Generalization of an Euler Theorem

RENÉ BENÍTEZ
Departamento de Matemáticas
Universidad Autónoma Metropolitana-Iztapalapa

Abstract

In this note, Euler's Theorem is generalized using mathematical induction.

1. Introduction

The following result, known as the Euler's Theorem, is established in the courses of modern geometry.
"If A, B, C and D are any four points in a line, then the directed segments $A B, C D, A C, D B, A D$ and $B C$ satisfy the relationship

$$
A B \cdot C D+A C \cdot D B+A D \cdot B C=0
$$

In this note we start with a classic proof of the Euler's Theorem, and then generalize it by mathematical induction on the number of points.

2. An Euler Theorem

Euler's Theorem. If A, B, C and D are any four points in a line, then the segments
$A B, C D, A C, D B, A D$ and $B C$ satisfy the relationship
$A B \cdot C D+A C \cdot D B+A D \cdot B C=0$.
Proof Consider the points A, B, C and D on a line, and let $A B, C D, A C, B D, A D$ and $B C$ be the directed segments determined by them, as shown below.

Hence

$$
\begin{aligned}
& A B=A D-B D=D B-D A \\
& A C=A D-C D=D C-D A \\
& B C=B D-C D=D C-D B
\end{aligned}
$$

from here we have

$$
\begin{aligned}
& A B \cdot C D+A C \cdot D B+A D \cdot B C= \\
& =(D B-D A) \cdot C D+(D C-D A) \cdot D B+(D C-D B) \cdot A D \\
& =D B \cdot C D-D A \cdot C D+D C \cdot D B-D A \cdot D B+D C \cdot A D-D B \cdot A D \\
& =D B \cdot C D-D A \cdot C D-D B \cdot C D+A D \cdot D B+D A \cdot C D-A D \cdot D B \\
& =0 .
\end{aligned}
$$

3 Generalization of the Euler's Theorem

The Euler Theorem of the previous section is generalized as follows:
Proposition 1 If $A_{1}, A_{2}, \ldots, A_{n}$ are any $n \geq 4$ points in a line, then the directed segments

$$
A_{1} A_{2}, \quad A_{3} A_{n}, \quad A_{1} A_{n}, A_{2} A_{n-1}, A_{1} A_{i}, A_{i+1} A_{i-1}
$$

for $3 \leq i \leq n-1$, satisfy:
$A_{1} A_{2} \cdot A_{3} A_{n}+\sum_{i=3}^{n-1} A_{1} A_{i} \cdot A_{i+1} A_{i-1}+A_{1} A_{n} \cdot A_{2} A_{n-1}=0$.

Proof. If $n=4$, the theorem is the Euler's Theorem. Now, we suppose the result is true for $n=k>4$, that is

$$
A_{1} A_{2} \cdot A_{3} A_{k}+\sum_{i=3}^{k-1} A_{1} A_{i} \cdot A_{i+1} A_{i-1}+A_{1} A_{k} \cdot A_{2} A_{k-1}=0
$$

So, for $n=k+1$, we have

$$
\begin{aligned}
& A_{1} A_{2} \cdot A_{3} A_{k+1}+\sum_{i=3}^{k} A_{1} A_{i} \cdot A_{i+1} A_{i-1}+A_{1} A_{k+1} \cdot A_{2} A_{k}= \\
& =A_{1} A_{2} \cdot A_{3} A_{k+1}+\sum_{i=3}^{k-1} A_{1} A_{i} \cdot A_{i+1} A_{i-1}+ \\
& +A_{1} A_{k} \cdot A_{k+1} A_{k-1}+A_{1} A_{k+1} \cdot A_{2} A_{k} \\
& =A_{1} A_{2} \cdot A_{3} A_{k+1}-A_{1} A_{2} \cdot A_{3} A_{k}-A_{1} A_{k} \cdot A_{2} A_{k-1}+ \\
& +A_{1} A_{k} \cdot A_{k+1} A_{k-1}+A_{1} \cdot A_{k+1} \cdot A_{2} A_{k} \\
& =A_{1} A_{2} \cdot\left(A_{3} A_{k+1}-A_{3} A_{k}\right)+A_{1} A_{k} \cdot\left(-A_{2} A_{k-1}+A_{k+1} A_{k-1}\right)+ \\
& +A_{1} A_{k+1} \cdot A_{2} A_{k} \\
& =A_{1} A_{2} \cdot A_{k} A_{k+1}+A_{1} A_{k} \cdot A_{k+1} A_{2}+A_{1} A_{k+1} \cdot A_{2} A_{k} \\
& =0 \text {. }
\end{aligned}
$$

The last equality is obtained by applying the Euler's Theorem to the points A_{1}, A_{2}, A_{k} y A_{k+1}.

References

Shively, Levi S., Introducción a la Geometría Moderna, CECSA, México, 1982.
Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications Inc., New York, New York, 1960.

