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Abstract 
 

We consider a continuously monitored one-unit system supported by an identical spare unit, and perfectly 

repaired by an in-house regular repairer within a predetermined fixed patience time, or by a visiting expert 

repairer who arrives when the system fails or when the patience time is over, and who repairs all failed units.  We 

demonstrate the difficulties and the shortcomings of the Laplace transformation technique, and how these are 

overcome by the extended semi-Markov process method. 
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1. Introduction 
 

In the literature, most repairable models are studied by using the Laplace transformation technique. (See, for 

example, KumarGupta and Taneja (1995), Osaki and Asakura (1970), Sen and Bhattacharjee (1986), Sarkar and 

Chaudhuri (1999), Sridharan and Mohanavadivu (1998), Sridharan (2000), Wang, Ke and Lee (2007), Zhang and 

Wang (2007).) The majority of these models assume exponential life-times or/and exponential repair-times. 

Typically, one establishes a system of renewal-type equations which rely on the memoryless property from 

exponential distribution. Then the Laplace transformation technique is used to solve the system. Nonetheless, the 

same task can be accomplished more efficiently by using the method of semi-Markov process (SMP). But neither 

method can accommodate the more realistic arbitrary lifetime distribution. Recently, Bieth, Hong and Sarkar (See 

Bieth, Hong and Sarkar (2009), Bieth, Hong and Sarkar (2010)) introduced an extended semi-Markov process 

(ESMP) method to solve stochastic repairable models that allow arbitrary life- and repair- times. They extend the 

limiting probability theorem of an SMP to that of an ESMP. The approach is applicable to a wide spectrum of 

situations. 
 

In this paper, we attempt to study the repairable model in Bieth, Hong and Sarkar (2010) under arbitrary life and 

repairable times, by employing the traditional Laplace transformation technique. We demonstrate only a partial 

success: The Laplace transformation technique derives a formal solution to the limiting availability, though the 

mathematical manipulation is quite complicated. However, it seems to be a formidable challenge to derive the 

limiting proportion of times the system spends in various states, which is essential for carrying out a cost analysis. 

On the other hand, this model can be solved completely using the ESMP method, including determination of the 

limiting proportion times in each state. Thus, the EMSP method not only yields the limiting availability more 

conveniently, but also it offers the option to conduct cost analysis. The remaining of this paper are organized as 

follows. Section 2 introduces the model. Section 3 establishes the renewal-type equations. Section 4 provides a 

formal solution to the limiting availability using the Laplace transformation technique. Section 5 specializes the 

formal solution to the case of the exponential life- and repair- times, as an example. Section 6 summarizes the 

solution using the ESMP method. Section 7 concludes the paper with a brief discussion. 
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2.  Model Setting 
 

We consider a continuously monitored two-identical-unit cold standby system. As soon as the operating unit  fails 

it undergoes repair by an in-house regular repairman, while the spare is placed on operation immediately.  The 

regular repairer is allowed a predetermined fixed patience time T  to complete repair. If the operating unit fails 

while the other unit is still under repair, the system fails. A visiting expert repair person is called in as soon as 

either the patience time is over or the system fails. The repair facility can accommodate only one repairman at a 

time, and the benefit of partial repair done by the regular repairer is forfeited when the expert takes over. For each 

trip, the expert repairs all failed unit before he leaves. A freshly failed unit awaits repair while the previously 

failed unit is being repaired. The two repairmen take stochastically different amounts of time to complete repair, 

after which the unit becomes as good as new. Variations of this model have been studied by several authors. (See, 

for example, Kumar Gupta and Taneja (1995), Sridharan and Mohanavadivu (1998), and Tuteja, Arora, and 

Taneja (1991).) These papers assume the lifetime is exponentially distributed. They rely on the memoryless 

property of exponential distribution and use the Laplace transformation technique to obtain time-dependent 

availability, reliability, busy periods for the two repairers and total profit. On the other hand,  Bieth, Hong and 

Sarkar (2009) shows that for exponential life- and exponential repair time distributions, the steady-state 

probabilities can be obtained by recognizing that the continuous time stochastic process (CTSP) is in fact a semi-

Markov process (SMP). Neither method can accommodate arbitrary life- and repair- times. That more realistic 

problem is solved in Bieth, Hong and Sarkar (2010), which systematically develops the ESMP method. 

 

Consistent with the notation of Bieth, Hong and Sarkar (2009) and Bieth, Hong and Sarkar (2010), we let T  

denote the patience time and let the lifetime X  of an operating unit have a cumulative distribution function 

(CDF) F , the repair time rY by the regular repair person have a CDF rG , and the repair time eY by the expert 

repair person have a CDF eG . Let the corresponding survival functions (sf) be F , rG , eG . Let each of these 

random variables be absolutely continuous with probability density functions (pdf) er ggf ,,  respectively. We 

assume all lifetimes and repair times are stochastically independent. At any instant the status of a unit is s  (on 

standby), p  (in operation), r (under repair by the regular repair person), e (under repair by the expert), or w 

(awaiting repair). Consequently, depending on the status of the two units, the system is in one of the following 

four states: ),(0 ps , ),(1 pr , ),(2 pe , and ),(3 we . The system is up in states 0, 1, and 2 and down in 

state 3. Since the two units are identical in their stochastic behavior, it is irrelevant which unit is on operation and 

which is under repair. Also, when both units are down, they are repaired in the order in which they failed. 

 
 

 

0 = (s, p) 

1 = (r, p) 2 = (e, p) 

3 = (e, w) 

*X
eY

rY

T

X

X

eY

Figure 1: The schematic diagram of transitions 
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Figure 1 gives the schematic diagram of transitions from one state to another. At time 0t  the system starts in 

state 0. It stays there for a random duration XX *
, and then it enters state 1. The sojourn time in state 1 is the 

smallest among TXYr ,, .The system moves to state 0 if rY is the smallest, to state 3 if X is the smallest, or to 

state 2 if T  is the smallest. The sojourn time in state 2 is the smaller of eY  and X
~

, where X
~

equals TX  if the 

system had arrived at state 2 from state 1 and it equals X  if from state 3. From state 2 the system moves to state 0 

if XYe

~
 , or to state 3 otherwise. From state 3 the system can only move to state 2 as soon as the expert finishes 

repair on the unit that has failed earlier. Hence, the sojourn time in state 3 is eY
~

, which equals eY  if the system 

had arrived at state 3 from state 1 and it equals XYe

~
  if from state 2. Finally, the sojourn time in state 0 (except 

for the initial start at time 0t ) is rYXX *
 if the system had arrived at state 0 from state 1, and it is 

eYXX 
~*

 if from state~2. From state 0 the system always moves to state 1. (In this paragraph, wherever two 

random variables are equated, we mean that they have the same CDF.) 
 

3.  Renewal-type Equations 
 

A full description of the continuous time stochastic process requires documenting exactly how long each unit is in 

operation/under repair/awaiting repair. However, we shall concentrate on an embedded discrete-time stochastic 

process (DTSP) by focusing attention to the epochs when one unit is just put on repair (by the regular or the 

expert repair person) and the other unit just starts to operate or to wait for repair. We shall not keep track of other 

epochs when transition from one state to another takes place. To be precise, our DTSP keeps track of all epochs 

when the system enters state ),(1 pr  (albeit from state ),(0 ps ). But it completely bypasses all epochs when 

the system enters state 0 either from state 1 or from state ),(2 pe , as that necessitates keeping record of the 

ongoing operating time. The DTSP keeps tracks of epochs when the system goes down by entering state 

),(3 we from state 1, but it ignores all epochs when the system goes down by entering state 3 from state 2, 

since that requires keeping record of the ongoing repair time. Finally, the DTSP keeps track of epochs when the 

down system is revived and it enters state 2 from state 3, but it ignores all epochs when the system enters state 2 

from state 1. 
 

By focusing attention on the above-mentioned DTSP we are able to construct a system of renewal-type equations. 

For ),(),,(),,(),,(),( 21 wepeprps , let )(
21 , tB  denote the probability that the system is down t units of 

time after the epoch when it just enters state ),( 21  . Then clearly, )(1)( , tBtA ps .In order to find 

expression for )(, tB ps , we state, justify and solve the following system of four integral equations 

involving )(, tB ps , )(, tB pr , )(, tB pe  and )(, tB we . 

 
t

prps xdFxtBtB
0

,, )()()(            (3.1) 
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 (3.2)                                                    

 
t

eepe

t

eprpe tGtFydGyFytBxdFxGxtBtB
0

,
0

,, )()()()()()()()()(     (3.3) 

 
t

eepewe tGydGytBtB
0

,, )()()()(         (3.4) 
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The justification for integral equations (3.1)-(3.4) follows along similar lines. For example, we justify (3.2) for 

Tt   as follows: If the operating unit fails at time ],0( Tx , depending on whether or not the regular repair 

person finishes repair by time x, the system just enters state 1 or 3. This accounts for the first two integrals on the 

right hand side (rhs). On the other hand, if the failure happens at time ],( tTx  and the repair is complete during 

),0( x , which happens with probability )()()( TxGTGTG err   since at time T the expert repair person 

replaces the regular one, then the system just enters state 1 at time x.  
 

This contributes the third integral on the rhs. The fourth integral on the rhs comes from the event that the failure 

happens at time ],( tTx and the repair is completed afterwards at time ),( txy . Surely, this event implies that 

the regular repair person did not complete repair by time T, which has probability )(TGr , and the expert repair 

person finished repair in Ty   additional time. The event also implies that the failure occurred during ],( yT , 

which happens with probability )()( TFyF  ; and the system just enters state 2 at time y. Finally, the last term on 

the rhs accounts for the event that failure did happen sometime in ),( tT  with probability )()( TFtF  , but the 

repair was not completed by the regular repair person by time T, nor by the expert in Tt   additional time. 

Note we may rewrite the integral equation (3.2) in the following form: 
 

 

  ,)()()()(

,)()()()()(

)()()()()()()(

0
,

0
0,

0
1,,












TFtFTtGTG

TydGTFyFytBTG

xdFxGxtBxdFxGxtBtB

er

t

eper

t

we

t

prpr

                            (3.5) 
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
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This can be justified as follows: When Ty  , we have 0)( TydGe and 
 )]()([ TFtF . So, equation (3.5) 

reduces to (3.2). When Tt  , the first integral on the rhs of (3.5) can be written as 

)()()()()()(
0

1,1, xdFxGxtBXdFxGxtB
T t

T
prpr   , which by definition of 1G  equals 

  )()()()()()()()(
0

,, xdFTxGTGTGxtBXdFxGxtB
T t

T
errprrpr   . Also note that 

0)(0 xG for Tx  , so that the second integral on the rhs of (3.5) equals  
T

rwe xdFxGxtB
0

, )()()( . Thus, the 

first two integrals on the rhs of (3.5) together equal the first three integrals on the rhs on (3.2). The remaining 

terms on the rhs of (3.5) obviously equal the remaining terms on the rhs of in (3.2). 
 

4.  Solution to A  
 

We use the fact that the Laplace transformation of a convolution of two functions equals the product of their 

Laplace transformations. Taking Laplace transformations in equations (3.1), (3.2), (3.3), (3.4), we obtain (by 

suppressing the argument s) 
**

,

*

, fBB prps                           (4.6) 

***

,

*

0

*

,

*

1

*

,

*

, ])()[(][)(][][   FGTGFgBTGGfBfGBB ereperweprpr        (4.7) 

***

,

**

,

*

, ][])[(][ eepeeprpe GFFgtBfGBB                       (4.8) 

***

,

*

, )()( eepewe GgtBB                          (4.9) 
 

where 
F  is a shift of )(xF downward by )(TF  and 



eg , 


eG are shifts of )(xge , )(xGe  of the right by T 

respectively; that is, 
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)()()( TFxFxF 
 

)()( Txgxg ee 
 

)()( TxGxG ee 
. 

We first solve the system consisting of equations (4.7)-(4.9). Putting those three equations in matrix form, we 

have 
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where 

     
*

111 ][ fGa  ,                        
*

12 ])[(  FgTGa er ,         
*

013 ][ Gfa  , 

   
*

21 ][ efGa  ,                 
*

22 ][ Fga e ,                    
*

32 ][ ega  , 

     
*

1 ])()[(  FGTGc er ,     
*

2 ][ eGFc  ,                            *
3 eGc  , 

              (4.10) 

    Solving this system for 
*

, prB  and substituting it in (4.6), we obtain 

 

          
      
   32211321122211

322132321312122

*

*

,
11

11

aaaaaaa

caacaaacaf
B ps




                  (4.11) 

 

Note that  
 




 
0 00

* )(')0()()()( dttAeAdetAdttAesssA ststst
. Hence, taking limit as s approaches 

0 and interchanging limit and integral, we have 
 

)(lim)()(lim *

0
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1
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5.  Example 

Example 1 (Exponential lifetime, exponential repair times). Suppose that er YYX ,,  have exponential 

distributions with scale parameters er  ,,  respectively. Without loss of generality, we may assume er   . 

In this case equation (4.10) yields 
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  e

e

ss
a






21  
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Substituting these in (4.11), and then using (4.12), we get 
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
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.                     (5.13) 

where
 re

 
 . This agrees with the results in Bieth, Hong and Sarkar (2009). 

 

6.  The ESMP Method 
 

We describe the ESMP method in general terms first. Then we apply the ESMP method to the repairable model 

studied in this paper. Finally, we specialize it to Example 1. Under the assumption of arbitrary life- and repair- 

times, oftentimes the CTSP is no longer an SMP because the embedded DTSP that tracks every transition is not 

Markovian. That is, the sojourn time in a state and the transition probabilities out of this state may depend on the 

previous state(s). However, when one can identify another DTSP which is Markovian (that is, both the sojourn 

time in a state and the transition probabilities out of this state depend only on the current state), then the CTSP is 

called an ESMP. 
 

For an ESMP, Theorem 1 below gives a method of computing the probability the CTSP spends in various states. 

We need some notation. Suppose that we have an ESMP with state space S such that the DTSP restricted to only 

recorded transitions is a positive recurrent Markov chain with state space SS '
and transition matrix  jiPP . 

The transition probabilities are obtained by listing all possible paths  miii ...,,, 21 , consisting of a set of 

states  miii ...,,, 21   (this set may be empty) the visits to which are not recorded, that the CTSP can follow 

starting from a recorded visit to state i to reach the next recorded visit to state j (which may be the same as state i). 

Let   jiP   denote the conditional probability that, starting from a recorded visit to state i, the CTSP moves along 

path   to make the next recorded visit to state j. Adding over all paths between a recorded visit to state i and the 

next recorded visit to state j, we have 
 

                                                     jiji PP                                         (6.13)  

Note that 1
'


Sj

jiP  for all
'Sj , since P  is a stochastic matrix. 

The stationary distribution for this DTSP, restricted to only recorded transitions, is obtained (see, for example, 

Ross (1996), pp. 175-177) by solving the system of equations 
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  



'Si

jiij P ,     1
'


Sj

j                               (6.14) 

 

Note that i  is the long run probability that the transitions enter (or exit) state i. 

Let   jik  |  denote the expected time the CTSP spends in state miiiik ...,,,, 21 as it moves from a recorded visit 

to state i to the next recorded visit to state j via . Then we have the following theorem. (See Bieth, Hong and 

Sarkar (2010) for a detailed proof.) 
 

Theorem 1 For an ESMP, if the transition matrix   ', SjijiPP


 of visits that are recorded is positive recurrent 

with stationary distribution   'Sii 
  , then the limiting proportion of time the ESMP spends in any state 

Sk   (visit to which may be recorded or unrecorded) is given by 

 

                                    
 
















' '

|

Si Sj

jikjik P


                                             (6.15) 

 

The proportionality constant is obtained from the constraint 1
Sk

k  . Thereafter, the limiting availability, 

which is the long-run proportion of times the system is up, can be obtained as 


 
Uk

kA  , where SU  consists 

of all the up states. 

 
 

Under the model studied in this paper, the stochastic behavior of the system is a CTSP with state space {0, 1, 2, 

3}, of which state 3 is the only down state. Indeed, this CTSP is an ESMP, as explained in the next paragraph. 

Hence, applying Theorem 1, we obtain expressions for k , the proportion of time the CTSP spends in state k (k=0, 

1, 2, 3). Thereafter, we obtain the limiting availability as 

                   .11

1

210

3

2103



 














A                    (6.16) 

Likewise, the limiting proportion of busy time for the regular repairer is 2 , and that for the expert repairer 

is 32   . Other useful quantities can be computed using the sk ' . 
 

How is our CTSP an ESMP? We must exhibit a DTSP that is Markovian. Consider as recorded transitions those 

epochs when one unit is just put on repair (by the regular or the expert repair person) and the other unit just starts 

to operate or to wait for repair. To be precise, all epochs when the system enters state 1 (albeit from state 0) are 

recorded, but all epochs when the system enters state 0 either from state 1 or from state 2 are unrecorded, since 

the sojourn time in state 0 depends on the age of the operating unit (which equals the time spent in the previous 

state). Also epochs when the system enters state 3 from state 1 are recorded, but epochs when the system enters 

state 3 from state 2 are not, since the sojourn time in state 3 is the additional time the expert needs to finish the 

repair she has started in state 2. Finally, epochs when the down system is revived and it enters state 2 from state 3 

are recorded, but epochs when the system enters state 2 from state 1 are not recorded. Then the DTSP restricted to 

recorded transactions only form a Markov process on  3,2,1' S . That is, both the sojourn time and the 

transition probabilities between two successive recorded transitions depend only on the current state. Indeed, this 

is exactly the same DTSP that we utilized to develop the renewal-type equations of Section 3. 
 

Next, we apply Theorem 1 to our ESMP. The transition paths, the conditional probabilities and the conditional 

expected sojourn times the CTSP spends in each state along these paths are given in Table 1, where 

 TYXZ r ,,min  and 

                     rr YZB 1
,                         TXYTZB eTe  ,1

, 
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  TXYTZB eTx  ,1
,        XZB x 1

,      

 

   XYB ee 2
,                           XYB ex 2

. 

 

Table 1: Arbitrary continuous life- and repair times 
 

Path  Conditional expected time in state 

  ji     jiP   0 1 2 3 

1(0)1  1

rBP   1| rr BYXE    1| rr BYE  0 0 

1(2,0)1  1

TeBP   1| Tee BYTXE   T  1| Tee BYE  0 

1(2,3)1  1

TxBP  0 T  1| TxBTXE    1| Txe BTXYE   

13  1

xBP  0  1| xBXE  0 0 

2(0)1  2

eBP   2| ee BYXE   0  2| ee BYE  0 

2(3)2  2

xBP  0 0  2| xBXE   2| xe BXYE   

32 1 0 0 0  eYE  

 

      Next, from Table 1, we get the transition matrix for the Markovian DTSP as 

 

       
   















 



010

022

1111

xe

xTxTer

BPBP

BPBPBPBP

P  

 

Solving (6.14), the stationary distribution for the Markovian DTSP is 

 

21

1

1 PD  

        )1( 11

1

2 PD    

     1321

1

3 PPD  

where ).1(1 132111 PPPD   
 

Thereafter, using Theorem 1 and the fact that       BWIEBWEBP | , (where I(B) is the indicator function of 

event B which equals 1 on B and 0 on 
cB ), we have 

 

               2

2

11

10 eeTeerr BIYXEBIYTXEBIYXE    

          ZETZTPBXIEBIYE xrr 1

11

11  

           eTxTee YXEBITXEBIYE ,min2

11

11    

           exeTxe YEBIXYEBITXYE 3

2

2

1

13    

where the proportionality constant is the sum of the expressions on the right hand side. 
 

 

Example 1 Revisited. Suppose that er YYX ,,  have exponential distributions with scale parameters er  ,,  

respectively. Then Table 1 specializes to the following Table 2. 
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Table 2: Exponential life- and exponential repair times 
 

Path  Conditional expected time in state 

  ji     jiP   0 1 2 3 

1(0)1 
 

r

T

r







1
 



1
 

T

T

r

T





 


 1

1
 0 0 

1(2,0)1 
e

T

e






 



1
 T 

e 

1
 0 

1(2,3)1 
e

T






 0 T 

e 

1
 

e

1
 

13 
 

r

T







1
 0 

T

T

r

T





 


 1

1
 0 0 

2(0)1 
e

e






 



1
 0 

e 

1
 0 

2(3)2 
e




 0 0 

e 

1
 

e

1
 

32 1 0 0 0 
e

1
 

 

      Next, using (6.17) it is easy to verify that 

                   ,
11

0


 
 D                             ,

11

1

r

T

D



 




 

 

,
11

2

r

T

r

e

D





 




 

           
 

,
1

2

1

3

r

T

e

T

r

e

D







 




 

 

where 

 

 
.

1
1

11

r

T

e

T

r

ee

D
























  

 

Lastly, using equation (6.16), we have 

  
1

1
1

1
111

























































r

T

ree

e

A











, 

consistent with equation (5.13) obtained using the Laplace transformation technique. 
 

7.  Discussion 
 

In this paper, we study a stochastic repairable model using the traditional Laplace transformation technique. Using 

a Markovian DTSP, we are able to set up a system of renewal-type equations (3.1)-(3.4), and obtain a formal 

solution of the limiting availability. By specializing to the exponential life- and repair times, we reproduce the 

limiting availability derived in Bieth, Hong and Sarkar (2009). However, to derive the limiting proportion of 

times spent in each state seems to be a formidable challenge using this traditional approach. In general, setting up 

such renewal-type equations for other more complicated stochastic models is likely to be rather challenging and 

solving the system promises to be quite formidable. 
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On the other hand, having obtained the Markovian DTSP, it is easy to apply the ESMP method, introduced in 

Bieth, Hong and Sarkar (2009) and Bieth, Hong and Sarkar (2010). Aside from computational convenience, the 

ESMP method yields the limiting proportion of times the CTSP spends in each state. Therefore, we can not only 

obtain the limiting availability, but also obtain the necessary ingredients for carrying out a cost-benefit analysis. 

Thus, in general, the ESMP method has several advantages over the Laplace transformation technique. 
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