Generalization of an Euler Theorem

RENÉ BENÍTEZ

Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa

Abstract. In this note, Euler's Theorem is generalized using mathematical induction.

1. Introduction

The following result, known as the Euler's Theorem, is established in the courses of modern geometry.

"If A, B, C and D are any four points in a line, then the directed segments AB, CD, AC, DB, AD and BC satisfy the relationship

 $AB \cdot CD + AC \cdot DB + AD \cdot BC = 0"$

In this note we start with a classic proof of the Euler's Theorem, and then generalize it by mathematical induction on the number of points.

2. An Euler Theorem

Euler's Theorem. If A, B, C and D are any four points in a line, then the segments

AB, CD, AC, DB, AD and BC satisfy the relationship

 $AB \cdot CD + AC \cdot DB + AD \cdot BC = 0.$

Proof Consider the points A, B, C and D on a line, and let AB, CD, AC, BD, AD and BC be the directed segments determined by them, as shown below.

ABCD

Hence AB = AD - BD = DB - DA AC = AD - CD = DC - DA BC = BD - CD = DC - DB; from here we have

 $AB \cdot CD + AC \cdot DB + AD \cdot BC =$ = $(DB - DA) \cdot CD + (DC - DA) \cdot DB + (DC - DB) \cdot AD$ = $DB \cdot CD - DA \cdot CD + DC \cdot DB - DA \cdot DB + DC \cdot AD - DB \cdot AD$ = $DB \cdot CD - DA \cdot CD - DB \cdot CD + AD \cdot DB + DA \cdot CD - AD \cdot DB$ = 0.

3 Generalization of the Euler's Theorem

The Euler Theorem of the previous section is generalized as follows:

Proposition 1 If $A_1, A_2, ..., A_n$ are any $n \ge 4$ points in a line, then the directed segments

$$A_1A_2, A_3A_n, A_1A_n, A_2A_{n-1}, A_1A_i, A_{i+1}A_{i-1}$$

for $3 \le i \le n-1$, satisfy:

$$A_1A_2 \cdot A_3A_n + \sum_{i=3}^{n-1} A_1A_i \cdot A_{i+1}A_{i-1} + A_1A_n \cdot A_2A_{n-1} = 0.$$

Proof. If n = 4, the theorem is the Euler's Theorem. Now, we suppose the result is true for n = k > 4, that is

$$A_1A_2 \cdot A_3A_k + \sum_{i=3}^{k-1} A_1A_i \cdot A_{i+1}A_{i-1} + A_1A_k \cdot A_2A_{k-1} = 0.$$

So, for n = k + 1, we have

$$\begin{aligned} A_{1}A_{2} \cdot A_{3}A_{k+1} &+ \sum_{i=3}^{k} A_{1}A_{i} \cdot A_{i+1}A_{i-1} + A_{1}A_{k+1} \cdot A_{2}A_{k} &= \\ &= A_{1}A_{2} \cdot A_{3}A_{k+1} + \sum_{i=3}^{k-1} A_{1}A_{i} \cdot A_{i+1}A_{i-1} + \\ &+ A_{1}A_{k} \cdot A_{k+1}A_{k-1} + A_{1}A_{k+1} \cdot A_{2}A_{k} \\ &= A_{1}A_{2} \cdot A_{3}A_{k+1} - A_{1}A_{2} \cdot A_{3}A_{k} - A_{1}A_{k} \cdot A_{2}A_{k-1} + \\ &+ A_{1}A_{k} \cdot A_{k+1}A_{k-1} + A_{1} \cdot A_{k+1} \cdot A_{2}A_{k} \\ &= A_{1}A_{2} \cdot (A_{3}A_{k+1} - A_{3}A_{k}) + A_{1}A_{k} \cdot (-A_{2}A_{k-1} + A_{k+1}A_{k-1}) + \\ &+ A_{1}A_{k+1} \cdot A_{2}A_{k} \\ &= A_{1}A_{2} \cdot A_{k}A_{k+1} + A_{1}A_{k} \cdot A_{k+1}A_{2} + A_{1}A_{k+1} \cdot A_{2}A_{k} \\ &= 0. \end{aligned}$$

The last equality is obtained by applying the Euler's Theorem to the points A_1 , A_2 , A_k y A_{k+1} .

References

Shively, Levi S., Introducción a la Geometría Moderna, CECSA, México, 1982.

Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications Inc., New York, New York, 1960.