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Abstract 

In this paper, Based on the IIM proposed by LeVeque and Li, [SIAM J. Numer. Anal., 31(1994), pp. 1019-

1044] we will investigate and analyze some applications of the fast 3D solver, we developed embedding 
techniques to solve interior as well as exterior Poisson equations on complicated regions with Dirichlet or 

Neumann boundary conditions. The number of iterations in solving the Schur complement system appears to 

be independent of both the jump in the coefficient and the mesh size. 
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1. Introduction. 

Sometimes a problem on an irregular domain can be handled more easily as an interface problem by 

embedding the domain into a cubic domain and then solving the equation on a Cartesian grid in the cube. The 

original boundary then becomes an interface. As an example, suppose we want to solve a three-dimensional 

elliptic equation on an irregular domain Ω. We can embed the domain in a larger cubic domain R. For 

example, we could solve the following Laplace equation with a Dirichlet boundary condition 
 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 + 𝑘𝑢 = 0,       in     Ω, 

𝑢 = 𝑣,                                         on    𝜕Ω. 
 

By extending it to the problem 

Δ𝑢 =  𝐹 𝑿 𝛿 𝑥 − 𝑋 𝛿 𝑦 − 𝑌 𝛿 𝑧 − 𝑍 𝑑𝑆,      in     𝑅,                       (1.1) 

u = 0,                                                                     on    ∂R. 
The problem is then to determine F(X) so that the boundary condition  𝑢 = 𝑣  𝑜𝑛  𝜕Ω is satisfied. 

The solution is still continuous on the enlarged region R, but not smooth across the interface 𝜕Ω. 

This particular problem has been extensively studied in the past and a number of domain embedding 

procedures have been developed, e.g., capacitance methods [3,8,17,18] and methods based on solving integral 

equations along 𝜕Ω. With the idea of the augmented approach, we can also develop an embedding technique to 

solve elliptic equations on complicated regions with Dirichlet, Neumann, or Robin boundary conditions. In this 

paper, we show how the augmented approach can be utilized to solve exterior / interior Poisson equations on 

irregular domains. 

First, consider 3D interface Poisson equation with Dirichlet boundary condition 

Δ𝑢 + 𝑘𝑢 = 𝑓,             in     Ω,                                                                    (1.2) 

𝑢 = 𝑣,                         on       𝜕Ω. 
 

Where Ω  is a cubic volume with an arbitrary closed void region, 𝜕Ω is the interior boundary of Ω and 𝜕𝑅 is 

the exterior boundary of  Ω, see Figure (1.1) below for an illustration. 
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Figure 1.1 :A diagram for  exterior Poisson problem. 

From the embedding or the fictitious techniques, we can imagine the irregular region as an embedded region 

into a cube R. We may treat the original problem as an interface problem and use the IIM to solve it. However, 

recall that to make the resulting interface problem well-posed, usually we need to know not only the jump in 

the solution [u], but also the jump in the normal derivative of the solution  𝑢𝑛  , across the boundary (now it 

becomes the interface). We may simply use the Dirichlet boundary condition as the jump condition in the 

solution, but unfortunately there seems no way to know the exact jump in the normal derivative of the solution. 

Thus, it will be assumed to be an augmented variable. 

Based on the same idea as used in the augmented approach, we can solve the above problem by choosing an 

initial guess on  𝑢𝑛  , and then updating it until the original boundary condition is satisfied. Below we begin to 

describe this approach in more detail. 

We extend the source term in the Poisson equation by zero outside Ω. On the irregular boundary 𝜕Ω, we allow 

a finite jump  𝑢  in the solution itself. One particular choice is just to use the original boundary condition 𝑣 as 
 𝑢  and let 𝑢 = 0 on the boundary 𝜕𝑅 of the cube R. As for the jump in the normal derivative of the solution 
 𝑢𝑛  , we may use an initial guess, say,  𝑢𝑛  = 𝑔 (usually 0). This extension leads to the following interface 

problem 

Δ𝑢 + 𝑘𝑢 =  
𝑓,     𝑖𝑓    𝑥, 𝑦, 𝑧  ∈  Ω,

0,     𝑖𝑓    𝑥, 𝑦, 𝑧  ∉  Ω,
  

 𝑢 = 𝑣,           on    𝜕Ω, 
 𝑢𝑛  = 𝑔,          on    𝜕Ω,                                                (1.3) 

𝑢 = 0,               on    𝜕R. 
 

We then use the GMRES iteration to update 𝑔 until the original boundary condition is satisfied, i.e., 

𝑢− = 𝑣,     𝑜𝑛   𝜕Ω,                                                      (1.4) 

where 𝑢− is the limiting value of the solution on the boundary from the inside of  𝜕Ω. 

Now the augmented approach can be used and only some minor changes are needed. First, instead of using 
 𝛽𝑢𝑛  = 𝑔 as the convergence-checking rule, we use 𝑢− = 𝑣. Therefore, instead of interpolating 𝑢𝑛

+ 𝑎𝑛𝑑 𝑢𝑛
− 

with the knowledge of 𝑢𝑖𝑗𝑘 ’s, we need to find 𝑢+ and 𝑢−. The same least square approach can still be used 

here. For example, our interpolation formula for  𝑢−can be written in the following: 

𝑢− ≈  𝛾𝑖𝑗𝑘 𝑢𝑖𝑗𝑘 − 𝑄.𝑖,𝑗 ,𝑘                                              (1.5) 

The same idea also applies to interior Poisson problem with Dirichlet boundary conditions as follows 

Δ𝑢 + 𝑘𝑢 = 𝑓,           in    ∂Ω, 
u = v,                       on  ∂Ω,                                                                        (1.6) 

𝑢 = 𝑢0,   on ∂R. 
where Ωis an arbitrary closed region in 3D space, see Figure (1.2) for an illustrations. 

By extending the source term in the Poisson equation by zero outside Ωand forming interface conditions across 

𝜕Ω , we get the following interface problem 

∂Ω 
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Δ𝑢 + 𝑘𝑢 =   
𝑓,                  𝑖𝑓  𝑥, 𝑦, 𝑧 ∈  Ω

0,                  𝑖𝑓  𝑥, 𝑦, 𝑧 ∉ Ω
  

 𝑢 = 𝑣,                  on    𝜕Ω, 
 𝑢𝑛  = 𝑔,                on    𝜕Ω,                                                                           (1.7) 

𝑢 = 𝑢0,                   on    𝜕R. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: A diagram for interior Poisson problem. 

Similarly, we then use the GMRES iteration to update 𝑔 until the original interior boundary condition is 

satisfied, i.e., 

𝑢+ = 𝑣,        on    𝜕Ω.                                                      (1.8) 

where 𝑢+ is the limiting value of the solution on the interior boundary from the outside of  𝜕Ω, which can still 

be obtained by the same least  square approach as in  5 . 𝑖. 𝑒., 
𝑢+ ≈  𝛾𝑖,𝑗 ,𝑘𝑢𝑖,𝑗 ,𝑘 − 𝑄.𝑖,𝑗 ,𝑘                                                (1.9) 

We have tested the fictitious or embedding techniques by solving some exterior or interior Poisson equations 

with Dirichlet boundary conditions. As mentioned in [7] the computations are done by using Dell Precision 

690 Workstation running RHEL4, OS: RedHat Enterprise Linux, ws release 4 RHEL4, CPU: 1  XEON 

5160, 2 cores ( HT4 cores), memory 32GB. and by using gfortran compiler. The tolerance for the GMRES is 

taken as 10−5. 

2. Numerical experiments 

We will provide two examples in solving three-dimensional Poisson equations on exterior and interior 

irregular domains, respectively, to show the efficiency of the augmented approach. We want to show second 

order accuracy of thesolution, and moreimportantly also, show that the number of iterations is nearly 

independent of the mesh size in this chapter. 

Example 2.1 

In this example, the domain is the exterior of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1/4. The differential equation is 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 20𝑟2 +
log⁡(𝑒)

𝑟2
 

Dirichlet boundary condition is chosen from the following exact solution and level set function: 

 

𝑢 𝑥, 𝑦, 𝑧 = 𝑟4 + log 2𝑟 +
3

16
, 

where𝑟 =  𝑥2 + 𝑦2 + 𝑧2. and on Γ, 𝑟 = 𝑟0 = 1/2 

 

Below, Figure 2.1(outside of the sphere) shows a slice of the computed solution: −𝑢 𝑥, 𝑦, 0 . The sphere is 

embedded into a unit cube [-1,1]×[-1,1]×[-1,1]. 

Again we did the simulations, but on a 104×104×104 grids. The mesh size is 𝑕 = 1/52. 
 

 

 

Ω 
.𝜕Ω 

𝜕𝑅 

R 
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Figure 2.1: Plot of a slice of the computed solution −𝑢 𝑥, 𝑦, 0  for example (2.1) with  𝑙 = 𝑚 = 𝑛 =104. 

In Figure 2.1 (outside of the sphere) shows a slice of the computed solution :−𝑢 𝑥, 𝑦, 0  on a 104×104×104 

grids. The mesh size is 𝑕 = 1/52. Both the solution and the flux [𝛽𝑢𝑛 ] are discontinuous across the interface 

Γ. The source term 𝑓 is discontinuous across the interface as well. The mesh size is 𝑕 = 1/52. The interface is 

a sphere and the computational domain is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is 

composed of two pieces. We see that our method does accurately give the jumps in the solution and in the 

normal derivative of the solution, without smearing out the solution. The discontinuity in the solution and the 

flux is captured sharply by our numerical method. 

 
Figure 2.2 : Error plot of the slice of the computed solution for example (2.1) 

with 𝑙 = 𝑚 = 𝑛 = 104. 

Figure 2.2 is a plot of the error in the infinity norm of the slice of the computed solution plotted in Figure 2.2 

on a 104×104×104 grids. The mesh size is 𝑕 = 1/52. The largest error in magnitude is about 1.2× 10−4.The 

number of iterations for solving the Schur complement system using a GMRES is almost independent the 

mesh size 𝑕. 

Example 2.2 

The differential equation is 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 𝑓, 

in the interior of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 4  

 

with 

𝑓 𝑥, 𝑦, 𝑧 =  
−200𝑟2,           𝑖𝑓 𝑟 < 1 2, 

20𝑟2,               𝑖𝑓 𝑟 ≥  1 2. 
  

Dirichlet boundary condition is chosen from the exact solution and level set function: 

𝑢 𝑥, 𝑦, 𝑧 = −10𝑟4. 
 

where 𝑟 =  𝑥2 + 𝑦2 + 𝑧2and on Γ, 𝑟 = 𝑟0 = 1 2.  
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Again the domain is embedded into the unit cube [-1,1]×[-1,1]×[-1,1]. 

 
Figure 2.3: Plot of a slice of the computed solution −𝑢 𝑥, 𝑦, 0  for example (2.2) with 𝑙 = 𝑚 = 𝑛 =104. 

Figure 2.3 (inside on the top) shows a slice of the computed solution:−𝑢 𝑥, 𝑦, 0  on a 104×104×104 grids. 

The mesh size is 𝑕 = 1/52.Both the solution and the flux [𝛽𝑢𝑛 ] are discontinuous across the interface Γ. The 

source term 𝑓 is discontinuous across the interface as well. The mesh size is 𝑕 = 1/52. The interface is a 

sphere and the computational domain is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is composed 

of two pieces. We see that our method does accurately give the jumps in the solution and in the normal 

derivative of the solution, without smearing out the solution. The discontinuity in the solution and the flux is 

captured sharply by our numerical method. 

 
Figure 2.4: Error plot of the slice of the computed solution for example (2.2)  with 𝑙 = 𝑚 = 𝑛 = 104. 

Figure 2.4 is a plot of the error in the infinity norm of the slice of the computed solution on a 104×104×104 

grids. The mesh size is 𝑕 = 1/52.The largest error in magnitude is about  0.5× 10−3.The number of iterations 

for solving the Schur complement system using a GMRES is almost independent the mesh size 𝑕. 

3. Grid refinement analysis. 

Tables (3.1)-(3.2) show the results of a grid refinement analysis, where 𝑙 = 𝑚 = 𝑛 is the number of uniform 

grid points in the 𝑥, 𝑦, and 𝑧 direction, respectively. The infinity norm forthe maximum relative error over all 

grid points and order of convergence are defined as in (3.1) and (3.2) respectively. 

 

 𝐸𝑛 ∞ =
max 𝑖,𝑗 ,𝑘  𝑢 𝑥𝑖 ,𝑦𝑗 ,𝑧𝑘 −𝑢 𝑖𝑗𝑘  

max 𝑖,𝑗 ,𝑘  𝑢 𝑥𝑖 ,𝑦𝑗 ,𝑧𝑘  
,                              (3.1) 

 

where𝑢𝑖,𝑗 ,𝑘  is the computed approximation of 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) . We also display the ratio of two successive errors 

and order of accuracy, respectively, as 

 

Ratio = 𝐸𝑛 / 𝐸2𝑛 ,                order =log⁡( 𝐸𝑛 / 𝐸2𝑛 )/log2                        (3.2) 

 

For a first order method, the ratio approaches to 2, and for a second order method, the ratio approaches to 4. 

We will use the same notation for other examples in this thesis. 

We see that an average ratio of 4 indicates that the augmented approach is a second order accuracy. 

Show that the approach is second order accurate and we notice that the number of calls to the fast Poisson 

solver on the cubic domain is independent of the mesh size similar to the case of two space dimensions 

proposed in [13]although it may depend on the geometry of the domain. They also show the error in the 

infinity norm and other information. In those tables, 𝑁𝑖𝑟𝑟𝑒𝑔  and 𝑁𝑐𝑛𝑡𝑟  are the number of total irregular grid 
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points and the number of control points respectively; 𝑁𝑖𝑡𝑒𝑟  is the number of iterations of the GMRES method 

or the number the calls of the 3D fast Poisson solver. 

Table 3.1: the grid refinement analysis of Example 2.1. Using Dell Precision Workstation 690 

𝑛 𝑁𝑖𝑟𝑟𝑒𝑔  𝑁𝑐𝑛𝑡𝑟  CPU(s) 𝑁𝑖𝑡𝑒𝑟   𝐸𝑛 ∞ Ratio(order) 

26 920 506 2.1637 5 0.3898E-04  

52 3528 1820 8.6127 5 0.9849E-04 3.9577(1.98) 

104 14048 7172 37.1104 5 0.2419E-04 4.0715(2.03) 
 

Table 3.1 above shows the results of a grid refinement study with errors in the infinity norm and other 

information. We can see that the method still has second order accuracy when we use the embedding 

technique. We see that only a few iterations (only 5) are needed and the number is independent of the mesh 

size. The CPU time column (in seconds) shows that our method is very fast considering the very large 

condition number of the system of equations from a direct discretization even for a regular domain such as a 

cube. Furthermore, in this Table we can see that the number of iterations (only 5) is independent of the mesh 

size as in the case of two space dimensions. The CPU time does not increase much. Thus, our method here is 

fast in terms of number of GMRES iterations and in terms of CPU time. 

Table 3.2: the grid refinement analysis for Example 2.2. Using Dell Precision Workstation 690 

𝑛 𝑁𝑖𝑟𝑟𝑒𝑔  𝑁𝑐𝑛𝑡𝑟  CPU(s) 𝑁𝑖𝑡𝑒𝑟   𝐸𝑛 ∞ Ratio(order) 

26 920 506 2.1577 5 0.2445E-01  

52 3528 1820 8.5897 5 0.6882E-02 3.9577(1.83) 

104 14048 7172 36.9984 5 0.1744E-02 4.0715(1.98) 
 

Table 3.2 above shows the results of a grid refinement study with errors in the infinity norm and other 

information. Again, we can see that the method still has second order accuracy when we use the embedding 

technique. Furthermore, in this Table we can see that the number of iterations (only 5) is independent of the 

mesh size as in the case of two space dimension. The CPU time does not increase much. 

So far, in the discussion for a Poisson equation on an irregular domain, we form an interface problem that 

requires a known fixed jump in the solution and set an unknown jumpin the normal derivative of the solution. 

Then we iteratively update the jump in the normal derivative using the GMRES iteration to 10−5 tolerance 

until the original boundary condition is satisfied. Alternatively, we can set a known fixed jump in the normal 

derivative and an unknown jump in the solution. Then we use a similar GMRES iteration to update the jump in 

the solution until the original boundary condition is satisfied. For example, the following interior 

Holmholtz/Poisson equation with a Neumann boundary condition 

Δ𝑢 + 𝑘𝑢 = 𝑓,              in     Ω,(3.3) 

𝑢𝑛 = 𝑞,                       on       𝜕Ω. 
It may be treated as the following interface problem 

Δ𝑢 =  𝑓,          𝑖𝑓   𝑥, 𝑦, 𝑧 ∈ Ω,

0,          𝑖𝑓  𝑥, 𝑦, 𝑧 ∉ Ω,

  

 𝑢 = 𝑔,                on      𝜕Ω,(3.4) 
 𝑢𝑛  = 𝑞,               on      𝜕Ω, 
𝑢 = 0.                    on      𝜕R. 

 

Again, the solution 𝑢 is a linear functional of 𝑔. We determine 𝑔(𝑠1, 𝑠2) such that the solution 𝑢(𝑔) satisfies 

the original boundary condition in (5.10) above. i.e., 𝑢𝑛 𝑔 = 𝑞. This can be solved using the GMRES 

iteration exactly as we discussed earlier in Chapter 3. 

4. Conclusions 

In this paper, we showed that the fast solver can be applied to Holmholtz/Poisson problems on irregular 

domains which may have many other applications.  The GMRES iteration is employed to solve the Schur 

complement system derived from the discretization. Numerical experiments showed that the fast algorithm was 

very successful and efficient. 
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We also have investigated some applications of the fast 3D solver. We developed embedding techniques to 

solve interior or exterior Poisson equations on complicated regions with Dirichlet or Neumann boundary 

conditions. The idea is to embed the irregular region into a cube to extend the Poisson equation to the entire 

cubic domain to introduce suitable jump conditions and to get an interface problem. 
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