eq.(1.2) with ¢ =1.
(X(t) = x(t —r))* = P(t)x(t —8) — Q(t)x(t - 5) (5.1)
Theorem 5.1.Assume that (H1) hold. Then Eq.(5.1) has a bounded positive solution and for any periodic
oscillatory sequence {a)(t)}with period r ,has a bounded oscillatory solution {x(t)} such that
X(t) = w(t) + R(t) (5.2)
where [R(t) <M, & € (0,1).
The proof of Theorem 5.1 is based on the following Lemma.
Lemma 5.1.Suppose the conditions of Theorem 5.1 hold. THen the equations
(X() = x(t =1))* = plt)(x(t — ) + 2M + a(t - 0)) — q(t)(X(t — &) + 2M + &(t - 5)) (5.3)
And
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(x(1) = x(t—1))* = pE)(X(t — ) +2M) —q(t)(x(t — &) +2M)
have bounded positive solutions U (t) and u(t), respectively ,such that

u(t)| < % M, [T () < % M,
where o € (0,1).

Proof. THe proof about Eq.(5.3) is quite similar to that about Eq.(5.4).So we give only the proof about Eq.(5.4).
Choose t, sufficiently large such that (2.5) holds. Define a set QQ by

Q:{x(t)eX|O£x(t)£%M,n2t1}

and a series of sequences of {x") (t)},l =012,---,by x?(t)=0,t >,

t+r-1

XU (t+r)+ jt q(s)(x" V(s = 8) + 2M)As

xO(t) = + L jrﬁ(s)(x("” (s—0) +2M)As t>t +D
xV(t+ D) t, <t<t +D.

—O0+5+r

where D :max{O,H—r}, 1=12,---.
Clearly, x (t) > 0 = x©(t),t > t,.By induction, we have
XOM) < <xPO)<xOM) <t >t,1 =12,

It is obvious that x© (t) < % M,t >t,. Suppose that

x® (t) S%M >t 1=12,5-1.
We are going to prove that
x(s)(t)s%M,tztl,
In fact, when t <t, + D,

XOt) = xSVt +r1)+ L ‘9; q(s)(x V(s —8) + 2M)As + jt “’ PS)(X V(s = 6) + 2M)As

_ y© o [t (D) (g _ v S () (D (s Vi
=X (t+sr)+jzlljl_g+5+jrq(s)(x (s 5)+2M)As+jzl:.[+jrp(s)(x (s—6) +2M)As

t—6+5+jr

< % (ZS: v q(s)As + ZS:J‘:J-, p(s)As
j=t j=t

<%Mm.
4

Therefore, {X(I) (t)}c Q,1=1,2,---, In view of (5.5), there exists {u(t)} < Q such that !EQ xM () =u(t),t>t,.
So
u+n)+ [T q(s)(uls-8)+2M)as
ut) =1+ PEE(s-0)+2M)As t>t,+D
u(t+D) t, <t<t +D.

26



International Journal of Applied Science and Technology Vol. 1 No.4; July 2011

ie., {u(t)} is a solution of Eq.(5.4).The proof is complete.

In view of Lemma 5.1,we can prove Theorem 5.1 by the similar method to the proof of Theorem 2.1.We omit it.
Similar to Theorem 2.2, we have

Theorem 5.2. Assume that (H2) holds. If Eq.(5.1) has a bounded positive solution {x(t)} such that
liminf x(t) > 0, then (H1) holds.

n—oo
Similar to Theorem 3.1 and Theorem 3.3, we have the following results.
Theorem 5.3. Assume that (H3),(H4) hold. Then Eq.(5.1) has an A-type positive solution .

Theorem 5.4. Assume that (H1),(H4) and (H5) hold. Then Eq.(5.1) has a B-type positive solution .
Now we consider Eq.(1.2)with ¢ € (0,1) .Similar to Corollary 4.1,we have

Theorem 5.5. Suppose that ¢ € (0,1) ,(H2) and (H6) hold. Then Eq.(1.2) has a bounded positive solution, and for
any periodic oscillatory sequence {a)(t)} with period m, has a bounded oscillatory solution

n

X(t) = c™ (@(t) + R(t)) »
where [R(t)| <aM, & € (0.3).
6 Unbounded solutions of Eq.(1.1) and Eq(1.2) with ¢ >1
Similarly,in the case € >1,we have the following result.

Theorem 6.1. Suppose that ¢ >1. (H1),(H2),(H3),(H5) and (H8) hold. Then Eq.(1.1) and Eq.(1.2) has an
unbounded positive solution, and,for any continuous periodic oscillatory function @(t) with period r, has an

unbounded oscillatory solution
t
X(t) =c"(o(t) + R(1)) »
where [R(t) <M, o € (0,1).
In the following we give an explicit condition to guarantee that (H8) holds in the case ¢ >1.

Corollary 6.1. If ¢ >1,(H1),(H2),(H3),(H5) and the following condition hold.

S
(H10) J. CtP(s)As < oo,
Then the conclusion of Theorem 6.1 is true.
Proof. It is sufficient to prove that (H10) implies (H8).

Set j:{t_tl]then t-r<t+jr<tandt +jr<t<t +(j+Dr.
r

s—t,—jr

Let | =Z; Lﬂ_rc * P(s)As, then
j=

s—t,—jr

1 & et+(j+D)r o _—
I SFJZ_;'J; AtLH_rc P(s)As

p+r

S—t+r

1 o0 0 r p—
=), AtJ'Hc P(s)As

Lo = S
=FJ1HAtJ't c " P(s)As

s—t
1L 5(5)As_[t c At

rJu-r
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1 FT(s)As'[Sftl”c?Au

rJu-r 0

s—t;—r St —r

<" PEas@iney're © | )
rdu-r

s—t;-r

<Ire P(s)As
Incu-r

= KL_rc P(s)As,
where K=(Inc-c ") .
Therefore (H10) implies (H8). The proof is complete.
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