
International Journal of Applied Science and Technology        Vol. 10, No. 2, June 2020       doi:10.30845/ijast.v10n2p4 

 

21 

 

Statistical Analysis for Varying-Stress Accelerated Life Testing with Inverse 

Gaussian Distribution 

Naijun Sha 

(Corresponding Author) 

Department of Mathematical Sciences 

University of Texas at El Paso 

 TX 79968, USA 

&  

Richard Nii Okine 

Department of Mathematical Sciences 

University of Texas at El Paso 

TX 79968, USA 
 

 

Abstract 

In this article, we consider a time-varying-stress accelerated life testing (ALT) under aWiener decay process. The 
failure time of products follows a time-transformed inverse Gaussian distribution. We outline some interesting 

properties of this highly flexible distribution, present the classical maximum likelihood estimation method, and propose 

a new Bayesian approach for inference. Simulation studies are carried out to assess the performance of the methods 
under various settings of parameter values and sample sizes. Real data are analyzed for illustrative purposes to 

demonstrate the efficiency and accuracy of the proposed Bayesian method over the likelihood-based procedure. 

Keywords: varying-stress accelerated life testing, Wiener process, inverse Gaussian distribution, Bayesian inference, 

Fisher’s information, MCMC sampling. 

1 Introduction 

In industrial experiments, it is often very costly and time consuming to obtain information about the lifetime of high 

reliable products under normal experimental conditions. To collect failure data quickly and improve the efficiency of 

experiment, people commonly apply accelerated life testing (ALT) where products or materials are subjected to severe 

stress conditions than those normally applied in practice. These stresses often include temperature, voltage, vibration, 

pressure, load, etc., either alone or in some combinations. Step-Stress ALT (SSALT) is one of the most widely used 

ALT in which the stress on each specimen is increased step-by-step over time.  

Through the modeling the distributions of failure times under SSALT that relate to the distribution under usual 

conditions, the model parameters are estimated and inference is made from the accelerated-failure- time data. Many 

authors have contributed extensively to the development, parameter inference and the optimum design on SSALT for 

various lifetime distributions, see, for example, Bai and Chun (1991); Khamis (1997); Bagdonavicius et al. (2002); 

Srivastava and Shukla (2008); Sha and Pan (2014); Hu et al. (2015), and among others. In this article, we focus on the 

varying-stress ALT (an extension of SSALT described in Doksum and Hoyland (1992)) where the failure time is 

modeled in terms of accumulated decay governed by a continuous Wiener process whose distribution, at each time 

point, depends on the stress assigned to the experimental unit. Specifically, for products subject to constant stress, the 

accumulated decay is modeled as a Wiener process {W0(y) : y _ 0} with drift η > 0 and diffusion constant δ > 0. The 

process is defined to be an independent Gaussian increment with W0 (0) = 0, mean E(W0(y)) = ηy, and variance δ2(y2 

− y1) for each increment W0(y2) −W0(y1), 0 < y1 < y2. Product failure occurs (and the failure time is recorded as Y ) 

when the decay process W0(y) crosses a critical boundary ω. Bhattacharyya and Fries (1982) showed that Y follows 

the inverse Gaussian distribution IG(μ, λ), whose density function is 
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where μ = ω/η is the mean and λ = ω2/δ2 is the shape parameter. The history and basic results of the distribution can be 

found in the book Chhikara and Folks (1989). In the following section, we focus on a continuous varying-stress ALT 

governed by aWiener process, and explore the distribution of failure time for products in the process. 

We first briefly review the SSALT under a Wiener process described in Doksum and Hoyland (1992), and then extend 

to the continuous varying-stress ALT on experimental units. Suppose that, for a particular pattern of SSALT with k 

steps total, step i runs at stress level xi, starts at time ti−1, and runs to time ti(t0 = 0, tk = 1), i = 1, 2, ..., k. A general 

procedure of SSALT is illustrated as the step lines in Figure 1. The failure time of units is modeled by the accumulated 

decay Wiener process W(y) whose distribution depends on the stress x(y) assigned to the experimental unit at each time 

point. Failure time y is defined as the first time the accumulated decay W(y) reaches a fixed critical level ω. Suppose 

that W0(y) is the decay Wiener process at initial stress, and the decay rate of the process is changed by multiplicative 

factor αi as y crosses the stress change point ti. Then the accumulative decay from Wiener process is modeled as W(y) 

= W0(y), y 2 [0, t1), and W(y) = Wi(y), y 2 [ti, ti+1), where Wi(y) = Wi−1(ti + αi(y − ti)), y 2 [ti, ti+1), i = 1, 2, ..., k − 

1. 

Clearly, it can be expressed as W(y) = W0(τ (y)) where the effective (non-accelerated) time is 

 

 
where the cumulative decay factor βi = Qi l=1 αl with α0 = 1. The decay rate at ith step αi is related to the stress levels 

xi−1 and xi. Doksum and Hoyland (1992) showed that the cumulative distribution function of random failure time Y is 

F(y) = F0(τ (y)) where F0(·) is the distribution function of IG(μ, λ). One of the association often used in many 

applications is αi = 1+θ(xi−xi−1) with some positive value θ. Thus the cumulative decay rate becomes 

 

 
As all time duration _i = ti − ti−1 ! 0, the step-stress levels xi become a varying-stress x(y) (see Figure 1) continuously 

over time in ALT, and the decay process W(y) at time y would have the cumulative decay rate (and denoted as) β_(y) = 

1 + θ(x(y) − x(0)), where x(0) = x0.  

As a result, the corresponding cumulative exposure (or damage) time τ_(y), which appears as a sum in (2) for a step-

stress testing, becomes the integral τ_(y) = R y 0 β_(s)ds. Specifically, in the experiment reported by Nilsson and Uvell 
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(1985), x(y) is linear function of y, say x(y) = x0 + Ry where R is a known constant set by the experimenter, and thus 

the cumulative decay rate becomes 

, where the constant R has been absorbed into θ. It follows that the cumulative exposure 

time of products at time y is  and the distribution and density functions of failure 

time y in the varying-stress test are 

 

 
where F0(·), f0(·) are the distribution and density functions of IG(μ, λ), respectively, _(·) is the distribution function of 

standard normal. The expression of normal mixture in (4) comes from the property of inverse Gaussian distribution 

function Johnson et al. (1995). Notice that the transformed variate , and so we regard 

it in (4) as a transformed inverse Gaussian distribution, denoted by TIG(μ, λ, θ). Since the inverse Gaussian is a 

unimodal and the transformation τ_(y) is a quadratic increasing function in y > 0, the unimodality will be kept for the 

three-parameter TIG family in (5). Figure 2 shows various graphs of the density function for different values of μ, λ 

and θ, where μ is a location-like parameter, λ plays a shape role to make the distribution more like a Gaussian as it 

tends to be large, and another shape parameter θ moves the density curve distinctly away from the origin to become less 

right-skewed as it decreases. Additionally, Figure 3 presents the failure (or hazard) function given by h(y) = f(y)/(1 − 

F(y)) with various values of parameters, showing that generally it is increasing except that it is increasing followed by a 

bathtub-shaped when both μ and λ are small. Hence, it seems that the distribution is flexible enough to model various 

situations of product life. 

In this article, we investigate the maximum likelihood (ML) estimation of parameters and pro- vide interval estimation 

based on the Fisher’s information. Further, to contribute a novel research of analysis, we propose a Bayesian approach 

for parameter inference. The rest of the paper is organized as follows. Section 3 presents the methodology of estimation 

procedure. Subsequently, we carry out simulation studies to investigate the performance of proposed methods in 

Section 4. For illustrative purpose, two real data sets are analyzed in Section 5, followed by some concluding remarks 

in Section 6. 

 

 

 
 

Figure 2: TIG (μ, λ, θ) density curves for various parameter values. 
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3 Estimations 

Let y = (y1, y2, ..., yn)′ be n observational failure times from the distribution in (4). We first consider the maximum 

likelihood (ML) estimation approach in the following. 

3.1 Likelihood-Based Method 

The expression of density function in (5) results in the likelihood and log-likelihood functions, up to a constant, given 

by 

 
 

There are no analytical forms of maximum likelihood estimates (MLEs), a numerical method has to be applied to 

obtain MLEs ˆμ, ˆλ, ˆθ by solving the equations ∂ℓ/∂μ = 0, ∂ℓ/∂λ = 0 and ∂ℓ/∂θ = 0 simultaneously. To make inference 

for the parameters, let the Fisher’s information matrix be 

 

 
where the elements are the negative expectation of the second partial derivatives of parameters for the log-likelihood 

function in (7), such as vμμ = −E(∂
2
ℓ/∂μ

2
), vμ_ = −E(∂

2
ℓ/∂μ∂λ), etc. These elements are given by (the derivations are 

provided in the appendix) 

 



International Journal of Applied Science and Technology        Vol. 10, No. 2, June 2020       doi:10.30845/ijast.v10n2p4 

 

25 

So the variance-covariance matrix of the asymptotic normal distribution for the MLEs is given by 

 

 
 

Due to the positiveness of the parameters, we may use the natural log transformation to obtain approximate confidence 

intervals (CIs) for the parameters. In particular, for parameter μ and its MLE ˆμ, we have the approximate normal 

distribution log , where the variance can be approximated by delta method as 

, being the values of v1 and d, respectively, evaluated at MLEs ˆμ,ˆλ, 

ˆθ and observed data y. Then a (1 − α)100% CI for μ is then given by 

 

 
where zα/2is the upper 100 × α/2-th percentile of the standard normal distribution. The normal- approximated CIs for 

other two parameters λ and θ can be constructed in the same way to have the form in (15) with ˆμ being replaced by ˆλ 

and ˆθ, respectively, and  

It is worth noting that these intervals can exhibit wide width and less accurate coverage for small 

samples. It is worth noting that these intervals can exhibit wide width and less accurate coverage for small samples. 
 

3.2 Bayesian Approach 

Since there are no tractable forms of MLEs and CIs, it is not much accurate and efficient by use of the ML estimation 

method. Bayesian analysis of the IG distribution has received considerable attention in the past decades, see, for 

example Padgett (1981); Sinha (1986); Pandey and Bandyopadhyay (2012), where independent priors for the 

parameters μ and λ were imposed. However, from the model development of the inverse Gaussian distribution in 

Bhattacharyya and Fries (1982), we notice that the parameters 
μ2

 and λ has a proportional relation λ / 
μ2

. Hence we 

consider a dependent prior as an alternative in our Bayesian inference approach. Combining the fact that the parameter 

θ is independent of μ and λ, we propose a joint prior π(μ, λ, θ) = π(μ)π(λ|μ)π(θ) with the conditional prior mean E(λ|μ) / 
μ2

.From the likelihood function in (6), first it is easily discernible that for λ|μ, a gamma is a conjugate prior for the 

conditional likelihood L(λ|μ, θ, y).  
 

Secondly, the conditional likelihood , and the gamma prior π(λ|μ) 

updates the coefficient , hence we choose an inverse gamma for μ to update the coefficient of μ−
1
. 

Therefore, we specify the following priors 

 
with the hyperparameters a0, a1, b0, b1 > 0. It is also clear that there is no conjugate prior for θ.However, we may 

consider a prior distribution which has a similar functional form as its conditional likelihood function. In this case, we 

pick the prior of θ to be a gamma distribution, 

 

 
with c0,c1 > 0. The hyperparameter values can be specified by considering the following factors: (i) Since μ and μ

3
/λ are 

the mean and variance of the inverse Gaussian distribution for the transformed variable τ_(Y ), we can refer to the 

sample mean and variance, and MLEs ˆλ, ˆθ in our attempt to specify a0 and a1 through the prior mean and variance for 

inverse gamma distribution; (ii) It is known that the mean of the reciprocal of τ_(Y ) is 1/μ +1/λ. The sample value of 

τ
−1

 _ (y) together with the MLEs ˆμ,ˆλ, ˆθ can be used to determine bi and ci ,i = 0, 1. The non-informative distribution 
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with ai = bi = ci = 0, i = 0, 1 can be chosen if no prior knowledge is available. The joint posterior distribution of the 

parameters (μ, λ, θ) with the sample data y is given by 

 
It follows that the full conditional posteriors are 

 
We implement a Gibbs sampling procedure (a Markov chain Monte Carlo (MCMC) algorithm, see, for example, 

Casella and George (1992)) to draw posterior samples from their full conditional posterior distributions. First, we take 

MLEs of μ, λ and θ as the initial values to make the algorithm converge more quickly, and then repeat the following 

steps M times. Given the values at the mth iteration, the (m + 1)th iteration is as follows: 

(i) Draw μm+1 from π(μ|λm, θm, y) in (19) using a Metropolis-Hastings (MH) procedure (see, Chib and Greenberg 

(1995)). To make algorithm efficiency, a resembled proposal distribution of the conditional posterior of μ is considered 

here. We generate a proposed random variate μp from a lognormal distribution with centered at the previous value, i.e. 

log , where rμ > 0 is a tuning parameter, and the variance term  evaluated at values 

(μm, λm, θm), is specified as the reciprocal of Fisher information of the conditional posterior of log μ, whose log density 

is log π(μ|λm, θm, y) + log |J| with the Jacobian term J = μ due to a log transformation on μ. 

 

 
 

(ii) Draw λm+1|(μm+1, θm, y) _ Gamma(ν0/2, ν1/(2μ
2
 m+1)) with updated ν0 and ν1 in (20). 

(iii) Draw θm+1 from π(θ|μm+1, λm+1, y) in (21) using a MH procedure. We first propose θp _ Gamma(r_θm, r_), where θm 

is the mean of the proposal and r_ > 0 is a tuning parameter to make algorithm fast, and then take θm+1 = θp with 

probability 
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with the gamma function �(·). 

The posterior inference of the parameters μ, λ and θ, such as posterior mean, credible interval (CI), etc. are made by 

their posterior samples (μm, λm, θm),m = 1, 2, ...,M. 

4 Simulation Study 

We carry out a simulation study to assess performance of parameter estimation by ML and the Bayesian methods. We 

take four settings of parameter values as (μ, λ, θ) = (0.5, 1.5, 1.0), (1.0, 1.5, 1.5), (2.0, 2.0, 2.0), and generate 10,000 

data sets for each of these parameter settings with three sample sizes n = 20, 30, 50. For the Bayesian analysis, we 

choose “flat” or “less informative” prior distributions with the hyperparameter values a0 = a1 = b0 = b1 = c0 = c1 = 0 to 

reflect little prior knowledge about the parameters. With each simulated data, we find that the the tuning parameter 

values rμ = 10, r= 2.2 is adequate in ensuring the acceptance rates around 35% - 40%, and we run five MCMC chains 

with fairly different starting values and each 10,000 iterations with the first 2,000 as a burn-in period. The scale 

reduction factor estimate is used to monitor convergence of MCMC simulations (Gelman et al., 

2004), where ψ is the estimand of parameters such as μ, λ and θ, and V ar(ψ) = (N − 1)W/N + B/N with the iteration 

number N = 10, 000 for each chain, the between- and within-chain variances B and W. The scale factors for the 

sequences of μ, λ and θ are within 1.01-1.03 for all five MCMC chains, indicating their convergence.  

The remaining 8,000 samples are used to compute the average biases, mean squared error (MSE) of the estimates, 

average lengths (AL) of the 95% credible intervals (CI) (formed by the lower 2.5
th
 and upper 97.5th percentiles), and 

coverage probability (CP) for the parameters. The results are displayed in Table 1 along with these estimates from the 

ML method for the purpose of comparison. The main findings are outlined as follows: (i) the bias of estimates, MSE 

and AL of 95% CI decrease, and CP is closer to the nominal level as sample size n increases for all cases; (ii) the 

estimation of all parameters from the Bayesian method is much better than from the ML approach as to smaller biases 

and MSEs, narrower CIs and higher CPs. The MLE ˆθ dose not perform well for the small to moderate sample sizes (n 

= 20, 30). (iii) relatively, both methods produce much more accurate estimation of λ, less precise for μ and least for θ. 

With the larger sample size (n = 50), both methods perform similarly for the estimation of the parameter λ; (iv) it is 

observed that the estimates of μ and θ have a smaller bias and MSE under smaller true values of μ and θ, whereas the 

estimate of λ has a smaller MSE for both larger and small true values of θ. In summary, the Bayesian inference method 

outperforms ML approach for all parameter settings, particularly under small sample sizes. 

5 Real Data Applications 

This section presents real data analysis to further illustrate the usefulness of the proposed method in parameter 

inference. The first real data example was given in Nelson (2004) about the breakdown time in an accelerated test 

employed a pair of parallel disk electrodes immersed in an insulating oil. Voltage V (stress) across the pair was 

increase linearly with time y at a specified rate R in volts/sec and breakdown time was recorded at one squared inch 

electrode. 
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The data is presented in Table 2, consisting of 60 measured breakdown time (seconds). Fitting the TIG distribution with 

the Bayesian method, we choose the values of hyperparameters a0, a1 and c0, c1 such that the prior mean of μ and θ are 

close to the MLEs bμ and bθ calculated from the data, b0 and b1 such that the conditional prior mean E(λ|bμ) is close 

to the MLE bλ. Hence, we have the hyperparameter values as followings: a0 = 10, a1 = 2.54, b0 = 0.67, b1 = 0.16, c0 = 

c1 = 1. We run a chain of 20,000 iterations with a burn-in period of 5,000. To reduce the correlation among the 

samples, every 5
th

 sample of the remaining 15,000 samples are used for posterior inference. The results are tabulated in 

Table 3, where, due to relative large sample size (n = 60), the point estimates obtained by both ML and Bayesian 

methods are close each other. However, the 95% CIs from the Bayesian method are narrower than the ones of ML 

approach, especially for the intervals of μ and θ. Additionally, a smaller Chi-squared goodness of fit statistic of model 

fitting by the Bayesian (χ2 = 10.39) than ML method (χ2 = 20.24) indicates more accurate estimation in the Bayesian 
analysis. The data was analyzed in Nelson (2004), who fitted a Weibull distribution with an inverse power law on the 

cumulative decay rate β(y) = (x(0)/x(y))p with p = 7.8052, which is associated to a linear law we adopted here by a log 

transformation. This connection gives us an approximated relation for the rise rate of voltage R _ exp(pθ), leading to 

the estimated value of R computed, respectively from ML and Bayesian approaches, ˆR = 13.6734, 10.1488, which are 
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close (especially from the Bayesian method) to the estimates obtained by Nelson (2004). Finally, for illustration, Figure 

4 depicts the histogram of data and empirical cumulative distribution function (cdf) along with the fitted TIG density 

and cdf curves estimated by both methods. The second real data was presented in Balakrishna et al. (2009) on active 

repair times (in hours) for an airborne communications transceiver. To illustrate the estimation performance on a small 

sample size, we randomly select 20 repair times out of the total 46 observations to have following data: 0.3, 0.5, 0.6, 

0.6, 0.7, 0.7, 0.8, 1.0, 1.3, 1.5, 1.5, 2.0, 2.2, 2.5, 4.0, 4.7, 5.0, 7.5, 8.8, 10.3. 

 

 
 

Modeling the data by the TIG distribution, we adopt the same procedure as discussed to specify the hyperparameter 

values by using the sample mean 2.825 of the data and MLEs. In summary, we choose the following hyperparameter 

values: a0 = 3.00, a1 = 6.93, b0 = 6.00, b1 = 44.68, c0 = 0.10, c1 = 30.30. A MCMC chain of 20,000 iterations with a 

burn-in period of 5,000 produces the estimation results of Bayesian approach, together with the results by ML method, 

tabulated in Table 4. For this data with relatively small sample size (n = 20), the produced 95% CIs are much narrower, 

as well as much smaller Chi-squared goodness of fit statistic value 10.87 by the Bayesian method than 26.53 of ML 

approach. Finally, for illustration, Figure 5 shows that the fitted TIG density and cdf curves estimated by the Bayesian 

method is better-fit to the histogram and empirical cdf than the ones by the ML approach. These outcomes demonstrate 

that the proposed Bayesian method produces much more accurate inference under a small sample size. 

 
6 Conclusion Remarks 

We presented a statistical inference by ML and Bayesian approaches in time-varying-stress accelerated life testing with 

a Wiener decay process, which induced a transformed inverse Gaussian (TIG) distribution followed by the lifetime of 

products in the testing. We explored the properties of TIG and studied its Fisher’s information used in the likelihood-

based inference method, and propose a Bayesian procedure with carefully choosing prior distributions for parameter 

inference. The simulation study with various settings demonstrated that the Bayesian method outperformed the 
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traditional likelihood-based approach especially for its efficient and impressive outcomes under small sample sizes. We 

have also illustrated, with two real data sets, that our Bayesian method can be readily applied for efficient, reliable and 

precise inference. 

 
Appendix 

We present a detail derivation of the Fisher Information matrix for the TIG(μ, λ, θ). From the expressions of first partial 

derivatives in (8) with ∂τ_(y)/∂θ = y
2
/2, the second partial derivatives of parameters for the log-likelihood function in 

(7) are in the followings 

 

 

 
 

 

So the inverse Fisher’s information matrix has the following forms 
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Since there are no analytic forms of some moments in the elements, we estimate these quantities by the observational 

data to approximate I−1(μ, λ, θ) in the following 
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